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modified (PTMs) by biosynthetic enzymes to yield the 
mature bioactive product [2]. Two regions primarily inte-
grate the precursor peptide, an N-terminal leader peptide, 
that can act as a secretion signal and contains a sequence 
necessary for recognition by biosynthetic enzymes. The 
other region is a C-terminal core peptide where post-trans-
lational modifications are installed [3]. The discovery and 
study of novel RiPPs have been impacted by the advances 
in DNA sequencing technologies and the publication of 
the genome sequences of potential secondary metabolites 
producer bacteria. Likewise, the constant improvement of 
databases and automated bioinformatic tools for predicting 
and annotating biosynthetic gene clusters (BGCs) have also 
influenced this discovery disclosing large chemical diver-
sity [4, 5]. In this sense, genomic mining has become a key 
tool for discovering the biosynthetic machinery for novel 
RiPPs [6].

The Actinobacteria phylum is a prolific source of bio-
logically active compounds. Their biosynthetic potential 
stands out from their ability to produce antibiotics, antifun-
gals, anticancer, and biocontrol agents [7–10] and has his-
torically contributed to human health. More than 45% of the 
currently described microbial bioactive compounds are of 

Introduction

The discovery of novel antimicrobial compounds with 
potential application as novel drugs is necessary to face 
the increase of bacterial resistance to antibiotics currently 
used to treat bacterial infections in clinical facilities. This 
situation poses a serious global concern and a major threat 
to global public health. Thus, the increasing emergence of 
resistant strains demands the design of novel therapeutic 
strategies [1]. Among the different families of natural prod-
ucts, the ribosomally synthesized and post-translationally 
modified peptides (RiPPs) are important antimicrobial com-
pounds with diverse potential activities and applications in 
the clinic and food industry. RiPPs present a wide structural 
diversity and comprise small peptides produced from a pre-
cursor peptide that is later extensively post-translationally 
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Abstract
The increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new chal-
lenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural 
product group that has been only partially explored and shows engaging biological activities. These molecules are small 
peptides with potential application as therapeutic agents. Some members show antibiotic activity against problematic 
drug-resistant pathogens and against a wide variety of viruses. Nevertheless, their biological activities are not restricted 
to antimicrobials, as their contribution to the treatment of cystic fibrosis, cancer, pain symptoms, control of inflammation, 
and blood pressure has been demonstrated. The study of biosynthetic gene clusters through genome mining has contrib-
uted to accelerating the discovery, enlargement, and diversification of this group of natural products. In this review, we 
provide insight into the recent advances in the development and research of actinobacterial lanthipeptides that hold great 
potential as therapeutics.
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actinobacterial origin, and their products show an enormous 
chemical diversity [5]. Lanthipeptides from Actinobacte-
ria present unique characteristics often related to a higher 
biological activity. Among them, halogenation is present in 
some compounds like microbisporicin [11], or hydroxyl-
ations in lanthipeptides of the cinnamycin group and cebu-
lantin [12]. Likewise, aminovinylcysteine (AvyCys) has 
been widely described in actinobacterial lanthipeptides like 
epidermin [13]. To date, just a limited range of molecules, 
such as bottromycins, linear azole-containing peptides, thio-
peptides, lasso peptides, linaridins, and lanthipeptides, have 
been described as molecules with potential biological activ-
ity in these microorganisms. These compounds, usually with 
broad antimicrobial activity against Gram-positive bacteria, 
also include those resistant to 𝛽-lactams and glycopeptides 
[3, 6, 14]. Besides, there are actinomycetes showing con-
siderable RiPPs cryptic clusters in their genomes that need 
to be unveiled to evaluate their potential for therapeutical 
applications. Among those molecules, the lanthipeptides are 
the most extensively compounds studied [15].

Since the discovery of nisin in 1928, dozens of lanthipep-
tides with a broad diversity of structures have been reported 
harboring thioether cross-linked amino acids (MeLan: 
3-methyl-lanthionine or Lan: Lanthionine) [6, 16]. Despite 
this structural feature, the lanthipeptides have been catego-
rized into five groups based on the biosynthetic machinery 
displayed for building the (Me)Lan units (Fig. 1). In class 
I lanthipeptides, the lanthionine cross-link form is gener-
ated by the concerted action of two lanthionine synthetases, 

LanB and LanC, which catalyze the dehydration and cycli-
zation reactions, respectively [6, 17]. Whereas, in class II, 
III, and IV lanthipeptides, these two reactions are carried 
out by a multifunctional lanthipeptide synthetase (LanM, 
LanKC, and LanL, respectively) [16, 18], whose main dif-
ference is the absence of the conserved zinc-binding motif 
(Cys-Cys-His/Cys) in class III enzymes (LanKC). Interest-
ingly, this motif is also present in the cyclase LanC from 
class I, where the zinc allows the nucleophilic attack on 
the dehydroamino acids for activating the Cys thiols [19, 
20]. In addition, two new lanthipeptide synthase classes (V 
and VI) were discovered in recent years [16, 21]. The class 
V lanthipeptides contain three independent enzymes with 
lyase (LanY), kinase (LanK), and cyclase (putative LanC) 
activity [21, 22]. In contrast, class VI harbors a lanthionine 
synthetase with a kinase and the truncated cyclase and lyase 
domains. Notably, this class has only been reported in Strep-
tococcus spp. [16]. By conducting in vitro studies, these 
authors found that in class VI lanthipeptides, the substrate 
is short, and a leader peptide guides the process to produce 
miniature lanthipeptides with a 4 amino acids ring. How-
ever, further studies on these miniature RiPPs are required 
to unveil their precise function (Fig. 1).

In general, the mechanism of action of lanthipeptides that 
show antimicrobial activity (lantibiotics) is based on bind-
ing to lipid II (undecaprenyl-pyrophosphoryl-MurNAc-
(pentapeptide)-GlcNAc), a highly conserved peptidoglycan 
precursor in the cytoplasmic membrane of bacteria [23]. 
Additionally, this interaction with lipid II leads to pores 

Fig. 1  Classification of lan-
thipeptide synthetases and 
representative structures of the 
post-translational modifications 
in lanthipeptides produced by 
Actinobacteria. Class VI lanthip-
eptide synthetases have been only 
identified in Streptococcus spp.
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formation in the cell membrane, provoking the release of 
cellular content in Gram-positive bacteria [15, 24].

Here, we summarize the most representative Actinobac-
terial lanthipeptides of each class with special attention on 
their application as potential therapeutics (Fig. 2). Likewise, 
a brief description of new strategies to discover novel lan-
thipeptides is provided.

Class I lanthipeptides

Microbisporicin

Microbisporicin, also known as NAI-107, is a 24 amino acid 
lantibiotic identified during the screening program designed 
to find bacterial cell wall inhibitors [25]. It is produced by 
Microbispora sp. 107,891, Microbispora corallina NRRL 
30,420 [25] and Actinoallomurus spp. [26]. Microbispori-
cin contains one methyl-lanthionine, three lanthionines, and 
a C-terminal aminovinylcysteine (AviCys). Additionally, 
it includes the unusually modified amino acids 3,4-dihy-
droxyproline and 5-chlorotryptophan, which had not been 
detected before in lantibiotics. It is produced as a complex 
of related congeners molecules that varies between them by 
the presence of zero, one or two hydroxyl groups at Pro-
14, a chlorine at Trp-4, and a sulfoxide on the thioether of 
the first lanthionine [27]. The most studied microbisporicin 
congeners A1 and A2, differ between them in the amino acid 
in position 14; 3,4-dihydroxy-proline or 4-hydroxy-proline, 
and have a molecular weight of 2246 and 2230 Da, respec-
tively [25]. Adding KBr to the medium generated the bromi-
nated variant NAI-108 with slightly improved antibacterial 
activity [28]. This lantibiotic inhibits cell wall biosynthesis 

and impacts membrane functionality by binding to bacto-
prenol-pyrophosphate-coupled precursors of the bacterial 
cell wall and thus forming 1:1 and 2:1 complex (peptide: 
lipid II), the N-terminal region is presumably responsible 
for the interaction with the pyrophosphate moiety of lipid II 
[29], displaying antimicrobial activity against a wide range 
of Gram-positive pathogens including multi-drug resistant 
bacteria of medical importance such as methicillin-resistant 
Staphylococcus aureus (MRSA), glycopeptide-intermediate 
resistant S. aureus (GISA), vancomycin-resistant Entero-
cocci (VRE), penicillin-resistant Streptococcus pneumoniae 
[29], some Clostridia and Propionibacterium. Regarding 
Gram-negative bacteria, microbisporicin shows antibac-
terial activity against Neisseria meningitidis, Moraxella 
catarrhalis, and Haemophilus influenzae [30]. This activity 
likely results from an increased net charge from halogena-
tion in the lanthipeptide structure, increasing cellular pen-
etrability. However, additional proposals involve changes in 
the outer membrane cellular permeability. Thus, more stud-
ies are needed to clarify this situation [29, 31]. The activ-
ity of microbisporicin is comparable to or better than nisin, 
the most extensively studied lantibiotic, and the reference 
antibiotics like vancomycin and teicoplanin. Furthermore, 
microbisporicin and NAI-108 are highly active against 
Neisseria gonorrhoeae, including penicillin-resistant clini-
cal isolates.

It is noteworthy to mention the strong synergistic effect 
that microbisporicin shows in combination with the antibi-
otic polymyxin against Gram-negative pathogens [25, 30] 
and the excellent efficacy in several murine infection mod-
els induced by drug-resistant Gram-positive pathogens with 
efficacy comparable or superior to reference compounds. 

Fig. 2  Actinobacterial lanthip-
eptides classes. Actinobacteria 
producers of active lanthipeptides 
are widely distributed in differ-
ent ecosystems, such as plants, 
insects, and water bodies. Based 
on the biosynthetic machinery 
used for building the (Me)Lan 
units, the lanthipeptides have 
been classified into five groups, 
where a wide range of potential 
therapeutic targets have been 
observed. VRE: vancomycin-
resistant Enterococci. MRSA: 
Methicillin-resistant Staphylococ-
cus aureus.
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this lanthipeptide have been described, such as Ala(0)-acta-
gardine which is a natural variant produced by Actinoplanes 
liguriae ATCC 31,048 that possess an additional N-termi-
nal alanine [40]. The structural analog deoxyactagardin B 
(DAB) produced by A. liguriae NCIMB41362 differs from 
actagardin by the absence of the sulfoxide group and for 
the substitutions of two amino acids at residues 15 and 16, 
corresponding to Val and Ile in actagardin and Leu and Val 
in DAB [41]. These lanthipeptides generally display activ-
ity against Gram-positive pathogens like Streptococcus spp. 
and Clostridium difficile [42–44]. DAB shows a selective 
activity against C. difficile, thanks to the derivatization at 
its C-terminal end. It also exhibits reduced activity against 
normal intestinal microbiota, such as Bacteroides spp., 
Prevotella spp., Porphyromonas spp, Lactobacillucasei, 
and L. rhamnosus, showing higher MIC values than those 
reported against C. difficile. The selective effect against C. 
difficile has not been satisfactorily explained but seems to 
be related to the peptidoglycan necessary to maintain the 
cell wall integrity. Gram-negative bacteria have a thinner 
peptidoglycan layer than Gram-positive bacteria, which 
makes them more susceptible to the effects of actagardin 
and its variants [45, 46]. NVB-302 is another semisynthetic 
lantibiotic derived from DAB with a C-terminal 1, 7 diami-
noheptane tail, whose modification improves the stability 
in simulated gastric fluid, bioactivity, and solubility of this 
compound. Regarding NVB-302, this lanthipeptide has 
completed phase I clinical trials for treating C. difficile and 
shows reduced activity against normal gut microbiota, dis-
closing the importance of generating lanthipeptide variants 
to improve certain characteristics [47–50].

NVB-333 is another example of a semisynthetic lanti-
biotic being tested in pre-clinical trials. This compound 
is produced by binding 3,5- dichlorobenzylamine at the 
C- terminal end of deoxyactagardine. Remarkably, it is 
not prone to resistance development and possesses activ-
ity against Gram-positive antibiotic-resistant pathogens 
such as S. aureus resistant to meticillin, vancomycin, line-
zolid and daptomycin, vancomycin-resistant Enterococcus 
and penicillin-resistant S. pneumoniae, which makes it a 
potential candidate in the treatment of infections caused 
by Gram-positive bacteria [34, 51, 52]. Similarly, NAI-802 
is an actagardine analog of 21 amino acids isolated from 
Actinoplanes sp., which also displays activity against some 
Gram-positive anaerobic bacteria [41].

Additional potential applications for this lanthipeptide 
group are their use for plant disease control. For instance, 
michiganin A is a 21 amino acid heat-stable lantibiotic pro-
duced by the tomato pathogen Clavibacter michiganensis 
subsp. michiganensis, which inhibits the potato phytopatho-
gen Clavibacter michiganensis subsp. sepedonicus at nano-
molar concentrations. Structurally, this lanthipeptide is 

The rapid bactericidal activity and its prolonged half-life in 
plasma is an important trait of this lantibiotic, making it a 
valuable antibiotic candidate to tackle the problem of anti-
microbial resistance in Gram-positive bacteria.

NAI-107 is currently in the late preclinical stage [32]. 
However, further studies for applying microbisporicin in 
treating infections caused by multi-resistant pathogens must 
be carried out [25, 30, 32–34].

Planosporicin

Planosporicin is a lantibiotic produced by the actinomycetes 
Planomonospora alba, and Planomonospora sp. strain DSM 
14,920, and is encoded by a large biosynthetic cluster of 15 
genes [35]. This lanthipeptide is a 2194 Da polypeptide with 
a globular structure that harbors four lanthionine and one 
methyl-lanthionine bridge [27]. Its mechanism of action is 
like other class I lanthipeptides, providing activity against 
multi-resistant Gram-positive pathogens like Staphylococ-
cus aureus, Streptococcus pyogenes, Streptococcus pneu-
moniae, Lactobacillus garviae, Clostridium perfringens, 
Clostridium difficile, and Moraxella catarrhalis [11, 36].

Cebulantin

Cebulantin is a lanthipeptide described by an analysis 
known as HiTES (high-throughput elicitor screening) [37], 
where the drugs furosemide and fenofibrate were used as 
elicitor agents to induce cebulantin production in the acti-
nomycete Saccharopolyspora cebuensis. This lantibiotic of 
22-amino acid residues is made up of one lanthionine and 
two methylthionine rings with a hydroxy group at Pro-13. 
The most outstanding aspect of this lantibiotic is its activity 
against Gram-negative pathogens, such as cell-wall-weak-
ened Escherichia coli (ΔlptD), as well as against several 
Vibrio strains, like V. parahaemolyticus [38]. There are no 
scientific arguments to explain the affinity of cebulantin by 
Gram-negative bacteria. However, speculations include that 
it may be due to the presence of 4-OH-Pro in its structure 
[37].

Class II lanthipeptides

Actagardine and its variants

Originally designated as gardimycin in 1976, actagardine 
is a 19-amino acid globular lantibiotic produced by Acti-
noplanes garbadinensis and Actinoplanes liguriae with a 
molecular weight of 1890 Da, which harbors an uncom-
mon sulfoxide group and four intramolecular bridges in its 
structure, one lanthionine and three methyl-lanthionine [39] 
Additionally, some natural and semisynthetic variants of 
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photosensitizer with tumor-targeted agents such as duramy-
cin to minimize damage to surrounding tissue [63].

The therapeutic activity of duramycin for the treatment 
of cystic fibrosis has also been investigated. This disease is 
a recessive genetic condition characterized by loss-of-func-
tion mutations in the coding gene for the anion channel cys-
tic fibrosis transmembrane conductance regulator (CFTR), 
which causes disrupted chloride ion transport and is associ-
ated with pulmonary dysfunction that restricts hydration of 
the airway mucosa. It has been suggested that duramycin 
promotes chloride secretion over lung epithelial cells, which 
leads to mucus clearance from the lungs, probably due to 
unspecific changes in the cell membrane or its components, 
producing an increase in plasma membrane permeability. 
This compound positively affects lung function in a phase 
II study in adolescents and adults with cystic fibrosis under 
duramycin treatment [64, 65]. A recent study could not 
determine the beneficial effect of the duramycin treatment 
compared to a placebo. These conflicting results suggested 
that the therapeutic range of duramycin is narrow or that the 
treatment period may need to be longer [66].

Furthermore, duramycin also prevents the entry of 
viruses such as West Nile, dengue, and Ebola into Jurkat 
cells. Some enveloped viruses use phosphatidylserine (PS) 
and PE receptors on host cell membranes to enhance virus 
entry to the cells [67]. T-cell Ig and mucin domain (TIM) 
serve as PS receptors promoting phagocytosis of apoptotic 
cells. Targeting these receptors implies virus access into the 
host cell. Therefore, the inhibition of infection by the virus 
attachment to the receptor TIM1 is likely duramycin’s pri-
mary mechanism of action as an antiviral agent [68].

The application range of duramycin and cinnamycin 
is beyond their use as therapeutic peptides. For instance, 
these two lanthipeptides have been used to analyze the 
distribution and location of PE in target cells and tissues. 
This is because duramycin and cinnamycin contain two 
and one primary amines in the N-terminal region, respec-
tively, enabling covalent reactions without interfering with 
the PE binding site. Their binding capacity has also been 
exploited for their use as molecular probes for the detec-
tion of this phospholipid due to its low molecular weight 
(2,013 Da and 2,041 Da, respectively), high binding affinity, 
high specificity, and stable structure to thermal and proteo-
lytic degradation [69]. Duramycin has been assessed as a 
molecular probe candidate for in vivo imaging applications 
radiolabelled with Technitium-99  m (99mTc). This probe 
exhibits favorable clearance profiles and tissue penetration 
[70]. 99mTc-duramycin imaging is a promising approach 
for assessing the early tumor response for anticancer treat-
ment. In apoptotic cells, PE is externalized on the cell sur-
face, whereby the detection of this compound can be used 
as a molecular marker. The use of novel non-invasive tools 

composed of two MeLan and one Lan bridge. Compared 
with actagardine, michiganin A lacks the sulfoxide bond and 
possesses two substitutions in the residues 5 and 15, a Val 
and Val in actagardine and Leu and an Ile in michiganin 
[52–54].

Cinnamycin-group: duramycin, cinnamycin, 
mathermycin and kyamicin

Other representative members from class II lanthipeptides 
are duramycin, cinnamycin, and mathermycin (cinnamy-
cin-type lantibiotic), the first two produced by Streptomy-
ces, and the last one identified in the marine actinomycete 
Marinactinospora thermotolerans by genome mining [55, 
56]. Another member of this group, kyamicin was identified 
in a Saccharopolyspora strain isolated from ants (Tetrapo-
nera penzigi) collected in Kenya [57]. These lanthipeptides 
contain the unusual post-translational modification lysino-
alanine, resulting from the cross-linking between Lys19 
and Ser6 and a β-hydroxyaspartic acid produced from the 
hydroxylation of Asp15. Their structure includes 19 amino 
acids and is formed by four covalent intramolecular bridges. 
In addition to lysinoalanine, there is one lanthionine and 
two methyl-lanthionines. Duramycin and cinnamycin share 
a high degree of sequence and structural homology differing 
in a single amino acid (Lys2 in duramycin and Arg2 for cin-
namycin) [55, 58], while mathermycin exhibits six amino 
acid substitutions [56, 57].

The mechanism of action of these peptides involves the 
binding to phosphatidylethanolamine (PE) receptor, a major 
lipid component of the cellular membrane, showing activity 
against Gram-positive bacteria [59, 60]. PE is an abundant 
structural phospholipid present not only in microbial mem-
branes but also in mammalian biological membranes, where 
it participates in physiological processes such as cell death, 
cell division, and coagulation [61]. In this line, it has been 
suggested the use of duramycin and mathermycin as poten-
tial candidates for cancer therapy [60, 62]. Mathermycin 
targets PE in tumor cells in a selective manner compared 
to normal cells. In normal cells, PE is located only in the 
inner leaflet of the plasma membrane but in tumor cells, it is 
found in both, the inner and outer leaflets of the membrane. 
Besides, mathermycin also shows cytotoxic activity against 
multidrug-resistant cancer cells, likely by inhibiting mito-
chondrial function [60].

Duramycin has been found to promote Ca2+ release in 
ovarian and pancreatic cancer cell lines [60, 62]. Indeed, 
targeted photodynamic therapy with duramycin, can induce 
cancer cell death and improve the effect of other treatments, 
including surgery, chemotherapy, or radiotherapy. The 
selectivity of this approach might increase the coupling of a 
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in the treatment of neuropathic pain due to its activity 
observed in a spared nerve injury mouse model [77], while 
the labyrinthopeptin A1 (LabA1) displays antiviral activity 
against HSV-1 and HIV-1. Remarkably, when it is combined 
with clinically approved antiretroviral drugs, a synergistic 
activity is observed. Concerning the anti-HIV mechanism of 
action, LabA1 is a viral entry inhibitor that interacts with the 
protein gp120 in the viral envelope. Furthermore, it inhib-
its cell-to-cell transmission, which may have application 
in preventing sexually transmitted diseases. Likewise, this 
compound preserves its activity even against drug-resistant 
HIV strains and does not have a negative effect on vaginal 
Lactobacilli populations or on the endometrial and cervical 
epithelial cells, which further supports its potential use [78].

In addition, LabA1 and LabA2 have been shown to pos-
sess antiviral activity against a broad range of enveloped 
viruses, including respiratory syncytial virus (RSV), den-
gue virus, Zika virus, West Nile virus, hepatitis C virus, 
chikungunya virus, Kaposi’s sarcoma-associated herpesvi-
rus, cytomegalovirus, and herpes simplex virus. LabA1 and 
LabA2 exhibit a synergistic antiviral effect and are effective 
in low concentrations, making them promising candidates 
for prophylactic or therapeutic treatment of viral infections. 
Their mode of action involves binding to phosphatidyletha-
nolamine in the virus membrane, which disrupts its integrity 
without being affected by resistance mutations to other RSV 
inhibitors. Additionally, these compounds demonstrate sta-
bility, favorable pharmacokinetic properties, and low cyto-
toxicity in murine models, and have been shown to be an 
effective antiviral agent [79].

NAI-112

NAI-112 is a glycosylated lanthipeptide produced by Acti-
noplanes DSM24059, comprised of 22 amino acids and 
neutrally charged. Its unique structure includes new modi-
fications not observed before in lanthipeptides, such as a 
6-deoxyhexose moiety N-linked to a tryptophan residue 
and a C-terminal methyl-labionin (MeLab) in addition to an 
N-terminal Lab. Likewise, NAI-112 has shown its therapeu-
tic potential by reducing pain symptoms in mice nociceptive 
pain models [80].

It is worth mentioning that antibacterial activity has 
also been described in class III, such as the case of aver-
mipeptin B. This 24-amino acid peptide was detected by 
genomic mining in Streptomyces actuosus ATCC 25,421 
and produced by heterologous expression in Streptomyces 
lividans TK24. Avermipeptin B is an analog of avermi-
peptin produced in Streptomyces avermitilis DSM 46,492. 
In vitro, assays demonstrated antibacterial activity against 
gram-positive bacteria like Staphylococcus aureus [81, 82]. 

for tissue imaging is of great importance for predicting 
tumor response to treatment, designing individualized and 
optimized therapies, and avoiding unnecessary side effects 
caused by exposure to aggressive treatments [71].

Novel two-component lantibiotics: roseocin and 
birimositide

Roseocin is a two-component lantibiotic identified by 
genome mining of Streptomyces roseosporus NRRL 11,379. 
This lantibiotic harbors an α-peptide with four methyl-lan-
thionine rings and a disulfide bond necessary for the anti-
microbial activity. In addition, a β-peptide composed of six 
methyl-lanthionine rings is required with post-translational 
modifications carried out by a single lanthionine synthe-
tase (RosM). The presence of both peptides is necessary 
to observe a synergistic antimicrobial activity against the 
resistant Gram-positive bacteria pathogens [53]. Lately, 
through a phylogeny-based genome mining study, four 
Rosα variants were obtained where the Leu-8-Phe substitu-
tion in Rosα showed four-fold lower MIC against methicil-
lin-sensitive Staphylococcus aureus (MSSA) ATCC 25,923 
(combined with Rosβ), which demonstrates that developing 
variants of one of the components of this class of lanthipep-
tides, can generate powerful products [72].

Simultaneously, Walker and co-workers identified a 
two-component lantipeptide termed birimositide formed 
by the Brtα and Brtβ peptides and produced by Streptomy-
ces rimosus subsp. rimosus WC3908. Like two-component 
lanthipeptides isolated in lactic acid bacteria (LAB), α- and 
β-peptides exhibit a Ser to D-Ala conversion, presumably 
performed by a luciferase-like monooxygenase present in 
the BGC. As with roseocin, synergistic antibacterial activity 
against Gram-positive bacteria was reported [73, 74].

Class III lanthipeptides

Labyrinthopeptins

Labyrinthopeptins are members of class III lanthipeptides 
isolated by Aventis Pharma from the desert bacteria Actino-
madura namibiensis DSM 6313 [75]. The main structural 
feature of this kind of lanthipeptides is the carbacyclic post-
translationally modified tri-amino acid labionin (Lab) and a 
disulfide bond. These compounds are ribosomally synthe-
sized as prepropeptides from the genes labA1 (LabA1 and 
LabA3) and labA2 and then post-translationally modified by 
the tri-domain enzyme LanKC [76]. The final steps in bio-
synthesis are the cleavage of the leader peptide, the disulfide 
bond formation, and the export into the extracellular space. 
The labyrinthopeptin A2 (LabA2) has a potential application 
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By reconstitution studies, they demonstrated that the final 
cyclase-catalyzed product was clearly distinct from that 
formed spontaneously.

Regarding linaridins, they are an understudied class of 
RiPS, with only a few members described as exhibiting 
antimicrobial and antitumor activity [88]. They are linear, 
dehydrated peptides characterized by the presence of dehy-
drobutirine, a dehydrated alkene-containing amino acid 
derived from threonine, catalyzed by a currently unknown 
enzyme, and an AviCys catalyzed by linaridine decarboxyl-
ase LinD. Some class V lanthibiotics, also exhibit Nα,Nα-
dimethylation of the N-terminus, by a methyltransferase 
(LinM) activity [89].

Cacaoidin, lexapeptide and pristinin A3 are three rep-
resentative members of this class identified from Strepto-
myces cacaoi CA-170,360, Streptomyces rochei Sal35, and 
Streptomyces pristinaespiralis ATCC 25,468, respectively. 
Cacaoidin possesses activity against Gram-positive patho-
gens, including MRSA and Clostridium difficile [90, 91], 
whereas lexapitide displays a broader activity spectrum 
against methicillin-resistant S. epidermidis (MRSE), Entero-
coccus faecalis, M. smegmatis mc2155, just as with MRSA; 
so far, no bioactivity of pristinin A3 has been reported [92]. 
Likewise, all members of this group have notable posttrans-
lational modifications such as a C-terminal AviMeCys and 
N-terminal N,N-dimethylation. Cacaoidin contains a glyco-
sylated tyrosine residue, D-aminobutyric acid, and D-Ala 
residues, as with the antibacterial Lexapeptide. Recent in 
vitro studies have shown that in addition to binding lipid II, 
cacaoidin may also act by inhibiting the murein transglyco-
sylase domain of the penicillin-binding protein (PBP2) of 
S. aureus, suggesting a synergistic antibacterial effect for 
cacaoidin joining two distinct targets [93].

Concluding remarks and future challenges

The main health-related challenges for the 21st century are 
the emerging crisis of antibiotic resistance and the increas-
ing cancer incidence, which must be faced by discovering 
novel drugs. Natural products (NPs) from microorganisms 
represent a valuable source of such drugs, many of which 
are currently on the market as antibiotics and anti-cancer 
agents [94]. Unfortunately, natural product-based drug dis-
covery efforts declined in recent years due to frequent re-
discovery of already-known compounds and high costs in 
screening and drug development [95]. In this sense, Actino-
mycetes represent an invaluable source of these compounds 
that have not yet been explored in detail. Around 80% of 
known actinobacterial compounds are produced by this 
group of microbes, of which approximately 10,000 show 
antibacterial activity [16].

Likewise, the lantipeptide NAI-112 showed weak antibacte-
rial activity in vitro against staphylococci and streptococci 
bacteria.

Class IV lanthipeptides

Venezuelin-like lanthipeptides

Class IV is the least studied and characterized group of 
lanthipeptides, having different biological properties to 
antimicrobial activity [24]. Unlike other lanthipeptides, the 
identification of these compounds has been solely by bioin-
formatic analysis, allowing only their heterologous produc-
tion since isolation from the natural producer has not been 
possible [83, 84]. A few members of this class have been 
identified, being venezuelin the first and most representa-
tive class IV lanthipeptide. This peptide is not produced 
under standard culture conditions despite detecting the ven-
ezuelin biosynthetic cluster in Streptomyces venezuelae. To 
determine the biological activity of this lanthipeptide, the 
biosynthetic enzymes were produced in vitro along with 
engineered VenA (LanA) mutants with protease recogni-
tion sites. However, none of the produced variants showed 
antimicrobial activity [84, 85]. Albeit new venezuelin-like 
lanthipeptides have been identified, only the streptocollin 
produced by Streptomyces collinus Tü 365 shows biologi-
cal activity, since it seems to act as a moderate inhibitor of 
the protein tyrosine phosphatase 1B (PTP1B), which it is 
involved in insulin and leptin signaling. Therefore, strep-
tocollin is being considered as a therapeutic agent to treat 
obesity and diabetes [20, 84, 87, 88].

Class V lanthipeptides

Cacaoidin, lexapeptide and pristinin A3

Class V members have a unique combination of inherent 
features from lanthipeptides and linaridins. Furthermore, 
the dehydroamino acids and the lanthionine ring forma-
tion seem to be catalyzed by three monofunctional proteins 
without homology with the synthetases previously identi-
fied in other classes [3]. The LanK and LanY dehydratases 
catalyze the dehydration of Ser/Thr. The conjugate addition 
of a Cys residue onto the dehydro amino acids (Dha/Dhb) 
to form the AviCys and (Me)Lan rings is performed by a 
flavin-dependent decarboxylase (LanD). The final cycliza-
tion step to construct final products energetically favored 
seems to occur spontaneously. However, in a recent report, 
a lanthipeptide cyclase (LanKXY) is necessary to form 
an energetically favored final product [21]. These authors 
used bioinformatic tools to identify more than 240 puta-
tive class V lanthipeptide clusters with a LanC cyclase. 
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provide the biological features of lanthipeptides by regulat-
ing the affinity to specific biological targets. Accordingly, 
these modifications are relevant for engineering lanthipep-
tides with therapeutic applications [99].

Scientists from academia and industry have promoted 
clinical evaluation of some actinobacterial lanthipeptides 
like actagardine, duramycin, microbisporicin, and mutacin 
1140, detecting attractive pharmacokinetic profiles in these 
compounds [40]. In preclinical studies, NVB333, tested for 
treating bacterial infections, has shown good pharmacologi-
cal and pharmacokinetic properties [17, 50].

Regarding marketing, several commercially available 
lanthipeptides include nisin, subtilin, gallidermin, planospo-
ricin, NAI-107 (microbisporicin), actagardin, duramycin, 
and others. Most of them are for livestock applications as 
antimicrobials, although some also exhibit immunomodula-
tory, anticancer, antiallodynic, and antinociceptive activities 
[6]. Contrary to nisin and subtilin, which several compa-
nies produce on a big scale for food industry applications 
at a competitive cost, most are made on a trim level and are 
available at a high price.

Therefore, future research should be conducted to sys-
temize high-throughput strategies for screening potential 
candidates considering vanguard technologies from differ-
ent disciplines around biology engineering [4, 100, 101], 
including the exploitation of lanthipeptides biosynthetic 
enzymes modularity for in vivo engineering and genera-
tion of new diverse structures and activities [99]. To expand 
potential applications of lanthipeptides, like, for example, 
the newly discovered anti-inflammatory effect of myxoco-
cin [102], the pinenins, first antifungal lantibiotics [103] or 
the archalan-α active against halophilic archaea [104]. It is 
also required to focus on the action mode of these molecules 
to improve their activities. To synchronize the expression 
systems and fermentation conditions for scaling-up process 
to produce them at feasible yields to enter the commercial 
market.

Lanthipeptides are stunning structures that, besides their 
ability to kill bacteria and fungi, exhibit additional activi-
ties of potential application in the medical field. Generally, 
they are stable to extreme temperatures and pH values, 
making these compounds attractive to the pharmaceutical 
industry. Therefore, they merit to be continuously studied. 
Fortunately, many scientific groups worldwide are working 
to contribute solutions to the challenges mentioned above. 
Therefore, a bright and promising future is likely for these 
small and amazing compounds.
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To date, only a small fraction of known active compounds 
have been related to the biosynthetic gene clusters (BGCs) 
encoding enzymes for the biosynthesis of these NPs. Bioin-
formatics analyses based on genome sequencing data from 
Actinomycetes indicate the enormous diversity of BGCs 
encoded for lanthipeptides of different classes. A study by 
Belknap and co-workers analyzed 1,110 streptomycetes 
genomes and found the presence of these clusters in 540 spe-
cies, which places lanthipeptides within the five BGCs with 
the highest abundance in this bacterial group and the largest 
group of RiPPs [96]. In another study focused on searching 
RiPPs within 629 actinobacterial genomes, it was found that 
class III lanthipeptides represent the class with the highest 
abundance, followed by classes I, II, and IV [14], showing 
that these peptides are widely distributed in Actinobacteria 
and that many BGCs are silent under laboratory conditions, 
which has hampered the discovery of new molecules. Many 
of these BGCs encode lanthipeptides, which harbor many 
structures and functions. These lanthipeptides have been 
studied mainly as antimicrobials.

The lack of standardized and well-characterized genetic 
parts, as well as synthetic biology tools to engineer either 
actinomycetes (natural producers) or the key players in the 
biosynthesis of lanthipeptides, have been the major bottle-
necks for the discovery of novel natural products with dif-
ferent therapeutic activities. However, this gap has been 
closed in recent years due to dropping costs in sequencing 
and DNA synthesis coupled with synthetic biology technol-
ogies. These conditions have fostered the development of 
new strategies to produce and discover new compounds rel-
evant to the therapeutic area. Regarding these technologies 
in the lanthipeptide field, in 2020, Ran Liu and co-workers 
[97] developed a rapid and high-throughput screening strat-
egy based on cell-free extracts (in vitro transcription and 
translation technology) from E. coli to identify novel and 
functional antimicrobial lanthipeptides. Using this tech-
nology, they reported a nisin mutant with stronger activ-
ity against Gram-negative bacteria and a nisin analog with 
more intense antimicrobial activity than nisin itself [97]. 
This revolutionary technology has also produced other 
mature RiPPs such as lactazole, goadsporinm, thiocillin, 
and lasso peptides. From these latter, Si et al. [98], demon-
strated the capability to produce several sequence-diverse 
lasso peptides using cell-free technology, having as an entry 
point the lasso-forming cyclase from the fusilassin pathway.

Recently, the lanthipeptide engineering based on the use 
of post-translational modifier biosynthetic enzymes for add-
ing functional groups and moieties, such as halogenation 
and methylation on the amino acid chain, has allowed the 
expansion of the structural diversity and biological activi-
ties of the lanthipeptides. Hence, this strategy is a promis-
ing biocatalytic tool since post-translational modifications 
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