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Abstract
Background  Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to be effective in Parkinson’s disease 
(PD), but whether rTMS treatment has a relieving effect on neuroinflammation remains to be investigated. In this article, we 
explored the effects of rTMS on forelimb use asymmetry and neuroinflammation-related mechanisms in a 6-hydroxydopa-
mine (6-OHDA)-induced PD rat model.
Methods and results  Rats in the 6-OHDA+rTMS group received 10 Hz rTMS daily for 4 weeks. Behavioral tests (the 
cylinder test) were performed at the 3rd and 7th weeks after the operation. Astrocyte and microglia activation and protein 
levels of tyrosine hydroxylase(TH), high-mobility group box 1(HMGB1) and toll-like receptors 4(TLR4) were investigated 
by immunohistochemistry and Western blot analyses, respectively. After 4 weeks of treatment, forelimb use asymmetry 
was ameliorated in the 6-OHDA+rTMS group. Consistent with the behavioral tests, rTMS increased TH in the substantia 
nigra (SN) and the striatum of PD rats. High glial activation and HMGB1/TLR4 expression in the SN and the striatum were 
observed in the 6-OHDA group, while rTMS alleviated these changes.
Conclusions  This study showed that rTMS might be a promising method for alleviating neuroinflammation in PD rat models, 
and the effects might be mediated through the downregulation of the HMGB1/TLR4 pathway.
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Iba-1	� Ionized calcium-binding adapter mol-
ecule 1

TH	� Tyrosine hydroxylase

Introduction

Parkinson’s disease (PD) is a complex and common neu-
rodegenerative disorder with selective neuronal loss in 
the substantia nigra (SN) [1]. PD has complicated causes 
that have still not been fully elucidated. Previous studies 
have reported that neuroinflammation plays an important 
role in PD [2, 3]. It has been shown that the neuroinflam-
matory response mediated by glial cells is involved in 
the process of occurrence and development of PD [2, 
4]. Neuroinflammation refers to the inflammatory pro-
cess in the central nervous system caused by molecules 
released by immune cells in the brain and/or derived 
from the blood [5]. In the process of neuroinflamma-
tion, increased oxidative stress and glial cell activation 
may occur [6]. Activated astrocytes and microglial cells 
release proinflammatory and neurotoxic factors that 
can exacerbate brain damage [7]. The activated immune 
system may contribute to the repair of damaged tissues, 
but when it becomes dysregulated and maladaptive, dis-
ease is initiated [5]. Therefore, inflammatory pathways 
may be important treatment targets for PD. Studies have 
shown that repetitive transcranial magnetic stimulation 
(rTMS) may alleviate PD animal model symptoms [8] 
and have beneficial effects in PD patients [9, 10]. The 
underlying mechanisms of rTMS treatment are still not 
clear. Its anti-neuroinflammation activity and other rel-
evant mechanisms require further study.

High-mobility group box  1/toll-like receptor 4 
(HMGB1/TLR4) is considered an important inflamma-
tory signaling pathway [11]. HMGB1 is a nuclear protein 
with high electrophoretic mobility that exists in all types 
of cells [12]. It regulates inflammation and the immune 
response after being released from damaged cells [12]. 
The two main receptors of HMGB1 are TLRs and recep-
tor for advanced glycation end products (RAGE) [12]. 
HMGB1 has also been reported to mediate dopaminergic 
neuronal loss in PD animal models [12, 13]. The up- or 
downregulation of HMGB1/TLR4 pathway expression is 
closely associated with the development of PD and ther-
apy effectiveness [14]. Unilateral intrastriatal 6-hydroxy-
dopamine (6-OHDA) infusion in rats is often used to 
mimic the pathological features of PD in humans [15]. 
In this article, we focused on investigating the effects of 
rTMS on forelimb use asymmetry and neuroinflamma-
tion-related mechanisms in a 6-OHDA-induced PD rat 
model.

Materials and methods

Animals and reagents

Specific pathogen-free Sprague-Dawley male rats (age, 6 w; 
weight, 200–220 g) were purchased from Sibeifu (Beijing, 
China) Biotechnology Co., Ltd (license No. SCXK2019-
0010). The rats were reared in clean cages at 22.0 ± 2.0 °C 
room temperature and 55 ± 10% relative humidity under a 
12 h light and 12 h dark cycle. The animals were randomly 
divided into the following three groups: unilateral intrastri-
atal infusion of 6-OHDA hydrochloride (dissolved in 0.9% 
normal saline containing 0.02% ascorbic acid) followed by 
sham rTMS treatment (6-OHDA group), unilateral intrastri-
atal infusion of 6-OHDA hydrochloride (dissolved in normal 
saline containing ascorbic acid) followed by rTMS treatment 
(6-OHDA+rTMS group), and unilateral intrastriatal infusion 
with normal saline containing ascorbic acid (control group).

Animal surgery

Rats in the 6-OHDA group and 6-OHDA+rTMS group 
were pretreated with desipramine (12.5 mg/kg, Med Chem 
Express, USA) 30 min before the operation. Isoflurane-
anaesthetized rats were firmly fixed on a stereotaxic frame 
(Reward, China). 6-OHDA hydrochloride (20  µg/4 µl, 
Sigma, USA) dissolved in normal saline containing ascor-
bic acid (Sigma) was administered into the right striatum at 
0.5 µl/min using a 10 µl syringe (Hamilton, Switzerland) at 
the following coordinates: anteroposterior, 0.7 mm; medi-
olateral, − 2.6 mm; dorsoventral, − 4.5 mm as previously 
described [15]. After remaining in place for 5 min, the 
inserted needle was slowly withdrawn (at 1 mm/min). At the 
3rd week after 6-OHDA injection, apomorphine (0.5 mg/kg, 
dissolved in normal saline containing ascorbic acid, Sigma) 
was administered intraperitoneally [15]. Rats that showed 
continuous rotation > 2 turns/min towards the contralateral 
side relative to the injection side after the apomorphine 
injection were used in further experiments. Rats in the con-
trol group were administered 4 µl normal saline containing 
ascorbic acid into the right striatum using the same method.

rTMS

The rats were restricted with a plastic holder when receiv-
ing rTMS treatment. A round coil (64-mm diameter) (Y064, 
YIRUIDE, Wuhan, China) was set parallel to the skull of 
the rats and kept 1 cm away from the rats head as described 
previously [8]. The parameters were set as follows: 10 Hz, 
approximately 1 Tesla magnetic field [8], 1 s stimulation, 
9 s interval, 20 min treatment daily for 4 weeks. Rats in the 
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6-OHDA group were administered the same rTMS protocol, 
but the coil positioning was perpendicular to the skull of 
the rats.

Behavioral tests

The cylinder test, which was used for evaluating fore-
limb use asymmetry, was performed at the 3rd and 7th 
weeks after the operation (test 1 and test 2, respectively). 
The rats were put into a transparent plexiglass cylinder 
(20 × 30 cm), and a mirror was placed behind the cylinder 
[16]. The rats were observed for 5 min, and the number 

of times the rat forelimbs contacted the cylinder wall was 
recorded. The final data were calculated by the equation 
[(ipsilateral (right) forepaw + 0.5 both paws)/(ipsilateral 
paw (right) + contralateral paw (left) + both paws)] * 
100% [16].

Immunohistochemistry staining

Glial fibrillary acidic protein (GFAP) and Ionized cal-
cium-binding adapter molecule 1(Iba-1) are generally 
used as markers of glial cells (astrocytes and microglia). 
One day after the second behavioral test, 5 rats from each 
group were selected randomly for immunohistochemistry 
staining. The anaesthetized animals were intracardially 
perfused with 0.9% normal saline and 4% paraformal-
dehyde (Solarbio, China). The rat brains were rapidly 
dissected out and immersed in paraformaldehyde at 4 °C. 
After dehydration and clearing, the tissues were embed-
ded in paraffin and then cut into 5-µm coronal slices. 
Then, the slices were deparaffinized and hydrated. After-
wards, the slices were unmasked in 0.01 M citric acid 
buffer and incubated with 3% hydrogen peroxide in the 
dark followed by primary antibodies (anti-GFAP 1:1000, 
Abcam; anti-Iba-1 1:1000, Wako, Japan; anti- tyrosine 
hydroxylase (TH) 1:1000, Millipore, USA) overnight 
at 4 °C. The corresponding secondary antibodies were 
then added, followed by staining with diaminobenzidine 
(DAB) until the staining was deemed satisfactory. Hema-
toxylin staining of the nuclei was carried out, followed 
by graded ethanol dehydration and fixation in transpar-
ent neutral gum. Images were obtained with an Olympus 

Fig. 1   Experimental design. Intrastriatal injection of 6-OHDA 
hydrochloride dissolved in normal saline containing ascorbic acid 
(6-OHDA group and 6-OHDA+rTMS group) or normal saline con-
taining ascorbic acid (control group) was carried out at 0 w. Behav-

ioral tests (the cylinder test) were performed at the 3rd and 7th weeks 
after the operation. Rats in the 6-OHDA+rTMS group received rTMS 
daily for 4 weeks (3rd week–7th week). Rats were sacrificed after the 
second behavioral test
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Fig. 2   The cylinder test scores. ∗∗P < 0.01 vs. test1, ##P < 0.01 vs. 
6-OHDA group, ФФP < 0.01 vs. 6-OHDA+rTMS group, &&P < 0.01 
vs. control group, %%P < 0.01 vs. 6-OHDA+rTMS group. Test 1: The 
cylinder test was performed at the 3rd week after the operation. Test 
2: The cylinder test was performed at the 7th week after the operation
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BX53 microscope. ImageJ software was used to analyse 
positively stained areas.

Western blot analysis

Rat striatum and SN tissues were lysed in RIPA lysis 
buffer (Applygen, China) containing protease inhibitor and 
phosphatase inhibitor (Solarbio) on ice. Protein concentra-
tions in the striatum and SN were determined using a BCA 
assay (Thermo Fisher Scientific, USA). Protein samples 
were separated by 10% SDS-PAGE and then transferred 

to PVDF membranes(Millipore) at 320 mA for 1 h. The 
membranes were blocked with 5% skim milk for 2 h. The 
samples were then incubated with the corresponding pri-
mary antibodies (anti-HMGB1 1:10000, Abcam, UK; 
anti-β-actin 1:4000, Proteintech, China; anti-TLR4 1:1000, 
Santa Cruz, USA; anti- TH 1:1000, Millipore) overnight 
at 4 °C. The next day, the membranes were incubated with 
the corresponding secondary antibodies (1:10,000, Kerui 
Biotechnology, China) for 1 h after washing. A chemi-
luminescence (ECL) reagent (Millipore) were added to 
visualize the bands after washing. The optical densities of 
the bands were calculated using ImageJ software (Fig. 1).
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Fig. 3   TH expression assessed by Western blot analysis (n = 5). a 
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Statistics

Statistical analysis was carried out using statistical software 
(GraphPad Prism 8, GraphPad Software Inc., USA). The 
apomorphine-induced rotational test of the 6-OHDA group 
and the 6-OHDA+rTMS group was analysed by t test. The 
comparisons of other results were analysed by analysis of 
variance (ANOVA) followed by Sidak’s or Tukey’s post hoc 
comparisons. Statistical differences were considered when 
P < 0.05.

Results

rTMS treatment improved motor function in PD rats

For the apomorphine-induced rotation test, no signifi-
cant difference was observed between the 6-OHDA group 

(4.960 ± 1.854 r/min) and the 6-OHDA+rTMS group 
(4.830 ± 1.779 r/min) (P > 0.05).

Compared with test 1, the cylinder test scores decreased 
significantly after 4 weeks only in the 6-OHDA+rTMS 
group (P < 0.01) (Fig. 2). When comparing among the 3 
groups, the cylinder test scores of both the 6-OHDA and 
6-OHDA+rTMS groups were increased at the 3rd week 
after operation compared with those in the control group 
(P < 0.01), indicating that 6-OHDA-lesioned rats used the 
ipsilateral forelimb more than the contralateral forelimb. 
There were no significant differences in the cylinder test 
scores between the 6-OHDA and 6-OHDA+rTMS groups 
(P > 0.05). After 4 weeks, the cylinder test score improve-
ments were more significant in the 6-OHDA+rTMS 
group than in the 6-OHDA group (P < 0.01). This sug-
gested that rTMS treatment improved motor function in 
PD rats (Fig. 2).
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Fig. 4   a Digital images of coronal sections of the SN stained for TH. b Relative optical density for TH in the SN. ∗∗P < 0.01 vs. control group, 
#P < 0.05 vs. 6-OHDA group, &&P < 0.01 vs. 6-OHDA+rTMS group
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rTMS improved TH expression levels in PD rats

When compared with the control group, administration of 
6-OHDA reduced the expression of TH in the SN and the 
striatum in both the 6-OHDA and 6-OHDA+rTMS groups 
(P < 0.01). However, rTMS significantly improved the TH 
expression level compared with that in the 6-OHDA group 
(P < 0.05) (Figs. 3 and 4).

rTMS ameliorated astrocyte and microglia 
activation in PD rats

Astrocyte activation in the ipsilateral striatum and SN of 
the 6-OHDA group was significantly higher than that of 
the control group (P < 0.01). However, GFAP expression 
in the 6-OHDA+rTMS group were significantly decreased 

compared with that in the 6-OHDA group (P < 0.01 and 
P < 0.05, respectively) (Figs. 5 and 6). For microglia acti-
vation in the striatum and SN, high microglia activation 
was observed in the 6-OHDA group (P < 0.01 and P < 0.05, 
respectively), while rTMS alleviated these changes (P < 0.01 
and P < 0.05, respectively) (Figs. 7 and 8).

rTMS decreased HMGB1/TLR4 levels in PD rats

In the striatum and SN, the HMGB1 data showed increased 
expression in the 6-OHDA group compared with the con-
trol group (P < 0.01) and decreased expression in the 
6-OHDA+rTMS group compared with the 6-OHDA group 
(P < 0.01), as shown in Figs. 9b and 10b. For TLR4 in the 
striatum and SN, the 6-OHDA group showed a higher 
expression than the control group (P < 0.01 and P < 0.05, 

co
ntr

ol g
ro

up

6-O
HDA

gro
up

6-O
HDA+rT

MS gro
up

0.0

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e

op
tic

al
de

ns
ity

fo
rG

FA
P

**

##

GFAP in the Striatum

(a)

(b)

Fig. 5   a Digital images of coronal sections of the striatum stained for GFAP. b Relative optical density for GFAP in the striatum. ∗∗P < 0.01 vs. 
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respectively) and the 6-OHDA+rTMS group showed a 
reduction in expression compared with the 6-OHDA group 
(P < 0.05), as shown in Figs. 9c and 10c.

Discussion

rTMS therapy is a noninvasive, well-tolerated technique for 
modulating the cortical network. Previous meta-analysis 
studies have shown the therapeutic benefits of rTMS for PD 
patients [9, 10]. However, its therapeutic mechanisms still 
need to be explained. In this article, we explored the effects 
of rTMS on glia-mediated neuroinflammatory responses and 
the HMGB1/TLR4 pathway in PD model rats. Our study 
indicated that rTMS treatment ameliorated forelimb use 
asymmetry in PD rats and suppressed the activation of glia 
cells and the HMGB1/TLR4 signaling pathway.

rTMS therapy is considered to offer a high or low fre-
quency of stimulation with distinct effects. The benefi-
cial effects on improving motor function were reported 
although the optimal rTMS treatment protocol has not 
been determined in PD [17, 18]. A study on rTMS in PD 
model rats showed that after 10 Hz rTMS treatment for 
4 weeks, the amphetamine-induced rotation number was 
significantly lower and that TH-positive DA neurons were 
increased in both the ipsilateral striatum and SNc [8]. They 
concluded that the neuroprotective effect of rTMS treat-
ment on PD model rats might be induced by upregulating 
neurotrophic and growth factors [8]. In our study, after 
rTMS treatment, the cylinder test scores decreased sig-
nificantly, and the expression level of TH was significantly 
increased compared with that in the 6-OHDA group. These 
data are in line with previous studies.

Studies from PD animal models and human postmortems 
have reported that neuroinflammation is important in the 
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PD process [2]. The inflammatory response mediated by 
astrocytes and microglia is involved in the occurrence and 
development of PD [2, 4]. 6-OHDA cannot cross the blood-
brain barrier [19]. It is structurally similar to dopamine and 
has a high affinity for dopamine transporters, which induces 
degeneration of dopamine neurons [19]. Oxidative stress and 
neuroinflammation are involved in this process [20]. In pre-
vious studies, the administration of 6-OHDA in the striatum 
led to increased GFAP-positive cells in both the striatum and 
SN [21], and glia-mediated inflammation could injure TH-
positive neurons [22]. Therefore, glial activation might play 
an important role in TH-positive neurons lost in addition 
to direct impairment of 6-OHDA [23]. Since the inflam-
matory response is closely associated with the PD process, 
it is considered to be an important treatment target for PD 
that can alleviate glial activation and neuroinflammatory 
responses. In this study, astrocyte and microglia activation 
was observed in the 6-OHDA group, while rTMS alleviated 
this change.

In our study, the data showed higher expression of 
HMGB1 and TLR4 in the 6-OHDA group and decreased 
expression in the 6-OHDA+rTMS group in the stria-
tum and SN. Angelopoulou E et al. [24] indicated that 
HMGB1 might play a key role in PD pathogenesis. 
HMGB1 has been reported to participate in neuroinflam-
mation, autophagy, apoptosis and gene transcription regu-
lation [24]. Neurons secreted HMGB1 in the acute stage 
after unilateral intrastriatal 6-OHDA infusion, whereas 
increased astrocytes secreted HMGB1 at the later stage 
[12]. After HMGB1 is secreted, it binds to its receptors, 
RAGE or TLRs, and the downstream signaling pathway is 
activated [25]. TLR2/4 receptors are expressed in the brain 
constitutively and can regulate inflammatory responses 
[26] while RAGE is usually induced by increased sub-
strate abundance or oxidative stress [27]. Activated astro-
cytes and microglia accelerate HMBG1/TLR4 expression 
through autocrine or paracrine signaling [14], and HMGB1 
promotes the activation of glial cells [24]. A study found 
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that compared with healthy volunteers, the expression of 
HMGB1 and its downstream proteins was increased in PD 
patients [14]. rTMS may inhibit this inflammatory process. 
According to the results of our study, we speculate that 
rTMS may alleviate PD symptoms by inhibiting high glial 
activation and HMGB1/TLR4 expression. Downregulating 
the HMGB1/TLR4 signaling pathway may be beneficial 
for PD treatment.

Conclusion

In conclusion, the results of our study suggested that rTMS 
might be a promising method for alleviating neuroinflam-
mation by downregulating the HMGB1/TLR4 inflamma-
tory pathway in PD rat models. Our results support the 
therapeutic effects of rTMS, and deepen the understanding 
of the mechanisms of rTMS treatment on PD.
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Fig. 9   HMGB1 and TLR4 expression in the striatum assessed by 
Western blot analysis. a Typical immunoblots. b Mean ratio of 
HMGB1 densitometry density data in relation to β-actin in the stria-
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Fig. 10   HMGB1 and TLR4 expression in the SN assessed by West-
ern blot analysis. a Typical immunoblots. b Mean ratio of HMGB1 
densitometry density data in relation to β-actin in the SN (∗∗P < 0.01 
vs. control group, ##P < 0.01 vs. 6-OHDA group). c Mean ratio 
of TLR4 densitometry density data in relation to β-actin in the SN 
(∗P < 0.05 vs. control group, #P < 0.05 vs. 6-OHDA group) (n = 5)
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