Skip to main content
Log in

Intrathecal injection of human placental mesenchymal stem cells derived exosomes significantly improves functional recovery in spinal cord injured rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Spinal cord injury (SCI) due to lack of restoration of damaged neuronal cells is associated with sensorimotor impairment. This study was focused on using the human placental mesenchymal stem cells- exosome (HPMSCs- Exosomes) in an animal model of severe SCI under myelogram procedure.

Methods and results

Intrathecal injection of exosomes was performed in the acute phase of SCI in female rats. The improved functional recovery of the animals was followed for 6 weeks in control (saline, n = 6) and HPMSCs- EXO (HPMSCs-Exosomes, n = 6) groups. Pathological changes and glial scar size were evaluated. The Immunohistochemistry (IHC) of GFAP and NF200 factors as well as the apoptosis assay was investigated in the tissue samples from the injury site. The results demonstrated that HPMSCs-exosomes can improve motor function by attenuating apoptosis of neurons at the injury site, decreasing GFAP expression and increasing NF200 in the HPMSCs-EXO group. Also, HPMSCs-exosomes by preventing the formation of cavities causes preservation of tissue in SCI rats.

Conclusions

These findings demonstrate the effectiveness of HPMSC-Exosomes as a therapeutic method to improve functional recovery, reduce pathological changes associated with injury, and prevent chronicity after SCI. The neuroprotective and anti-apoptotic potential of HPMSCs- Exosomes may be a promising therapeutic approach for SCI. Another result was the importance of intrathecal injection of exosomes in the acute phase, which accelerated the healing process. Furthermore, the myelogram can be a feasible and suitable method to confirm the accuracy of intrathecal injection and examine the subarachnoid space in the laboratory animals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data would be available on request.

Abbreviations

BBB:

Basso, beattie and bresnahan

FBS:

Fetal bovine serum

GFAP:

Glial fibrillary acidic protein

H&E:

Hematoxylin–eosin

hPMSCs:

Human mesenchymal stem cells

hPMSCs-exosomes:

Human placental mesenchymal stem cells derived exosome

IHC:

Immunohistochemistry

LP:

Lumbar puncture

MSC:

Mesenchymal stem cells

NF200:

Neurofilament 200

PFA:

Paraformaldehyde

PBS:

Phosphate buffered saline

SCI:

Spinal cord injury

TEM:

Transmission electron microscopy

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTp nick end-labeling

References

  1. David G, Mohammadi S, Martin AR et al (2019) Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 15:718–731. https://doi.org/10.1038/s41582-019-0270-5

    Article  PubMed  Google Scholar 

  2. Hayta E, Elden H (2018) Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 87:25–31. https://doi.org/10.1016/j.jchemneu.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  3. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10:3879. https://doi.org/10.1038/s41467-019-11707-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM (2018) Translational regenerative therapies for chronic spinal cord injury. Int J Mol Sci 19:1776. https://doi.org/10.3390/ijms19061776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tashiro S, Tsuji O, Shinozaki M et al (2021) Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regen Med 6:81. https://doi.org/10.1038/s41536-021-00191-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020) Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 10:1–17. https://doi.org/10.1186/s13578-020-00475-3

    Article  Google Scholar 

  7. Ren Z, Qi Y, Sun S, Tao Y, Shi R (2020) Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair. Stem Cells Dev 29:1467–1478. https://doi.org/10.1089/scd.2020.0133

    Article  CAS  PubMed  Google Scholar 

  8. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He C, Zheng S, Luo Y, Wang B (2018) Exosome theranostics: biology and translational medicine. Theranostics 8:237. https://doi.org/10.7150/thno.21945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yi H, Wang Y (2021) A meta-analysis of exosome in the treatment of spinal cord injury. Open Med 16:1043–1060. https://doi.org/10.1515/med-2021-0304

    Article  CAS  Google Scholar 

  11. Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L (2020) Adult mesenchymal stem cells and their exosomes: sources, characteristics, and application in regenerative medicine. Life Sci 256:118002. https://doi.org/10.1016/j.lfs.2020.118002

    Article  CAS  PubMed  Google Scholar 

  12. Sabapathy V, Herbert FJ, Kumar S (2017) Therapeutic application of placental mesenchymal stem cells reprogrammed neurospheres in spinal cord injury of SCID. Adult Stem Cells. https://doi.org/10.1007/978-1-4939-6756-8_8

    Article  Google Scholar 

  13. Riau AK, Ong HS, Yam GH, Mehta JS (2019) Sustained delivery system for stem cell-derived exosomes. Front pharmacol 10:1368. https://doi.org/10.3389/fphar.2019.01368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tator CH (2006) Review of treatment trials in humanspinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59:957–987. https://doi.org/10.1227/01.neu.0000245591.16087.89

    Article  PubMed  Google Scholar 

  15. Bakshi A, Barshinger AL, Swanger SA et al (2006) Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma 23:55–65. https://doi.org/10.1089/neu.2006.23.55

    Article  PubMed  Google Scholar 

  16. Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 1:330–337. https://doi.org/10.3171/spi.2004.1.3.0330

    Article  PubMed  Google Scholar 

  17. Cizkova D, Murgoci A-N, Cubinkova V et al (2020) Spinal cord injury: animal models, imaging tools and the treatment strategies. Neurochem Res 45:134–143. https://doi.org/10.1007/s11064-019-02800-w

    Article  CAS  PubMed  Google Scholar 

  18. Yazdani SO, Pedram M, Hafizi M et al (2012) A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue Cell 44:205–213. https://doi.org/10.1016/j.tice.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Sweis R, Biller J (2017) Systemic complications of spinal cord injury. Curr Neurol Neurosci Rep 17:1–8. https://doi.org/10.1007/s11910-017-0715-4

    Article  Google Scholar 

  20. Cofano F, Boido M, Monticelli M et al (2019) Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20:2698. https://doi.org/10.3390/ijms20112698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeo RWY, Lai RC, Tan KH, Lim SK (2013) Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell. J Circ Biomark 1:7. https://doi.org/10.5772/57460

    Article  Google Scholar 

  22. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296. https://doi.org/10.1016/j.apsb.2016.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nazarenko I, Rana S, Baumann A et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activationexosome-induced endothelial cell activation. Cancer Res 70:1668–1678. https://doi.org/10.1158/0008-5472.can-09-2470

    Article  CAS  PubMed  Google Scholar 

  24. Lu Y, Zhou Y, Zhang R et al (2019) Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 13:209. https://doi.org/10.3389/fnins.2019.00209

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao C, Zhou X, Qiu J et al (2019) Exosomes derived from bone marrow mesenchymal stem cells inhibit complement activation in rats with spinal cord injury. Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S209636

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang Y, Wu J-H, Zhu J-H, Yang H (2022) Exosomes secreted by hypoxia–pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury. J Neurotrauma 39:701–714. https://doi.org/10.1089/neu.2021.0290

    Article  PubMed  Google Scholar 

  27. Sun G, Li G, Li D et al (2018) hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C 89:194–204. https://doi.org/10.1016/j.msec.2018.04.006

    Article  CAS  Google Scholar 

  28. Zhong D, Cao Y, Li C-J et al (2020) Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis. Exp Biol Med 245:54–65. https://doi.org/10.1177/1535370219895491

    Article  CAS  Google Scholar 

  29. Yuan X, Wu Q, Wang P et al (2019) Exosomes derived from pericytes improve microcirculation and protect blood–spinal cord barrier after spinal cord injury in mice. Front Neurosci 13:319. https://doi.org/10.3389/fnins.2019.00319

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Lin F, Dong J, Liu J, Ding Z, Xu J (2021) Peripheral macrophage-derived exosomes promote repair after spinal cord injury by inducing local anti-inflammatory type microglial polarization via increasing autophagy. Int J Biol Sci 17:1339. https://doi.org/10.7150/ijbs.54302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao Y, Xu Y, Chen C, Xie H, Lu H, Hu J (2021) Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. J Stem Cell Res Ther 12:1–17. https://doi.org/10.1186/s13287-020-02078-8

    Article  CAS  Google Scholar 

  32. Peng W, Wan L, Luo Z et al (2021) Microglia-derived exosomes improve spinal cord functional recovery after injury via inhibiting oxidative stress and promoting the survival and function of endothelia cells. Oxid Med Cell Longev. https://doi.org/10.1155/2021/1695087

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang J-H, Xu Y, Yin X-M, Lin F-Y (2020) Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience 424:133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043

    Article  CAS  PubMed  Google Scholar 

  34. Kulubya ES, Clark K, Hao D et al (2021) The unique properties of placental mesenchymal stromal cells: a novel source of therapy for congenital and acquired spinal cord injury. Cells 10:2837. https://doi.org/10.3390/cells10112837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng J, Li M, Meng F et al (2021) 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. J Cell Death 12:1096. https://doi.org/10.1038/s41419-021-04398-w

    Article  CAS  Google Scholar 

  36. Zhang C, Zhang C, Xu Y, Li C, Cao Y, Li PJNL (2020) Exosomes derived from human placenta-derived mesenchymal stem cells improve neurologic function by promoting angiogenesis after spinal cord injury. Neurosci Lett 739:135399. https://doi.org/10.1016/j.neulet.2020.135399

    Article  CAS  PubMed  Google Scholar 

  37. Zhou W, Silva M, Feng C et al (2021) Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther 12:1–14. https://doi.org/10.1186/s13287-021-02248-2

    Article  CAS  Google Scholar 

  38. Lee J-R, Kyung JW, Kumar H et al (2020) Targeted delivery of mesenchymal stem cell-derived nanovesicles for spinal cord injury treatment. Int J Mol Sci 21:4185. https://doi.org/10.3390/ijms21114185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Janssen M, Nabih A, Moussa W, Kawchuk GN, Carey JP (2011) Evaluation of diagnosis techniques used for spinal injury related back pain. Pain Res Treat. https://doi.org/10.1155/2011/478798

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahmed RU, Alam M, Zheng Y-P (2019) Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 5:e01324. https://doi.org/10.1016/j.heliyon.2019.e01324

    Article  PubMed  PubMed Central  Google Scholar 

  41. Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25:898–908. https://doi.org/10.1038/s41591-019-0475-6

    Article  CAS  PubMed  Google Scholar 

  42. Lapuente-Chala C, Céspedes-Rubio A (2018) Biochemical events related to glial response in spinal cord injury. Rev Fac Med 66:269–277. https://doi.org/10.15446/revfacmed.v66n2.61701

    Article  Google Scholar 

  43. Liu W, Wang Y, Gong F et al (2019) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484. https://doi.org/10.1089/neu.2018.5835

    Article  PubMed  Google Scholar 

  44. Jia Y, Lu T, Chen Q et al (2021) Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. Acta Neurochir 163:2297–2306. https://doi.org/10.1007/s00701-021-04829-9

    Article  PubMed  Google Scholar 

  45. He Y, Liu X, Chen Z (2020) Glial scar—a promising target for improving outcomes after CNS injury. J Mol Neurosci 70:340–352. https://doi.org/10.1007/s12031-019-01417-6

    Article  CAS  PubMed  Google Scholar 

  46. Xie C, Shen X, Xu X et al (2020) Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury. J Neurosci 40:2644–2662. https://doi.org/10.1523/JNEUROSCI.2229-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13. https://doi.org/10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang W, Lin M, Yang C et al (2021) Rat bone mesenchymal stem cell-derived exosomes loaded with miR-494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury. Oxid Med Cell Longev. https://doi.org/10.1155/2021/1634917

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xiao X, Li W, Rong D et al (2021) Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 7:212. https://doi.org/10.1038/s41420-021-00572-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y (2019) Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. https://doi.org/10.1590/1414-431X20198735

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to everyone who contributed to the success of this research project.

Funding

This study was supported by the Clinical Biochemistry department of Tarbiat Modares University, Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

AS: performed the experiments, analyzed data, and wrote the manuscript. SOY: discussed the results and analysis the data. MP: designed and made the animal model and the myelogram. FS: was a surgical assistant to create the animal model. MJR: designed research, discussed the results, edited this manuscript, and provided technical and material support. MS: designed the project and performed the development of methodology. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Javad Rasaee or Masoud Soleimani.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

All animal operations were performed in accordance with the laboratory animal standards set by the Animal Ethics Committee of the Tarbiat Modares University of Medical Science (code of ethics: IR.MODARES.REC.1397.064).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, A., Oraee Yazdani, S., Pedram, M. et al. Intrathecal injection of human placental mesenchymal stem cells derived exosomes significantly improves functional recovery in spinal cord injured rats. Mol Biol Rep 51, 193 (2024). https://doi.org/10.1007/s11033-023-08972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08972-7

Keywords

Navigation