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for about 90–95% of OCs consists of four main histologi-
cal subtypes: 75% Serous Carcinoma (SC) of which 70% 
is High grade (HGSOC) and 5% is Low Grade (LGSC), 
10% are Clear Cell Carcinomas, 10% are Endometroid Car-
cinomas, and about 5% are Mucinous Carcinomas. Most 
HGSOCs are diagnosed in the late stages (FIGO III and IV) 
due to subtle symptoms of disease [3]. This is the most pre-
dominant and aggressive type of OC and due to high inci-
dence and low survival rates caused by late-stage discovery, 
HGSOC is the most lethal of the EOCs [4], accounting for 
70–80% of death related to ovarian cancer [5]. These can-
cers are characterized by frequent DNA gains and losses and 
chromosomal instability causing gene breakage and loss of 
hetero- and homozygosity [5].

The late discovery of HGSOC has a significant nega-
tive impact on overall survival and hence, there is an urgent 
clinical need for diagnostic and prognostic biomarkers. 

Introduction

Ovarian cancer (OC) is the most lethal gynecological cancer 
with an estimated 313,959 new cases and 207,252 deaths 
worldwide in 2020 [2]. OC is subdivided into four main 
stages by the International Federation of Gynecology and 
Obstetrics (FIGO). Epithelial OC (EOC) which accounts 
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Abstract
Background Ovarian cancer is a lethal gynecological cancer and no reliable minimally invasive early diagnosis tools exist. 
High grade serous ovarian carcinoma (HGSOC) is often diagnosed at advanced stages, resulting in poorer outcome than 
those diagnosed in early stage. Circulating microRNAs have been investigated for their biomarker potential. However, due 
to lack of standardization methods for microRNA detection, there is no consensus, which microRNAs should be used as 
stable endogenous controls. We aimed to identify microRNAs that are stably expressed in plasma of HGSOC and benign 
ovarian tumor patients.
Methods and results We isolated RNA from plasma samples of 60 HGSOC and 48 benign patients. RT-qPCR was accom-
plished with a custom panel covering 40 microRNAs and 8 controls. Stability analysis was performed using five algorithms: 
Normfinder, geNorm, Delta-Ct, BestKeeper and RefFinder using an R-package; RefSeeker developed by our study group 
[1]. Among 41 analyzed RNAs, 13 were present in all samples and eligible for stability analysis. Differences between stabil-
ity rankings were observed across algorithms. In HGSOC samples, hsa-miR-126-3p and hsa-miR-23a-3p were identified as 
the two most stable miRNAs. In benign samples, hsa-miR-191-5p and hsa-miR-27a-3p were most stable. In the combined 
HGSOC and benign group, hsa-miR-23a-3p and hsa-miR-27a-3p were identified by both the RefFinder and Normfinder 
analysis as the most stable miRNAs.
Conclusions Consensus regarding normalization approaches in microRNA studies is needed. The choice of endogenous 
microRNAs used for normalization depends on the histological content of the cohort. Furthermore, normalization also 
depends on the algorithms used for stability analysis.

Keywords microRNA (miRNA) · Epithelial ovarian cancer · Endogenous controls · Normalization · RT-qPCR

Received: 21 July 2023 / Accepted: 1 September 2023 / Published online: 7 November 2023
© The Author(s) 2023

Identification of stably expressed microRNAs in plasma from high-
grade serous ovarian carcinoma and benign tumor patients

Patrick H.D. Petersen1 · Joanna Lopacinska-Jørgensen1 · Claus K. Høgdall2 · Estrid V. Høgdall1

1 3

http://orcid.org/0000-0003-4689-5658
http://crossmark.crossref.org/dialog/?doi=10.1007/s11033-023-08795-6&domain=pdf&date_stamp=2023-10-25


Molecular Biology Reports (2023) 50:10235–10247

MicroRNAs (miRNAs) are small, noncoding RNAs and 
due to their involvement in regulation of mRNA and protein 
expression have gained increasing attention as biomarkers 
for various diseases [6–8]. However, the implementation 
of miRNA biomarkers in a clinical setting has been pro-
gressing slowly, in part due to missing standardization of 
methods for measuring, detecting and normalizing miRNA 
expression [9].

An important part of this standardization also pertains to 
the preprocessing of the data. Melt curve analysis is per-
formed to identify poorly amplified products, the existence 
of primer dimer or genomic contamination. Besides being 
quite time consuming, melt curve evaluation is often very 
subjective. Spike-in controls is used by many to monitor 
efficiency and quality of RNA extraction, cDNA synthesis 
and final amplification. Many claim to perform these analy-
ses but do not report methodology or list exclusion criteria 
and in our experience, it is difficult to locate specific guide-
lines and general acceptable cut-off and threshold values for 
variation in spike-in controls or differentiating between an 
insignificant shoulder and a second peak in a melt curve.

Ideally, normalization should be performed using stable 
endogenous references of the same type of RNA that is 
being quantified [10, 11]. However, identification of suit-
able references for normalization is not a trivial exercise. 
There is no universal endogenous control suitable for every 
tissue type, as the expression of most miRNAs varies with 
cell type and condition [12, 13]. An example of this is U6 
(RNU-6-1) that have commonly been utilized as an endog-
enous control for miRNA expression in OC [14, 15] even 
though it has been shown to be differentially expressed in 
cancers and plasma [16]. Instead, references should be vali-
dated on a per study basis and several algorithms, assessing 
stability from RT-qPCR data are freely available. Norm-
finder [17], and geNorm [18] seem to be the most used 
but also delta-Ct [19] and Bestkeeper [20] have been used 
extensively. Normfinder ranks the stability of target RNAs 
based on a weighted geometric mean of the inter- and intra-
group variations. GeNorm calculates a stability value M 
based roughly on the standard deviation of the linearized 
pairwise ratios between each target for each sample. Delta-
Ct uses candidate pairwise ΔCt values, estimating a mean 
standard deviation for each candidate. BestKeeper stabil-
ity is based on the mean absolute deviation (MAD) of each 
candidate. These different approaches may lead to different 
ranking of candidate references and discrepancy between 
research groups, comparing results from several algorithms 
may increase confidence in the selected reference [21]. Vari-
ous combinations of the four have been employed. In the 
case with RefFinder [22], all these four algorithms are taken 
into account when calculating a geometric mean of the can-
didate’s stability rankings from the different algorithms. 

Ultimately, to advance the discovery and clinical utility 
of miRNA expression as biomarkers, consensus regarding 
these methodologies need to be build. There are no pub-
lished studies on identification of stably expressed endog-
enous miRNAs in OC. In this study we aimed to provide 
a starting framework for discussing these methodological 
deficiencies while investigating stability of selected miR-
NAs in plasma samples from HGSOC patients and patients 
with benign gynecological tumors.

Materials and methods

Study design

EDTA plasma samples were collected prior to primary sur-
gery from 60 patients diagnosed with ovarian high grade 
serous carcinoma (HGSOC) and 48 patients with benign 
gynecological tumors relevant to our clinical setting. Sam-
ples were obtained through the Bio- and Genome Bank 
Denmark from two Danish projects: the Pelvic Mass study 
(2004–2014) and the GOVEC (Gynecological Ovarian 
Vulva Endometrial Cervix cancer) study (2015 – ongoing). 
Each patient has provided a written informed consent and 
the Danish National Committee for Research Ethics, Capi-
tal Region has approved the study (approval codes KF01-
227/03 and KF01-143/04). During this study the Declaration 
of Helsinki guidelines was followed.

miRNA extraction of plasma samples

RNA was extracted using the miRNeasy Serum/Plasma Kit 
(Qiagen, Copenhagen, Denmark, cat. no. 217,184) as previ-
ously described [21]. Briefly, 200 µl plasma was lysed using 
1 ml QIAzol lysis reagent, followed by addition of 1 µl 
RNA isolation control spike-ins mix consisting of UniSp2, 
UniSp4 and UniSp5, each at a different concentration with 
100-fold increments: UniSp2 > UniSp4 > UniSp5. After-
wards, the samples were purified according to the manufac-
turer’s recommendations. RNA was eluted in 14 µl RNase 
free water and stored at -80 °C until further use. A no sam-
ple control extraction was also performed. This sample was 
subjected to the same procedure, only no plasma was added 
to the lysis buffer.

cDNA synthesis

cDNA synthesis was performed using miRCURY LNA RT 
Kit (Qiagen, Copenhagen, Denmark, cat. no. 339,340) fol-
lowing the manufacturer’s protocol. Briefly, for each 10 µl 
reaction, 2 µl 5X reaction buffer, 1 µl 10X miRCURY RT 
enzyme mix as well as 5.4 µl nuclease free water, 1.1 µl 
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RNA and 0.5 µl RNA cDNA synthesis spike-in control mix 
containing UniSp6 and cel-miR-39-3p.

RT-qPCR

For RT-qPCR, on blood-plasma samples we decided to use 
a custom miRCURY LNA miRNA PCR Panels (Qiagen, 
Copenhagen, Denmark) previously designed for investiga-
tion miRNA expression in tissue samples from ovarian can-
cer patients [23]. See table S1. The PCR panel contained 
40 miRNAs selected for their reported stability or poten-
tial as biomarkers in OC. Also, U6 (RNU6-1) which has 
previously been used as a reference for normalization was 
included. Assays for the spike-ins controls UniSp2, UniSp4 
and UniSp5 added during RNA extraction as well as cel-
miR-39-3p and UniSp6 that were added during cDNA 
synthesis were also selected. Additionally, the interplate 
calibrator UniSp3 was included to correct for inter plate 
variations as well as a blank spot to control for possible 
contaminations. A list of analyzed miRNAs can be found in 
Table 1 and further details regarding selection of these can 
be found in supplementary Table S1.

RT-qPCR reactions were performed as previously 
described [21] using the custom miRCURY LNA miRNA 
PCR Panels, in a 384-well plate format (Qiagen, Copen-
hagen, Denmark) and a LightCycler 480 384-well Block 
(Roche, Hvidovre, Denmark).

For each sample, a solution containing 264 µl 2X miR-
CURY SYBR Green master mix, 257 µl nuclease free water 
and 7 µl cDNA was prepared. Eight samples were prepared 
for each 384-well plate containing primers and polymerase 
enzymes and 10 µl reaction mix was aliquoted to each well. 
The PCR plates were then sealed, centrifuged for 1 min at 
1500 x g, and subjected to real-time PCR amplification in a 
Roche LightCycler 480 according to the protocol, including 
2 min heat activation at 95 °C, 45 amplification cycles of 
95 °C for 10 s and 56 °C for 60 s ending with a melt curve 
analysis.

Crossing points (Cps) of the amplification curves were 
calculated by the LightCycler®480 software version 1.5 
(Roche) using absolute quantification analysis/2nd deriva-
tive maximum method with high confidence setting. Melting 
temperature analysis (Tm calling) and calculating melting 
curve peaks were performed through the LightCycler®480 
software. Cp and Tm tables as well as raw melt data were 
exported as txt-files for melt curve and data analysis.

Data analysis

All data analyses were performed using R Statistical Soft-
ware (version 4.1.1; R Foundation for Statistical Comput-
ing, Vienna, Austria) and R-studio IDE (version 1.4.1717, 

RStudio, Boston, United states, rstudio.com) and [24]. An 
overview of the analysis workflow can be seen in Fig. 1.

Melt curve analysis

Melt curve analyses were performed to prevent using data 
from poorly amplified products caused by primer dimer, 
non-specific targets, or genomic contamination. Prior to 
analysis, an adjusted Cp value was calculated based on the 
inter plate calibrator; UniSp3 according to manufacturer’s 
instructions. A Cp cutoff value of 35 was chosen and all 
Cp or adjusted Cp values above this threshold were set to 
not available (NA). Four of the 41 analyzed RNAs were 
removed due to all Cp values being above this cut-off value.

The Cp table, the Tm table, and the melt curve data pro-
vided by the LightCycler®480 software was used to evalu-
ate initial sample quality. Using the color and status column 
present in the exported Cp data, each reaction was charac-
terized as either; approved, uncertain, absent, or late. For the 
Tm calling data, three categories were identified: approved, 
inconclusive, or absent. In this way, each reaction was cat-
egorized according to supplementary Table S2. Manual melt 
curve assessment was performed on amplifications where 
a Cp value was reported, but not auto-approved (approved 
by both the Cp and Tm calling produced by the LightCy-
cler®480 software) (supplementary Table S2, grey shaded 
cells).

The manual evaluation was performed by comparing 
the melt curve for the reaction in question with all auto-
approved melt curves from the same miRNA. In general, 
reactions were rejected manually if no clear peak was seen, 
a peak was seen but did not reach a threshold of 0.5 fluores-
cent units, a melt curve contained two peaks and one peak 
was at least half the size of the other or if more than two 
peaks were seen. A total of 468 melt curves were analyzed 
manually out of which 357 datapoints were approved, the 
rest were rejected and removed from the dataset Fig. 1.

Spike-in analysis

To control for variation in extraction efficiencies, three 
spike-in RNAs (UniSp4, UniSp4 and UniSp5) were added 
to the lysis buffer during RNA extraction. Samples were 
split in two groups: HGSOC and benign. Based on these 
groups, samples were removed if their Cp value for UniSp2 
was an outlier as defined by the ± 1.5xIQR rule [25] or if 
the difference in Cp values of UniSp2 and UniSp4 were not 
between five and eight cycles. UniSp5 was not considered 
since the Cp values for this spike-in were above Cp = 35 
cut-off. Hemolysis was checked on 20 random samples 
using the miRCURY QC Panel according to the protocol 
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and UniSp4 Cp values of less than five. Two samples had 
a difference in UniSp2 and UniSp4 Cp values of more 
than eight. In total, eight samples were excluded from the 
HGSOC group resulting in the removal of one miRNA and a 
total of 52 remaining. Of the benign samples, five had a dif-
ference in Cp values of UniSp2 and UniSp4 of less than five, 

and as described in [21, 26]. No hemolysis was observed 
and was therefore considered negligible.

A summary of the spike-in analysis can be seen in Sup-
plementary Table S3, and an overview of the workflow can 
be seen in Fig. 1. No HGSOC sample was identified as a 
UniSp2 outlier, six samples that had a difference in UniSp2 

miRNA MiRCury_Assay_cat._no. microRNA target sequence Assay 
type

UniSp6 YP00203954 Spike
UniSp2 YP00203950 Spike
UniSp4 YP00203953 Spike
UniSp5 YP00203955 Spike
cel-miR-39-3p YP00203952 Spike
UniSp3 YP02119288 Spike
U6 snRNA (V2) YP02119464 GOI
hsa-miR-101-3p YP00204786 UACAGUACUGUGAUAACUGAA GOI
hsa-miR-103a-3p YP00204063 AGCAGCAUUGUACAGGGCUAUGA GOI
hsa-miR-106b-3p YP00204020 CCGCACUGUGGGUACUUGCUGC GOI
hsa-miR-1183 YP00204176 CACUGUAGGUGAUGGUGAGAGUGGGCA GOI
hsa-miR-1234-3p YP00206017 UCGGCCUGACCACCCACCCCAC GOI
hsa-miR-126-3p YP00204227 UCGUACCGUGAGUAAUAAUGCG GOI
hsa-miR-1301-3p YP02111482 UUGCAGCUGCCUGGGAGUGACUUC GOI
hsa-miR-130a-3p YP00204658 CAGUGCAAUGUUAAAAGGGCAU GOI
hsa-miR-135a-3p YP00204022 UAUAGGGAUUGGAGCCGUGGCG GOI
hsa-miR-139-3p YP00205661 UGGAGACGCGGCCCUGUUGGAGU GOI
hsa-miR-141-3p YP00204504 UAACACUGUCUGGUAAAGAUGG GOI
hsa-miR-143-3p YP00205992 UGAGAUGAAGCACUGUAGCUC GOI
hsa-miR-146b-5p YP02119310 UGAGAACUGAAUUCCAUAGGCUG GOI
hsa-miR-149-3p YP00204093 AGGGAGGGACGGGGGCUGUGC GOI
hsa-miR-191-5p YP00204306 CAACGGAAUCCCAAAAGCAGCUG GOI
hsa-miR-193a-5p YP00204665 UGGGUCUUUGCGGGCGAGAUGA GOI
hsa-miR-195-5p YP00205869 UAGCAGCACAGAAAUAUUGGC GOI
hsa-miR-199a-3p YP00204536 ACAGUAGUCUGCACAUUGGUUA GOI
hsa-miR-199a-5p YP00204494 CCCAGUGUUCAGACUACCUGUUC GOI
hsa-miR-200b-3p YP00206071 UAAUACUGCCUGGUAAUGAUGA GOI
hsa-miR-200c-3p YP00204482 UAAUACUGCCGGGUAAUGAUGGA GOI
hsa-miR-205-5p YP00204487 UCCUUCAUUCCACCGGAGUCUG GOI
hsa-miR-21-5p YP00204230 UAGCUUAUCAGACUGAUGUUGA GOI
hsa-miR-221-3p YP00204532 AGCUACAUUGUCUGCUGGGUUUC GOI
hsa-miR-223-3p YP00205986 UGUCAGUUUGUCAAAUACCCCA GOI
hsa-miR-23a-3p YP00204772 AUCACAUUGCCAGGGAUUUCC GOI
hsa-miR-23a-5p YP00205631 GGGGUUCCUGGGGAUGGGAUUU GOI
hsa-miR-24-2-5p YP00204187 UGCCUACUGAGCUGAAACACAG GOI
hsa-miR-24-3p YP00204260 UGGCUCAGUUCAGCAGGAACAG GOI
hsa-miR-27a-3p YP00206038 UUCACAGUGGCUAAGUUCCGC GOI
hsa-miR-27a-5p YP00206021 AGGGCUUAGCUGCUUGUGAGCA GOI
hsa-miR-302d-3p YP00204311 UAAGUGCUUCCAUGUUUGAGUGU GOI
hsa-miR-34a-5p YP00204486 UGGCAGUGUCUUAGCUGGUUGU GOI
hsa-miR-455-3p YP00204035 GCAGUCCAUGGGCAUAUACAC GOI
hsa-miR-486-5p YP00204001 UCCUGUACUGAGCUGCCCCGAG GOI
hsa-miR-506-3p YP00204539 UAAGGCACCCUUCUGAGUAGA GOI
hsa-miR-595 YP00204070 GAAGUGUGCCGUGGUGUGUCU GOI
hsa-miR-665 YP00204710 ACCAGGAGGCUGAGGCCCCU GOI
hsa-miR-802 YP00205980 CAGUAACAAAGAUUCAUCCUUGU GOI
hsa-miR-92b-5p YP00204415 AGGGACGGGACGCGGUGCAGUG GOI

Table 1 List of analyzed miRNAs 
and controls
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Stability analysis and normalization

To investigate the stabilities of miRNAs, we developed the 
R package RefSeeker [1] based on the web tool RefFinder 
[22] found at https://www.heartcure.com.au/reffinder/. Ref-
Finder utilizes four widely used algorithms for stability 

one of which was also identified as a UniSp2 outlier. No 
samples had a difference in UniSp2 and UniSp4 Cp values 
of more than eight. In total, five samples were excluded from 
further analyses, leaving 43 samples for further analyses.

Fig. 1 Workflow diagram explaining the quality control filtering pro-
cess. Value in the first bubble represents number of samples (109 
samples). All n values represent the number of Cp value data points 
arriving at the node. Note that when combining complete cases from 

the HGSOC and Benign group for stability analysis, only miRNAs 
that are in common in the two datasets are merged, meaning that, four 
miRNAs and 220 Cp values were removed from the HGSOC group
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IV. Outcome of the patients was checked on 2 November 
2021.

Identification of stable miRNA

After quality control of the data, 17 miRNAs presented 
complete cases in the HGSOC group, 19 miRNAs had 
missing values and five miRNAs were excluded since all 
Cp values were eliminated (Table 3). In the benign group, 
13 miRNAs were present in all remaining samples, 24 miR-
NAs had missing data and four miRNAs were eliminated 
due to removal of all Cp values (Table 4). Remarkably, U6 
were missing in 56% of the HGSOC samples and 77% of 
the benign samples and were never considered as a candi-
date reference RNA.

Stability assessment was performed on the complete 
cases using the RefFinder method through the R package 
RefSeeker [1]. This method provides results from the delta-
Ct, BestKeeper, Normfinder and geNorm algorithms as well 
as an overall agreement score. Complete case datasets can 
be found in the supplemental material Table S4, Table S5 
and Table S6. In HGSOC samples, stability of 17 miRNAs 
were evaluated (Table 5). In these samples the delta-Ct 
method ranks hsa-miR-23a-3p as most stable and hsa-miR-
126-3p as second most stable miRNA. This is in line with 
Normfinder that ranks these as third and second most stable 
respectively, with hsa-miR-191-5p as most stable. GeNorm 
also ranks these two as some of the most stable: with hsa-
miR-126-3p and hsa-miR-223-3p as most stable and hsa-
miR-23a-3p as the fourth most stable. This is contrasted by 
BestKeeper that ranks hsa-miR-126-3p as the eighth most 
stable and hsa-miR-23a-3p as 12th most stable correspond-
ing to the sixth least stable miRNA. Instead, BestKeeper 
finds hsa-miR-193a-5p as the most stable and hsa-miR-
486-5p as second. Interestingly, the four other algorithms 
find hsa-miR-193a-5p to be the least stable of all miRNAs. 
Using these different rankings, RefFinder identify hsa-miR-
126-3p as most stable and hsa-miR-23a-3p as second most 
stable followed by hsa-miR-191-5p and hsa-miR-223-3p.

In benign samples, stability of 13 miRNAs were evalu-
ated (Table 5). Here, hsa-miR-191-5p and hsa-miR-27a-3p 
is found to be the most and second most stable respectively, 
by delta-Ct. The results of the Normfinder ranking are, 
except for a single switch in the order of hsa-miR-199a-3p 
and hsa-miR-103a-3p, identical to delta-Ct. The most and 
second most stable miRNAs are therefore also here hsa-
miR-191-5p and hsa-miR-27a-3p. GeNorm ranks these in 
reverse order with hsa-miR-27a-3p and hsa-miR-126-3p as 
most stable and hsa-miR-191-5p as fourth most stable with 
hsa-miR-23a-3p as third most stable. BestKeeper ranks hsa-
miR-191-5p as second most stable and hsa-miR-27a-3p as 
seventh most stable with hsa-miR-101-3p. Combining these 

analysis; BestKeeper [20], Normfinder [17], GeNorm [18] 
and the comparative delta-Ct method [19]. Using the ranking 
of stability values from the four other algorithms RefFinder 
calculates a geometric mean, representing an overall stabil-
ity ranking value for each miRNA. These algorithms do not 
perform equally well on all datasets. The geNorm algorithm 
tends to favor highly correlated genes excluding potential 
stable genes with bad correlation to regulated genes [27]. 
Compared to geNorm, Normfinder has been described as 
less robust with smaller sample sizes [28] and the delta-Ct 
method was found to work better with heterogeneously cor-
related sets of genes [27]. The full BestKeeper analysis cal-
culates two main measures of stability, one of which is the 
raw MAD that is incorporated into the RefFinder method. 
The MAD, however, is best suited for samples with a very 
fixed amount of input material [28].

The RefFinder rank was calculated separately for each 
of the HGSOC and benign groups as well as the HGSOC 
and benign combined on miRNAs that were detected in all 
samples. Stabilities of candidate pairs were also checked 
using the Normfinder analysis of expression data grouped in 
benign and HGSOC samples.

Results

Patients

Clinical and pathologic characteristics of the patients are 
summarized in Table 2. For the control group, patients with 
various benign gynecological tumors relevant in the clinical 
setting was selected. A group of 60 HGSOC patients were 
selected as test group. Of these, one patient was categorized 
as FIGO stage II, 38 as FIGO stage III and 21 as FIGO stage 

Table 2 Clinical and pathological characteristics of the patients
HGSOC Benign
n = 60 n = 48

Age at diagnosis, median (Range) 65.33 
(38–71)

52.13 
(18–68)

Stage
 II 1
 III 38
 IV 21
Histology
 High grade serous adenocarcinoma 60
 Serous Cystadenoma 6
 Muscinous Cystadenoma 3
 Endometriosis 2
 Fibroma 22
 Functional/simple/haemorrhagic/paratubal/
dermoid ov. Cysts.

9

 Other 6
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Table 3 Overview of miRNAs that after quality control were present in all remaining HGSOC samples (complete cases), had missing values 
(incomplete cases) and no Cp values (excluded)
Complete Cases Incomplete Cases Excluded (no cases)
Target Mean Sd Target mean Sd Missing Target
hsa-miR-101-3p 27.72 1.79 hsa-miR-1301-3p 30.21 1.83 2% hsa-miR-1183
hsa-miR-103a-3p 24.94 2.20 hsa-miR-34a-5p 32.11 1.78 2% hsa-miR-302d-3p
hsa-miR-126-3p 25.12 2.00 hsa-miR-200c-3p 31.42 1.93 6% hsa-miR-455-3p
hsa-miR-130a-3p 27.26 2.09 hsa-miR-106b-3p 31.41 1.57 8% hsa-miR-595
hsa-miR-143-3p 30.39 1.94 hsa-miR-195-5p 32.23 1.45 8% hsa-miR-802
hsa-miR-146b-5p 29.72 2.12 hsa-miR-205-5p 32.40 1.76 8%
hsa-miR-191-5p 25.08 1.91 hsa-miR-24-2-5p 32.01 1.68 19%
hsa-miR-193a-5p 31.54 1.15 hsa-miR-1234-3p 29.06 1.43 25%
hsa-miR-199a-3p 26.34 1.96 hsa-miR-139-3p 32.37 1.44 25%
hsa-miR-199a-5p 28.64 2.14 hsa-miR-141-3p 32.61 1.68 31%
hsa-miR-21-5p 24.55 2.02 hsa-miR-200b-3p 33.15 1.44 31%
hsa-miR-221-3p 25.26 2.04 U6_snRNA_(v2) 34.03 0.92 56%
hsa-miR-223-3p 22.52 2.00 hsa-miR-23a-5p 33.81 0.79 58%
hsa-miR-23a-3p 24.38 2.05 hsa-miR-27a-5p 33.80 0.84 73%
hsa-miR-24-3p 24.46 1.98 hsa-miR-506-3p 34.36 0.65 75%
hsa-miR-27a-3p 26.12 2.12 hsa-miR-665 32.58 2.56 92%
hsa-miR-486-5p 24.17 1.48 hsa-miR-149-3p 34.91 0.11 96%

hsa-miR-92b-5p 34.25 0.40 96%
hsa-miR-135a-3p 34.59 98%

Table 4 Overview of miRNAs that after quality control were present in all remaining benign samples (complete cases), had missing values (incom-
plete cases) and no Cp values (excluded)
Complete Cases Incomplete Cases Excluded (no cases)
Target Mean Sd Target mean Sd Missing Target
hsa-miR-101-3p 28.80 1.74 hsa-miR-199a-5p 29.51 1.97 2% hsa-miR-1183
hsa-miR-103a-3p 25.52 2.40 hsa-miR-1301-3p 30.59 1.93 5% hsa-miR-302d-3p
hsa-miR-126-3p 25.88 2.16 hsa-miR-146b-5p 30.51 1.88 5% hsa-miR-595
hsa-miR-130a-3p 28.34 2.04 hsa-miR-106b-3p 31.88 1.95 7% hsa-miR-802
hsa-miR-191-5p 25.91 2.00 hsa-miR-143-3p 31.36 2.07 7%
hsa-miR-199a-3p 27.17 2.11 hsa-miR-1234-3p 30.18 1.78 9%
hsa-miR-21-5p 25.53 2.06 hsa-miR-193a-5p 32.94 1.47 12%
hsa-miR-221-3p 26.13 2.33 hsa-miR-24-2-5p 32.68 1.78 14%
hsa-miR-223-3p 23.48 1.98 hsa-miR-200c-3p 32.10 1.73 19%
hsa-miR-23a-3p 25.20 2.24 hsa-miR-139-3p 32.86 1.37 30%
hsa-miR-24-3p 25.36 2.31 hsa-miR-34a-5p 32.81 1.33 35%
hsa-miR-27a-3p 27.18 2.11 hsa-miR-195-5p 32.72 1.34 40%
hsa-miR-486-5p 25.47 1.94 hsa-miR-205-5p 33.64 1.32 51%

hsa-miR-141-3p 33.15 1.36 56%
hsa-miR-200b-3p 33.23 1.15 63%
hsa-miR-23a-5p 33.83 1.45 63%
U6_snRNA_(v2) 34.08 1.03 77%
hsa-miR-665 33.76 0.80 77%
hsa-miR-27a-5p 34.43 0.43 91%
hsa-miR-506-3p 34.11 0.78 91%
hsa-miR-455-3p 34.66 0.22 95%
hsa-miR-92b-5p 34.76 0.18 95%
hsa-miR-135a-3p 34.16 98%
hsa-miR-149-3p 34.80 98%
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Table 5 Stability values and ranking of miRNAs in HGSOC, benign and in all combined samples. Five different algorithms were used on the 
miRNAs with complete cases in the sample group. RefFinder uses a geometric mean of the rankings from the four others
HGSOC delta-Ct BestKeeper Normfinder geNorm RefFinder Rank
Target Avg. 

STDEV.
Rank MAD Rank Stability Rank Avg.M Rank Geom. mean 

value
Rank

hsa-miR-126-3p 0.748 2 1.643 8 0.361 3 0.313 1 2.632 1
hsa-miR-23a-3p 0.722 1 1.685 12 0.333 2 0.353 4 3.130 2
hsa-miR-191-5p 0.772 6 1.522 4 0.328 1 0.464 8 3.722 3
hsa-miR-223-3p 0.771 5 1.653 10 0.399 5 0.313 1 3.976 4
hsa-miR-27a-3p 0.751 3 1.763 15 0.408 6 0.336 3 5.335 5
hsa-miR-130a-3p 0.768 4 1.754 14 0.379 4 0.388 5 5.785 6
hsa-miR-21-5p 0.791 7 1.646 9 0.409 7 0.408 6 7.172 7
hsa-miR-24-3p 0.795 8 1.617 6 0.450 8 0.480 9 7.667 8
hsa-miR-193a-5p 1.788 17 0.903 1 1.666 17 0.969 17 8.372 9
hsa-miR-199a-3p 0.953 12 1.558 5 0.682 11 0.583 12 9.434 10
hsa-miR-486-5p 1.683 16 1.106 2 1.549 16 0.860 16 9.514 11
hsa-miR-146b-5p 0.809 9 1.800 16 0.493 9 0.439 7 9.759 12
hsa-miR-101-3p 1.202 15 1.477 3 0.954 15 0.738 15 10.031 13
hsa-miR-221-3p 0.944 11 1.674 11 0.682 11 0.541 11 11.000 14
hsa-miR-143-3p 1.034 13 1.624 7 0.740 13 0.671 14 11.344 15
hsa-miR-103a-3p 0.903 10 1.812 17 0.629 10 0.511 10 11.419 16
hsa-miR-199a-5p 1.045 14 1.734 13 0.818 14 0.628 13 13.491 17
Benign delta-Ct BestKeeper Normfinder geNorm RefFinder Rank
Target Avg. 

STDEV.
Rank MAD Rank Stability Rank Avg.M Rank Geom. mean 

value
Rank

hsa-miR-191-5p 0.561 1 1.536 2 0.208 1 0.373 4 1.682 1
hsa-miR-27a-3p 0.563 2 1.622 7 0.227 2 0.310 1 2.300 2
hsa-miR-126-3p 0.591 4 1.691 9 0.308 4 0.310 1 3.464 3
hsa-miR-23a-3p 0.565 3 1.753 10 0.268 3 0.356 3 4.054 4
hsa-miR-223-3p 0.664 6 1.549 3 0.407 6 0.437 6 5.045 5
hsa-miR-21-5p 0.680 7 1.569 4 0.454 7 0.468 7 6.086 6
hsa-miR-24-3p 0.624 5 1.801 12 0.403 5 0.392 5 6.223 7
hsa-miR-101-3p 0.919 12 1.358 1 0.781 12 0.631 12 6.447 8
hsa-miR-199a-3p 0.716 9 1.620 6 0.525 8 0.523 9 7.896 9
hsa-miR-103a-3p 0.701 8 1.871 13 0.533 9 0.496 8 9.302 10
hsa-miR-130a-3p 0.767 11 1.647 8 0.573 11 0.574 11 10.158 11
hsa-miR-486-5p 1.149 13 1.591 5 1.058 13 0.711 13 10.238 12
hsa-miR-221-3p 0.738 10 1.791 11 0.570 10 0.544 10 10.241 13
All delta-Ct BestKeeper Normfinder geNorm RefFinder Rank
Target Avg. 

STDEV.
Rank MAD Rank Stability Rank Avg.M Rank Geom. mean 

value
Rank

hsa-miR-23a-3p 0.611 1 1.766 9 0.272 1 0.372 3 2.280 1
hsa-miR-27a-3p 0.634 2 1.774 10 0.305 3 0.355 1 2.783 2
hsa-miR-126-3p 0.641 3 1.721 7 0.314 4 0.355 1 3.027 3
hsa-miR-191-5p 0.645 4 1.600 3 0.284 2 0.426 5 3.310 4
hsa-miR-223-3p 0.684 6 1.668 5 0.373 5 0.403 4 4.949 5
hsa-miR-24-3p 0.676 5 1.757 8 0.405 6 0.449 6 6.160 6
hsa-miR-21-5p 0.707 7 1.691 6 0.416 7 0.474 7 6.735 7
hsa-miR-486-5p 1.478 13 1.432 1 1.397 13 0.794 13 6.846 8
hsa-miR-101-3p 1.067 12 1.517 2 0.906 12 0.670 12 7.667 9
hsa-miR-199a-3p 0.841 11 1.625 4 0.647 11 0.591 11 8.542 10
hsa-miR-130a-3p 0.737 8 1.791 12 0.459 8 0.504 8 8.853 11
hsa-miR-103a-3p 0.789 9 1.884 13 0.589 9 0.536 9 9.867 12
hsa-miR-221-3p 0.816 10 1.788 11 0.626 10 0.562 10 10.241 13
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selection of an algorithm often seems arbitrary [30–33]. 
Since these algorithms often provide very different recom-
mendations and the outcome of a given study is dependent 
on the selected references, results could end up appearing 
random and inconsistent. Moreover, in our experience, the 
algorithms are quite sensitive to small changes in the data-
sets, hence the data preprocessing has a major impact on 
results.

We used the RefSeeker package to perform the RefFinder 
analysis which provide results from four widely used algo-
rithms (delta-Ct, BestKeeper, Normfinder and geNorm) as 
well as an overall ranking.

In this study, we found hsa-miR-23a-3p and hsa-miR-
126-3p to be the best candidates to use for reference if only 
HGSOC samples were to be compared (Table 5). For the 
benign samples hsa-miR-191-5p and hsa-miR-27a-3p were 
the most stable (Table 5). This indicates that the choice of 
references and the subsequent results largely depend upon 
the specific cohort composition and the available reference 
candidates.

To accommodate this discrepancy between the two 
sample groups, a combined set was analyzed and hsa-miR-
23a-3p and hsa-miR-27a-3p were found to the most stable 
candidates across both sample types (Table 5). Specific rec-
ommendations for good stability value thresholds of most of 
the algorithms are not clearly communicated and different 
cut-offs are being used for the different algorithms [30, 34, 
35].

For Normfinder a used cut-off stability value of refer-
ences is 0.5-1. For geNorm 1-1.5 is used. For delta-Ct and 
BestKeeper, about 1 is common [30, 34, 35]. We found that 
stabilities for the four miRNAs (hsa-miR-23a-3p, hsa-miR-
27a-3p, hsa-miR-126-3p and hsa-miR-191-5p) highlighted 
in this study all performed below these thresholds (Table 5). 
Curiously, BestKeeper seem to systematically contradict the 
three other algorithms. Only one miRNA (hsa-miR-486-5p) 
in the dataset barely pass a BestKeeper stability threshold of 
1.5 (MAD = 1.432) (Table 5).

Interestingly neither hsa-miR-191-5p nor hsa-miR-
126-3p was part of the top performing pair in the combined 
sample group, even though they both performed better in 
the HGSOC group compared to hsa-miR-27a-3p and bet-
ter then hsa-miR-23a-3p in the benign group. Nonetheless, 
both hsa-miR-191-5p and hsa-miR-126-3p were determined 
to be stable and using these as references could probably 
also be a viable option.

As previously seen, BestKeeper evaluation of stability 
is largely in direct opposition to the other algorithms [21]. 
For example, when looking at stabilities of the HGSOC and 
benign groups combined, hsa-miR-23a-3p is determined to 
be the most stable miRNA by delta-Ct and Normfinder, and 
third most stable by geNorm. However, BestKeeper ranks 

rankings, RefFinder orders hsa-miR-191-5p, hsa-miR-
27a-3p, hsa-miR-126-3p, and hsa-miR-23a-3p as most, sec-
ond most, third most and fourth most stable respectively.

When combining the two groups (HGSOC and benign), 
only the miRNAs in common between these groups were 
evaluated. Opportunely, the 13 miRNAs evaluated for the 
benign group were all represented in the HGSOC group 
as well, thus stability of 13 miRNAs were assessed for all 
samples (Table 5). Here, hsa-miR-23a-3p, hsa-miR-27a-3p, 
hsa-miR-126-3p and hsa-miR-191-5p ranked as most, sec-
ond most, third most and fourth most stable respectively. 
Normfinder mostly agrees on this, however, with a slightly 
different order with hsa-miR-23a-3p, hsa-miR-191-5p, hsa-
miR-27a-3p and hsa-miR-126-3p ordered from most stable 
to least stable. GeNorm largely agrees with the two others, 
however it finds hsa-miR-191-5p to be the fifth most stable 
with hsa-miR-27a-3p and hsa-miR-126-3p as the most sta-
ble miRNAs and hsa-miR-23a-3p and hsa-miR-223-3p as 
the third and fourth most stable, respectively. Interestingly, 
BestKeeper finds quite different rankings compared to the 
three other algorithms. Though hsa-miR-191-5p also here 
is found to be quite stable as the third most stable miRNA, 
hsa-miR-23a-3p ranks as the ninth most stable, hsa-miR-
27a-3p as the 10th most stable and hsa-miR-126-3p as the 
seventh most stable miRNA. The most stable, second most 
stable and fourth most stable miRNA are instead found by 
BestKeeper to be hsa-miR-486-5p, hsa-miR-101-3p and 
hsa-miR-199a-3p, respectively.

To further validate our findings that hsa-miR-23a-3p 
and hsa-miR-27a-3p were the most stable miRNAs across 
HGSOC and benign samples, we performed grouped Norm-
finder analysis on the combined dataset assessing the most 
stable pair of miRNAs across the two sample groups. This 
resulted in hsa-miR-23a-3p and hsa-miR-27a-3p being the 
most stable pair with a stability value of 0.042 (supplemen-
tary Table S7).

Discussion

Discovery and detection of blood-based miRNA biomarkers 
largely depends upon the accurate and robust measurement 
of the presence of miRNAs in an analyzed sample. RT-
qPCR is a proven and reliable method for the detection and 
quantification of miRNA and other nucleotide sequences. 
However, the accuracy of RT-qPCR quantification is depen-
dent on the selection of a stable reference for normalization 
[29, 30].

Missing consensus on how to perform quality control and 
preprocessing of data to identify and assess the stability of 
reference miRNA candidates also makes direct compari-
sons challenging. Different algorithms are being used and 
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samples. Of the 60 HGSOC samples, only 26 U6-snRNA 
Cp values were below 35 cycles and in the benign samples 
only 10 out of 48 were below 35. Furthermore, none of these 
values were below 31 cycles, making the use of U6-snRNA 
as an endogenous control problematic. It should be noted 
that in this study RT-qPCR were performed on a limited 
number of selected targets miRNAs and U6-snRNA.

In this study we found 13 miRNA candidates expressed 
in all samples. To validate ubiquitous expression of the most 
stable candidates we compared the results with a previous 
study performed in our research group (Table S8). In that 
study, miRNAs were investigated in plasma from two differ-
ent cohorts each consisting of 95 malignant and 95 benign 
pelvic mass patients. Here, only hsa-miR-191-5p were 
present in all samples in both cohorts (n = 365), hsa-miR-
126-3p was missing in 1 sample (0.27%), hsa-miR-27a-3p 
was missing in two samples (0.55%) and hsa-miR-23a-3p 
was missing in 8 samples (2.19%). Due to the ratio of miss-
ing values being very low we assess these to be negligeable.

Additional research needs to be performed to further 
validate our findings and to explore other suitable reference 
miRNAs.

As discussed previously, RT-qPCR results are heavily 
affected by the data composition, robust and trustworthy 
data require prober data cleaning and quality control. Few 
papers report their methodology for data evaluation and data 
point exclusion criteria and if quality control like Spike-in 
or melt curves are reported, often very little information 
is provided on the specific use of these [40–42]. Here, we 
found that using a cut-off for Cp values of 35 cycles, 19.8% 
(1065) of our dataset Cp values was removed. Additionally, 
8.9% (481) of remaining Cp values needed manual evalua-
tion of melt curves and 24.7% of these (119) were excluded 
from the further analysis. In summary, 22% of the data was 
excluded in this initial validation. Many uses a Cp cut-
off, and 35 cycles is a very common number to use in this 
respect (Fig. 1). However, at least regarding the LightCy-
cler software, not many describe their approach to handling 
Cp values that is marked by the software to be of uncertain 
quality [41].

In this project we used the LightCycler 480 (Roche) in 
combination with the official LightCycler®480 software for 
RT-qPCR. This software allowed us to evaluate melt-curves 
for Cp values that were marked by either the Cp table or the 
Tm table as of uncertain quality.

It is worth noting that this study is limited by the miRNA 
targets selected for the RT-qPCR panel used. We are here 
presenting a workflow for data preprocessing and stability 
analysis and support and emphasize the notion that these or 
similar steps must be performed for each individual study 
[13]. We propose to include a set of candidate references 
in every RT-qPCR panel and to determine which of these 

this miRNA as number 9 out of 13 (Table 5). BestKeeper 
uses mean absolute deviation of the Cp values for each can-
didate and in doing so do not consider comparing with other 
miRNAs taking experimental and technical variations into 
account. Since it has not yet been determined which algo-
rithms are superior and in which contexts, we implemented 
RefFinder to provide an overview and compare results. 
Though this approach has been used in a number of stud-
ies it has to our knowledge never been properly validated, 
emphasizing the need for more precise standardization of 
methods for miRNA quantifications [28, 36]. It is there-
fore imperative, that the results from the RefFinder Rank 
is validated.

In this study we validated the findings using two meth-
ods. We used the grouped Normfinder analysis which uses 
a weighted mean of two parameters inter- and intragroup 
variations. Adding the intergroup variation into the calcula-
tion considers that a given stable miRNA should be stable in 
both within and between the analyzed sample groups.

To our knowledge, there are no publicly available datas-
ets that contain suitable miRNA RT-qPCR data, to validate 
our findings in external OC cohorts. Shapira et al. published 
a study based on miRNA profiles obtained by RT-qPCR on 
presurgical plasma samples from 42 women with serous 
EOC, 36 women diagnosed with a benign neoplasm, and 
23 comparably age-matched women with no known pelvic 
mass, however no raw data is provided. Hsa-miR-126-3p 
was reported downregulated in plasma from 42 serous EOC 
patients compared with 23 controls [37].

Interestingly, Resnick et al. found hsa-miR-126-3p to be 
overexpressed in serum from 19 EOC patients compared to 
that of 11 healthy controls. These discrepancies might be 
explained by relatively low number of examined patients 
and differences in the cohort heterogeneity, as exact sub-
types of OC being included are not precisely described. 
Moreover, the normalization strategies are different: Shapira 
et al. normalized the data by subtracting the mean of com-
plete cases miRNAs expression values in each sample from 
all miRNAs in that sample, whereas Resnick et al. used two 
miRNAs (hsa-miR-142-3p and hsa-miR-16) as endogenous 
stable controls. However, the details on how these normal-
izers have been chosen were not provided [38].

Hsa-miR-23a-3p has previously been reported to be 
stable in blood and plasma as well as being unaffected by 
hemolysis [26]. Indeed, it is used in combination with miR-
451, present in high amounts in red blood cells [39], to 
assess the degree of hemolysis in blood-based samples [26].

Interestingly, U6-snRNA that is often used as a stable 
endogenous reference for normalization [14, 15] was 
excluded from the stability analysis in our study. After qual-
ity control and filtering U6-snRNA was only represented 
in 44% HGSOC samples and only 23% of benign tumor 
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