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Abstract
Background  Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, 
angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accord-
ingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical 
severity in patients with COVID-19.
Methods and results  The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited 
between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits 
with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total 
antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and 
clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 
patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels 
of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow 
coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arte-
rial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, 
and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. 
Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 
patients from healthy controls.
Conclusions  Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor out-
comes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an 
adjuvant therapy in decreasing disease severity and death in COVID-19 patients.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2), 
is a highly contagious and pathogenic viral infection that 
caused a global pandemic with a substantial number of 
deaths [1]. All coronaviruses have specific genes that code 
for proteins required for viral replication, nucleocapsid 
formation, and spike production[2]. The classic method 
for coronavirus entry into host cells is receptor-mediated 
endocytosis[3]. SARS-CoV-2 has been shown to enter the 
host cells through interactions with the angiotensin con-
verting enzyme 2 (ACE2) receptor [4], with recognition 
of the ACE2 receptor by SARS-CoV-2 dependent on the 
structure of the coronavirus spike protein [5].

Interactions between the coronavirus spike protein and 
ACE2 causes increased expression of angiotensin II (Ang 
II), which in turn activates NADPH oxidase and increases 
oxidative stress[6]. Moreover, NADPH oxidase enhances 
the production of reactive oxygen species (ROS), a pro-
cess regulated by the transcriptional protein nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kB) 
[7]. The generation of ROS represents an integral com-
ponent of the host defenses against invading microorgan-
isms. Oxidative stress induced by viral infection enhances 
cytokine production leading to activation of innate 
immune responses[8]. However, excessive production of 
ROS induced by respiratory viral infections may contrib-
ute to lung tissue injury and damage [9]. Peroxynitrite is a 
powerful oxidant that is known to cause pulmonary injury 
and loss of pulmonary function in patients with a range of 
viral infections[10]. Interestingly, melatonin (MLT) is an 
efficient scavenger of peroxynitrite and inhibitor of nitric 
oxide production that has been shown to reduce lipid per-
oxidation during lung injury[11, 12].

Oxidative stress is postulated to be involved in the 
pathogenesis of COVID-19 [13]. Both the SARS-CoV-2 
coronavirus and the pro-inflammatory cytokines gen-
erated during SARS-COV-2 infection, such as IL-1β, 
IL-2, IL-6, TNF-α, and interferon-γ (IFN-Y), predomi-
nantly target the endothelium [14, 15], thereby increas-
ing endothelial permeability for macromolecules that may 
precipitate pulmonary injury [16]. In turn, inflammatory 
cytokines can augment oxidative stress via stimulation of 
neutrophils, macrophages, and endothelial cells [17]. The 
complex interactions between oxidative stress and inflam-
matory cytokines promote cytokine storm in COVID-19 
patients and may thereby predict disease severity and poor 
outcomes [18]. Early anticipation and management of 
cytokine storm using immunomodulators and blood puri-
fication systems may have utility in improving the survival 
of patients with COVID-19 [19, 20]. Targeting oxidative 

stress represents a potential therapeutic option that war-
rants further study of the role of oxidative stress in patho-
genesis of COVID-19 [21]. Accordingly, the present study 
aimed to assess the association of ACE2 expression and 
markers of oxidative stress, including malondialdehyde 
(MDA), total antioxidant capacity (TAC), and melatonin 
(MLT), with the clinical severity in patients with COVID-
19. This may provide the basis for effective therapeutic 
approaches in the coming years.

Materials and Methods

Study participants

The present study was conducted at the Medical Biochem-
istry Department, internal medicine department, faculty 
of medicine and Zoology Department, Faculty of Science, 
Mansoura University, Egypt. The present study comprised 
40 patients with COVID-19 and 40 age-matched and sex-
matched apparently healthy controls recruited between 
September 2021 and March 2022. This study was approved 
by the Mansoura University ethics committee (Institutional 
Research Board; R.20.10.1) and all patients provided signed 
informed consent.

All patients were admitted to the ICU with severe pul-
monary manifestations around 10 days from the onset of 
the initial symptoms. The study participants were assigned 
to one of two groups. Group 1 comprising 40 patients (22 
males and 18 females) with severe COVID-19 infection who 
were admitted to the Intensive Care Unit (ICU) at the time 
of the study and may have received remdesivir and/or ino-
tropes. All patients had a confirmed diagnosis of COVID-19 
based on their clinical profile and a positive PCR test. Group 
2 comprised 40 healthy controls who had no previous history 
of COVID-19 infection, chronic pulmonary disease, or auto-
immune disease. Patients with mild respiratory symptoms 
or pregnant women with COVID-19 were excluded from 
the present study.

Blood sample collection

The sampling was done at one time point in patients with 
severe COVID-19, within 48 h of ICU admission. In healthy 
volunteers, blood samples were obtained similarly at one 
point-time. Venesection was performed for all participants to 
obtain 7 ml of whole blood that was divided into two collec-
tion tubes; 4 ml of blood were collected in EDTA-containing 
tubes for isolation of peripheral blood mononuclear cells and 
the remaining 3 ml were collected in plain tubes and used 
for serum biochemical analyses.
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Biochemical analysis

Serum levels of melatonin (MLT; Catalog # EH3344) and 
malondialdehyde (MDA; Catalog # EU2577) were meas-
ured using ELISA kits purchased from Fine Test, Wuhan 
Biotech, China according to the manufacturer’s instruc-
tions. TAC was measured using ELISA kits obtained from 
Raybiotech Norcross, GA, USA, (Catalog # ELH-ITAC-1) 
in accordance with the manufacturer’s instructions.

Isolation of peripheral blood mononuclear cells

Whole blood (4 ml) was collected from each subject in 
EDTA-containing collection tubes. Isolation of peripheral 
mononuclear blood cells (PBMCs), T cells, B cells, and 
monocytes was performed using Histopaque-1077 (Sigma-
Aldrich) Ficoll density-gradient centrifugation according 
to manufacturer’s instructions.

RNA extraction and cDNA synthesis

Total RNA including lncRNA was extracted from PBMCs 
using TRIzol reagent (Zymo Research, Irvine, CA). A 
NanoDrop 2000 spectrophotometer (Thermo. Fischer 
Scientific, Waltham, MA) was used to quantitate RNA. 
Total RNA samples were stored at − 80 °C until further 
use. SensiFAST cDNA Synthesis kits (Bioline, Memphis, 
TN) were used for cDNA synthesis according to manufac-
turer’s instructions. Reverse transcription was performed 
in reactions with a final volume of 20 ml.

Real‑time PCR

ACE2 expression levels were measured using Hera plus 
SYBR Green qPCR kits (Willow Fort, Birmingham, UK) 
with GAPDH used as an internal control according to the 
manufacturer’s protocol. Fold change was calculated using 
the comparative threshold cycle method [2−ΔΔCt] for rela-
tive quantification normalized to an endogenous control 
[22].

The following primers were used for ACE2 and 
GAPDH genes:

Gene Forward Reverse

ACE-2 5'-TCC​ATT​GGT​CTT​CTG​
TCA​CCCG-3'

5'-AGA​CCA​
TCC​ACC​
TCC​ACT​
TCTC-3'

Gene Forward Reverse

GAPDH 5'-ACA​GTC​AGC​CGC​ATC​
TTC​TT-3'

5'-GAC​AAG​
CTT​CCC​
GTT​CTC​
AG-3'

Real-time PCR was performed in 20 ml reaction mixtures 
using a 7500 Real-time PCR System (Applied Biosystems) 
with the following conditions: 95 °C for 10 min followed by 
40 cycles at 95 °C for 15 s and a final step of 60 °C for 60 s.

Statistical analyses

Data were stored and analyzed using IBM-SPSS software 
(IBM Corp. Released 2019. IBM-SPSS Statistics for Win-
dows, Version 26.0. Armonk, NY: IBM Corp) and Med-
Calc® Statistical Software version 20 (MedCalc Software 
Ltd, Ostend, Belgium, 2021). Qualitative data are presented 
as n (%). Quantitative data were initially tested for normal-
ity using Shapiro–Wilk’s test with data considered nor-
mally distributed if P > 0.050. The presence of significant 
outliers was tested by inspecting boxplots. Quantitative 
data were expressed as the mean and standard deviation or 
median and interquartile range (Q1–Q3). Qualitative data 
were compared between groups using the Chi-Square (χ2) 
test. Quantitative data were compared between two groups 
using the independent-samples t-test (normally distributed) 
or Mann–Whitney U-test (non-normally distributed). The 
one-sample Wilcoxon signed ranks test was used to compare 
non-normally distributed quantitative data against a hypo-
thetical median. Spearman’s correlation was used to assess 
the direction and strength of association between two non-
normally distributed continuous variables. The strength of 
association was considered low, medium, or large for cor-
relation coefficients < 0.3, 0.3–0.5, and > 0.5, respectively. 
Point biserial correlation was used to assess the association 
between a dichotomous variable and a continuous variable. 
Receiver operating characteristic (ROC) curves were used to 
categorize continuous variables into two categories based on 
a cutoff value with the area under the curve (AUC) reported. 
Diagnostic accuracy was considered excellent, very good, 
good, sufficient, or bad when the AUC was 0.9–1.0, 0.8–0.9, 
0.7–0.8, 0.6–0.7, or 0.5–0.6, respectively. P-values ≤ 0.05 
were considered statistically significant. Charts were used 
to graphically present the results as appropriate.

Results

The present study comprised 40 confirmed cases of COVID-
19 including 22 males and 18 females. Patients with 
COVID-19 had a mean age of 60.7 ± 9.29 years. The pre-
sent study also included 40 age-matched and sex-matched 
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healthy control subjects (26 males and 14 females) with a 
mean age of 59.6 ± 9.31 years. There was no significant dif-
ference in sex or age between the two groups (P < 0.361 and 
P < 0.590, respectively).

ACE2 mRNA expression was compared between the two 
study groups, one-sample Wilcoxon signed ranks test also 
demonstrating significantly lower expression levels of ACE2 
in COVID-19 patients compared to a hypothesized value 
(1.0) for controls. Median ACE2 fold change (FC) = 0.05, 
95% CI for the median = 0.0.017 to 0.098). This was statisti-
cally significantly lower than the normal control value of 1.0 
(Hodges-Lehmann location estimator = 0.0766, P < 0.001) 
(Fig. 1).

Serum levels of oxidative stress markers (MDA, MLT, 
and TAC) were compared between the two groups. Serum 
levels of TAC and MLT were significantly lower in COVID-
19 patients compared to controls (P > 0.001). On the other 
hand, patients with COVID-19 had significantly higher 
serum levels of MDA (P > 0.001) compared to healthy con-
trols (Table 1).

The correlation of ACE2 mRNA and serum levels of 
oxidative markers with clinicopathological data was next 
examined. These correlations aimed to assess the prognos-
tic validity of the studied markers in predicting the disease 
severity and outcomes. Therefore, therapeutic approaches 
targeting oxidative stress markers may curtail the systemic 

consequences of severe SARS-COV2 infection. The data 
presented in (Table 2) demonstrates a statistically signifi-
cant negative correlation between serum MDA levels and 
both diastolic blood pressure (DBP) and Glasgow coma 
scale (GCS) scores. Serum MLT levels were significantly 
and positively correlated with DBP, MAP, and respiratory 
rate. Serum levels of TAC were positively correlated with 
GCS scores.

A statistically significant negative correlation was 
observed between serum TAC and creatinine levels, 
between ACE2 mRNA expression and total bilirubin 
levels, and between serum MDA and potassium levels 
(Table 3). A statistically significant and positive corre-
lation was observed between serum MLT and potassium 
levels. ACE2 mRNA expression levels did not correlate 
with any complete blood count (CBC) parameter.

Moreover, serum TAC levels were significantly and pos-
itively correlated with mean platelet volume (P = 0.008). 
ACE2 mRNA expression levels and the studied redox state 
markers were not correlated with arterial blood gas (ABG) 
parameters.

Patients with COVID-19 who were treated with rem-
desivir had significantly lower serum levels of MLT 
(P = 0.025) compared to the control group (Table  4). 
Serum MLT levels were lower in patients treated with 
inotropes (median serum MLT level, 22.7) compared to 

Fig. 1   ACE2 expression levels. 
Median ACE2 (FC), 0.05; 95% 
CI, 0.0.017 to 0.098; Hodges–
Lehmann location estimator, 
0.0766; P < 0.001)

0.0 0.5 1.0 1.5 2.0
ACE2 fold change

Table 1   Levels of MLT, TAC 
and MDA in both groups

Data are presented as the median with interquartile range. P-values represent comparisons using the Mann–
Whitney U-test

Biomarker Control COVID-19 Hodges–Lehmann median difference P-value

MLT (pg/ml) 141 (122.3–161.3) 62.8 (31.8–111.3) 75.5 (53.2–91.2)  < 0.001
TAC (mmol/L) 1.63 (1.35–1.84) 0.90 (0.43–1.36) 0.69 (0.45–0.93)  < 0.001
MDA (nmol/ml) 0.38 (0.28–0.48) 2.29 (0.76–10.8)  − 1.84 (− 7.06 to − 0.71)  < 0.001
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patients not treated with inotropes (median serum MLT 
level, 74.4).

ROC curve analysis was performed to assess the diag-
nostic performance of ACE2 mRNA expression levels and 
the studied oxidative markers for COVID-19 infection and 
demonstrated ACE2 mRNA expression levels and the stud-
ied oxidative markers could discriminate COVID-19 patients 
from healthy controls (Fig. 2).

Discussion

Oxidative stress has a key role in the pathogenesis of 
COVID-19 due the development of an imbalance between 
the production of ROS and the body’s antioxidant capac-
ity [23]. In COVID-19, the main target of SARS-CoV-2 
is ACE2 receptor, a critical enzyme of the renin–angio-
tensin–aldosterone system (RAAS), which promotes oxi-
dative stress via stimulating NADPH Oxidase, an action 
principally mediated by Ang II [24]. SARS-CoV-2 infec-
tion results in accumulation of AngII, and ROS caus-
ing oxidative stress and cell damage[25]. A wide range 
of viral diseases, including HIV 1, the viral hepatitis B, 
C, and D, herpes viruses, and respiratory viruses such as 
coronaviruses, are known to contribute to oxidative stress 
[26]. Accordingly, greater understanding of the molecular 
mechanisms underlying the contribution of oxidative stress 
to the pathogenesis of COVID-19 may facilitate the devel-
opment of novel therapies. The present study evaluated 
the expression levels of angiotensin converting enzyme 2 
(ACE2) and redox state markers (TAC, MLT, and MDA) 
in patients with severe COVID-19 admitted to the ICU 

with pulmonary manifestations. Several studies proposed 
the association between the studied redox state markers 
(TAC, MLT, and MDA) and the pathogenesis of COVID-
19. MDA is a known indicator of oxidative stress, being 
an indicator of free radicals-induced oxidative damage in 
COVID-19 patients [13, 27].

Our results demonstrate that ACE2 mRNA expression 
levels were significantly lower in patients with severe 
COVID-19 compared to healthy controls. ROC curve anal-
ysis evaluated the diagnostic performance of markers in 
COVID-19 demonstrated the highest diagnostic accuracy 
among markers of oxidative stress (AUC = 0.938%), with a 
sensitivity of 92.5% and specificity of 100% in discriminat-
ing COVID-19 cases from control subjects. ACE2 is the 
primary receptor for SARS-CoV-2 entry into host cells 
[28]. Attachment of viral spike proteins to ACE2 receptors 
at the cell membrane facilitates entry of SARS-CoV-2, the 
causal agent of COVID-19 (26). Accordingly, suscepti-
bility to SARS-CoV-2 infection may be linked to expres-
sion levels of ACE2 receptor at the endothelium following 
viral exposure [29]. The levels of plasma ACE2 have been 
assessed in the early phase of SARS-COV-2 infection, a 
significant increase in soluble ACE2 has been reported, 
principally in severe cases suggesting an excessive shed-
ding of ACE2 during the early phase of SARS-CoV-2 
infection [30]. However, Contradictory reports on the 
correlation between ACE2 expression levels and disease 
severity and outcomes are being available [31, 32]. The 
results of the present study demonstrate that patients with 
severe COVID-19 at the late phase of infection exhibit 
lower ACE2 mRNA expression. This finding corroborates 
previous evidence suggesting that the SARS-CoV-2 virus 

Table 2   Correlation between 
the four studied biomarkers and 
clinical data in COVID-19 cases 
(n = 40)

rs Spearman’s correlation coefficient
**P < 0.01
*P < 0.05 (two-tailed)

Clinical data TAC​ MDA MLT ACE2
rs P-value rs P-value rs p-value rs P-value

Age (years)  − 0.097 0.552 0.153 0.346  − 0.111 0.495  − 0.150 0.374
Admission duration (days)  − 0.307 0.054 0.170 0.293 0.046 0.776  − 0.171 0.292
Systolic blood pressure 

(mmHg)
 − 0.064 0.697  − 0.019 0.907 0.170 0.300 0.060 0.715

Diastolic blood pressure 
(mmHg)

0.238 0.144  − 0.335* 0.037 0.490** 0.002 0.068 0.681

Mean arterial blood pres-
sure (mmHg)

0.066 0.690  − 0.154 0.350 0.330* 0.040 0.074 0.652

Heart rate 0.176 0.284  − 0.178 0.277 0.176 0.285 0.099  − 0.050
Temperature 0.099 0.542  − 0.184 0.255 0.230 0.154  − 0.050 0.757
Respiratory rate 0.236 0.161  − 0.300 0.071 0.352* 0.032 0.140 0.408
Glasgow coma scale 

(GCS)
0.365 0.042  − 0.404 0.020 0.294 0.096 0.281 0.113
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downregulates ACE2 expression following cell entrance 
[33]. Several studies have indicated that downregula-
tion of membrane-bound ACE2 may induce dysfunction 
of the immune system and contribute to poor outcomes 
in patients with COVID-19 [34, 35]. SARS-CoV-2 may 
induce downregulation of ACE2 by a number of mecha-
nisms including: (1) decreased ACE2 receptor expression 
due to immune dysfunction; (2) enhanced shedding of 
membrane-bound ACE2; and (3) endocytosis of ACE2 
receptor with SARS-CoV-2 [34]. Downregulation of 
ACE2 has been shown to alter the ratio of ACE to ACE2 in 
many pathological conditions[36]. Accordingly, high ACE 
levels may suggest low ACE2 levels and vice versa [34].

The results of the present study also demonstrate a nega-
tive correlation between ACE2 mRNA expression and 
serum bilirubin levels. Previous studies have reported that 
hyperbilirubinemia is an indicator of liver injury in patients 
with severe COVID-19 [37, 38]. The findings of the present 
study indicate that enhancing and maintaining ACE2 expres-
sion may represent a potential therapeutic option for severe 
COVID-19.

Furthermore, serum MLT and TAC levels were signifi-
cantly lower while serum MDA levels were significantly 
higher in patients with severe COVID-19 compared to 
healthy controls. We believe this to be the first study to dem-
onstrate low serum levels of MLT in patients with COVID-
19. MLT is a major component of the antioxidative defense 

Table 3   Correlations between 
biochemical parameters and 
ACE2 mRNA expression, 
TAC, MDA, and MLT levels in 
COVID-19 cases (n = 40)

rs Spearman’s correlation coefficient
**P < 0.01; *P < 0.05 (two-tailed)

Lab test TAC​ MDA MLT ACE2
rs P-value rs P-value rs P-value rs P-value

Serum sodium 0.007 0.966  − 0.042 0.800 0.168 0.306  − 0.0285 0.079
Serum potassium 0.244 0.134  − 0.344 0.032* 0.451 0.004** 0.201 0.219
Random blood glu-

cose (RBG)
 − 0.102 0.532 0.074 0.649 0.032 0.846 0.170 0.295

ALT (IU/L) 0.309 0.059 0.248 0.133 0.094 0.576 0.189 0.259
AST (IU/L)  − 0.113 0.512 0.038 0.420 0.048 0.781  − 0.306 0.07
Serum albumin  − 0.116 0.581 0.130 0.429 0.160 0.331 0.252 0.122
Serum total bilirubin 0.153 0.545 0.164 0.515 0.215 0.391  − 0.506 0.032*
Serum creatinine  − 0.331 0.037* 0.264 0.099 0.169 0.296 0.098 0.549
Serum LDH 0.47 0.370 0.140 0.556 0.347 0.134 0.186 0.432
C-reactive protein  − 0.031 0.876 0.161 0.422 0.158 0.432  − 0.208 0.297
RBCs count  − 0.214 0.185 0.160 0.325  − 0.100 0.539  − 0.216 0.181
Hemoglobin  − 0.202 0.212 0.179 0.269  − 0.142 0.381  − 0.080 0.623
Hematocrit  − 0.169 0.298 0.151 0.352  − 0.106 0.513  − 0.147 0.365
MCV 0.025 0.876  − 0.012 0.944 0.042 0.798 0.049 0.763
MCH  − 0.038 0.815 0.027 0.871  − 0.022 0.894 0.168 0.299
MCHC (g/dl)  − 0.164 0.326 0.192 0.247  − 0.293 0.074 0.295 0.072
RDW (%) 0.000 0.999 0.089 0.623  − 0.124 0.492  − 0.160 0.374
Platelet count  − 0.088 0.590 0.054 0.739  − 0.064 0.696 0.158 0.330
Mean platelet volume 0.509** 0.008  − 0.344 0.086 0.121 0.556 0.205 0.316
Total WBC count 0.040 0.808  − 0.028 0.862 0.073 0.656  − 0.193 0.394
Neutrophil count 0.203 0.281  − 0.239 0.203 0.40 0.263  − 0.043 0.822
Lymphocyte count 0.035 0.829  − 0.042 0.797  − 0.002 0.988  − 0.251 0.118
Monocyte count 0.407 0.317  − 0.419 0.301 0.072 0.866 0.096 0.821
Basophil count 0.327 0.429  − 0.436 0.280 0.546 0.162 0.109 0.797
Eosinophil count 0.164 0.699  − 0.436 0.280 0.409 0.314  − 0.600 0.116
INR 0.116 0.526  − 0.183 0.316 0.272 0.133 0.025 0.894
pH 0.257 0.110  − 0.086 0.596  − 0.037 0.821 0.101 0.533
HCO3 0.237 0.152  − 0.204 0.218 0.172 0.301 0.016 0.926
PaO2 0.063 0.705  − 0.090 0.586 0.154 0.350  − 0.128 0.439
PaCO2 0.0.085 0.603  − 0.215 0.183 0.289 0.071 0.014 0.933
D-dimer  − 0.132 0.416 0.096 0.554 0.030 0.853  − 0.083 0.612
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Table 4   Correlations between 
categorical data and ACE2 
mRNA expression, serum TAC, 
serum MDA, and serum MLT 
levels in COVID-19 cases 
(n = 40)

rpb point biserial correlation coefficient, CKD-HD chronic kidney disease on maintenance hemodialysis

Categorical variable TAC​ MDA MLT ACE2
rpb P-value rpb P-value rpb P-value rpb P-value

Use of remdesivir  − 0.200 0.216 0.220 0.173  − 0.355 0.025 0.229 0.156
ICU admission  − 0.068 0.677 0.109 0.505 0.139 0.393  − 0.083 0.609
Diabetes  − 0.219 0.174 0.113 0.486  − 0.031 0.851 0.197 0.223
Hypertension  − 0.174 0.284 0.235 0.145 0.027 0.867 0.052 0.751
Coronary artery disease 0.076 0.641 0.045 0.784 0.031 0.850  − 0.103 0.526
Chroninc kidney disease 

on haemodialysis 
(CKD-HD)

 − 0.213 0.187 0.274 0.087  − 0.170 0.293  − 0.110 0.500

Use of inotropes 0.014 0.929  − 0.003 0.986  − 0.373 0.018  − 0.117 0.471
Mechanical ventilation 0.010 0.951 0.087 0.594 0.098 0.547  − 0.024 0.884

Biomarker Cutoff AUC 95% CI Sensitivit
y

Specifici
ty

p-value

ACE2 ≤0.95 0.938 0.86-0.97 92.5% 100% <0.001
MDA (nmol/ml) > 0.701 0.892 0.80-0.95 77.5% 100% <0.001
MLT (pg/ml) ≤ 98 0.881 0.79-0.94 72.5% 100% <0.001
TAC (mM/L) ≤ 1.01 0.812 0.71-0.89 57.5% 100% <0.001

Fig. 2   Diagnostic performance of serum ACE2 and oxidative mark-
ers. ROC curve analysis of serum ACE2 and oxidative markers for 
the ability to discriminate between patients with COVID-19 (n = 40) 

and healthy controls (n = 40). AUC, area under the ROC curve; CI, 
confidence interval; SE, standard error
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system against infection due to its ability to scavenge free 
radicals and stimulate a number of antioxidant enzymes [39]. 
TAC is a known predictor of disease severity in several dis-
eases. Previous studies have reported that TAC is reduced 
in patients with COVID-19 compared to healthy controls 
[40, 41]. In the present study, TAC was positively correlated 
with GCS scores, and patients with less severe disease had 
higher serum TAC levels. Moreover, TAC was negatively 
correlated with serum creatinine levels in the COVID-19 
group, indicating patients with higher TAC levels had more 
stable kidney function. However, TAC has been reported to 
be correlated with disease severity and negative outcomes 
in many other clinical diseases[42–44]. This finding may 
represent intense protective mechanisms against overwhelm-
ing inflammation. Accordingly, the present study found a 
positive correlation between TAC and mean platelet vol-
ume (MPV), which is considered a significant predictor 
and prognostic biomarker of inflammation and oxidative 
stress[45–47]. Of note, previous studies have reported MPV 
predicts severe COVID-19 [48–50].

MLT has remarkable antioxidant and anti-inflammatory 
properties may protect against the proinflammatory cytokine 
storm and neutralize free radicals, thereby maintaining cellu-
lar integrity and minimizing lung injury[51]. In the absence 
of acetyl-coenzyme A, mitochondrial MLT is no longer 
available to reduce the inflammatory response or neutralize 
generated ROS, thereby contributing to the massive pulmo-
nary injury in patients with severe COVID-19 [52]. This is 
in line with the findings of the present study, which found 
that COVID-19 patients had lower serum MLT levels than 
healthy controls, which we believe to be a novel finding.

MDA is a byproduct of the cyclo-oxygenase reaction in 
prostaglandin metabolism [53], with serum MDA levels 
reported to be positively correlated with COVID-19 severity 
in earlier studies [40, 54]. In the present study, serum MDA 
levels were negatively correlated with GCS and DBP, indi-
cating patients with higher serum MDA levels were more 
likely to have severe disease and decreased consciousness 
levels. Furthermore, lower serum potassium levels were 
observed in patients with higher serum MDA levels and 
lower serum MLT levels.

Previous studies have reported that MLT plays a vital role 
in regulating the cardiovascular system and has a hypoten-
sive effect in mammals[55, 56]. However, a positive cor-
relation was observed between serum MLT levels and both 
systolic and diastolic blood pressure (DBP) in the present 
study, with a statistically significant correlation observed 
between serum MLT levels and DBP.

Although elevated levels of D-dimer have been previously 
shown as a predictor of COVID-19 activity [30, 57], the 
present study did not find any significant correlation between 
D-dimer on one hand with ACE2 expression and the studied 
oxidative stress markers on the other hand.

Further studies are required to validate this observation. 
However, the patients included in the present study had a 
different clinical profile to typical patients with cardiovascu-
lar disease. Moreover, the present study found that patients 
with lower serum MLT levels were more likely to require 
treatment with remdesivir and inotropes, which are more 
frequently required in patients with more severe disease.

Among the main strengths of the present study is that it 
focused on patients with severe COVID-19 at a late phase of 
the disease, included assays of a variety of oxidative stress 
markers by different assessment methods, considered exten-
sive correlations to the clinic-laboratory-pathologic criteria 
which may provide a basis for targeting COVID-19 with new 
therapeutic approaches.

Conclusion

In conclusion, the results of the present study demonstrate 
that increased levels of oxidative stress markers, decreased 
levels of antioxidant indicators, and lower ACE2 expres-
sion levels are correlated with the disease severity and poor 
outcomes in hospitalized patients with COVID-19. These 
findings indicate ACE2, and oxidative stress markers may 
represent therapeutic targets for severe COVID-19.
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