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Abstract
Background  Microsatellite markers were developed for distylous Linum suffruticosum and tested in the monomorphic sis-
ter species Linum tenuifolium. These species are perennial herbs endemic to the western and northwestern Mediterranean, 
respectively, with a partially overlapping distribution area.
Methods and results  We developed 12 microsatellite markers for L. suffruticosum using next generation sequencing, and 
assessed their polymorphism and genetic diversity in 152 individuals from seven natural populations. The markers displayed 
high polymorphism, with two to 16 alleles per locus and population, and average observed and expected heterozygosities of 
0.833 and 0.692, respectively. All loci amplified successfully in the sister species L. tenuifolium, and 150 individuals from 
seven populations were also screened. The polymorphism exhibited was high, with two to ten alleles per locus and popula-
tion, and average observed and expected heterozygosities of 0.77 and 0.62, respectively.
Conclusions  The microsatellite markers identified in L. suffruticosum and tested in L. tenuifolium are a powerful tool to 
facilitate future investigations of the population genetics, mating patterns and hybridization between both Linum species in 
their contact zone.

Keywords  Heterostyly · Floral polymorphism · Genetic variation · Linum · Microsatellites · Hybrid zones

Introduction

Linum L. (Linaceae) is a cosmopolitan and diverse genus 
with a great economic and ecological importance. In addi-
tion, it stands as a model system for studying the evolution 
of heterostyly from the early observations of Darwin [1] to 
the last advances on genomics of the S-locus [2]. Heterostyly 
consists in the co-occurrence of two to three floral morphs 
within a population, with floral morphs (1) being hermaph-
roditic, and (2) presenting stigmas and anthers at different 
reciprocal positions within the flower [3]. Linum exhibits 
high variation in morphology, mating system and presence 

of heterostyly and related floral polymorphisms, which have 
evolved multiple independent times [4-6] ⁠.

The sister species Linum suffruticosum and L. tenuifolium 
(Fig. 1) appear as an ideal study system to assess the micro-
evolutionary mechanisms that support the maintenance and 
loss of heterostyly in Linum [7, 8]. Distributed in the western 
Mediterranean Basin, Linum suffruticosum is a heteromor-
phic and self-incompatible species showing a unique case 
of three-dimensional heterostyly [8]. The self-compatible 
and monomorphic L. tenuifolium is the sister species of L. 
suffruticosum and is distributed in southern Europe [6, 9, 
10]. Both species have a contact zone area in the NW of the 
Mediterranean Basin, from NE Spain to NW Italy, where 
populations co-occur in nearby sites or even intermingled 
and are able to hybridize [10]. ⁠This contact zone makes the 
L. suffruticosum-L. tenuifolium complex an excellent system 
to address questions about the evolution of mating systems, 
and to understand the processes underlying reproductive iso-
lation and species divergence [11].

In the last twenty years, Simple Sequence Repeat mark-
ers (SSR) have been the most common tool for a variety of 
applications in molecular biology, from genome mapping 
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to population and ecological genetics, due to their codomi-
nant mode of heredity and their highly polymorphic nature 
[12, 13]. SSR markers are commonly developed to inves-
tigate genetic variation within particular species [e.g. 14, 
15]. However, SSR markers can be also transferable between 
closely related species when genomic resources are not 
available for de novo development [e.g. 16, 17].

To date, the development of molecular tools for popu-
lation studies in Linum has been mostly restricted to the 
cultivated flax L. usitatissimum [18-20], meaning a lack of 
suitable molecular resources for studying the evolutionary 
ecology of several wild Linum species. Here, we character-
ize 12 new polymorphic microsatellite loci for L. suffrutico-
sum and their transferability to L. tenuifolium in seven wild 
populations of each species. These markers will be useful 
for future research on the genetics, mating patterns as well 
as potential natural hybridization within and between sister 
species in their contact zone.

Materials and methods

Identification of candidate SSR loci and primer 
design

Genomic DNA was extracted from two individuals of 
L. suffruticosum sampled in a natural population (Prat 
d’Aguiló, Lleida, Spain; 42.34301, 1.71806) with Invi-
sorb® Spin Plant Mini Kit. DNA was conveyed to Ecogen-
ics GmbH (Schlieren-Zürich, Switzerland, https://​www.​
ecoge​nics.​ch) for the development of a library of suitable 
SSR candidates and primer design. The Illumina TruSeq 
Nano library was analyzed on an Illumina MiSeq sequenc-
ing platform with a nano v2 500 cycles sequencing chip. 
The chastity-filtered paired-end reads were subject to de-
multiplexing and trimming of Illumina adapter sequences. 
Subsequently, the quality of the reads was checked with 
FastQC v0.117 software [21]. Afterwards, the paired-
end reads were merged with the software USEARCH 
v10.0.240 [22]. The 99,943 merged reads were screened 
with the software Tandem Repeats Finder, v4.09 [23]. 
After this process, 5704 merged reads contained a micro-
satellite insert with a tetra- or a trinucleotide of at least six 
repeat units or a dinucleotide of at least ten repeat units. 

Fig. 1   Flowers of distylous Linum suffruticosum (left) and style-monomorphic Linum tenuifolium (right), with details of their sex organs and two 
common pollinators

https://www.ecogenics.ch
https://www.ecogenics.ch
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Primer design was performed with default parameters in 
Primer3 [24], resulting in 4243 microsatellite candidates.

Primer testing and polymorphism assessment

A total of 302 individuals, from seven populations of each 
L. suffruticosum and L. tenuifolium distributed in their con-
tact zone, were used for primer testing and polymorphism 
assessment (Online Appendix 1). Leaf tissue was collected 
from individuals separated at least 1 m from each other and 
preserved in silica gel. Vegetative reproduction is negligi-
ble or very limited in L. tenuifolium and L. suffruticosum, 
respectively. Some of the population sites were pure and 
other were mixed, containing both species that are clearly 
distinguishable (Fig. 1 and Online Appendix 1). Linum ten-
uifolium has been described as a diploid species throughout 
its range and, although L. suffruticosum is a polyploid com-
plex, all populations screened were diploid [25].

We randomly selected 60 microsatellites to test their 
amplification in 2–4 individuals from each species and 
population (96 individuals in total). Genomic DNA was 
extracted with ISOLATE II Plant DNA Kit (Bioline). PCR 

amplifications were conducted using 20 µL of master mix 
that included: 1x MyTaq Red Reaction Buffer (Bioline), 
0.4 μm of each forward and reverse primers, 0.01% bovine 
serum albumin (BSA, Promega), 0.5 u MyTaqTM Red DNA 
Polymerase (Bioline), 50–70 ng gDNA and deionized water 
up to 20 µL. A touchdown procedure was performed for all 
loci with initial denaturation for 2 min at 94 °C; followed by 
10 cycles of 92 °C for 30 s, 30 s at 63 °C with an increment 
of − 1 °C per cycle, and 30 s at 72 °C; followed by 20 cycles 
of 94 °C for 30 s, 30 s at 56 °C, and 30 s at 72 °C; and an 
extra extension of 5 min at 72 °C. The amplification of PCR 
products was assessed in 2% agarose gels. Twelve markers 
that amplified well in both species (Table 1) were selected 
for polymorphism assessment.

Forward primers were labelled with either 6-FAM, VIC, 
NED or PET fluorescent labels for fragment analyses on 
18–24 individuals from each species and population (302 
individuals in total; Online Appendix 1). DNA extractions 
and PCR reactions were performed with the same protocol 
as for primer testing. PCR products were analysed on an 
automatic ABI 3730 capillary DNA sequencer (Sequencing 
Service, University of Dundee, UK), using a GeneScan 500 

Table 1   Characterization of 12 microsatellite loci identified in Linum suffruticosum 

Locus GeneBank accesion Repeat motif Repeat length Primer sequence (5′ to 3′) Ampli-
con size 
(bp)

Ls_1145191 OQ472634 TGA​ 10 F-GCT​GCA​AGT​TCG​ACC​TCC​ 116
R-GCC​GGT​GAT​GAT​TTT​CAG​GG

Ls_1169143 OQ472635 TG 18 F-CTC​TGC​ACT​TCT​ATT​CCT​GTAGC​ 158
R-GCC​TTG​ATC​GGT​CGC​ATA​AC

Ls_1178187 OQ472636 TTC​ 14 F-AAT​TCG​TCA​AGG​AGG​CAA​CG 189
R-TGC​CAT​TCA​AAG​GTA​GTG​AAAC​

Ls_144692 OQ472637 TTC​ 23 F-TCA​TCA​CCG​TAA​CAA​AGC​CC 243
R-GCC​ATT​CAA​AGG​TGG​TGA​AAC​

Ls_246481 OQ472638 CAA​ 11 F-ATT​GTT​ACT​CGG​CCA​CCC​AC 103
R-AAA​CGG​GCA​TTG​AAC​TTC​GG

Ls_337128 OQ472639 AG 25 F-CTC​CTT​TGA​TCT​AGG​CAC​GC 250
R-GGC​CAA​CTT​CTA​GCG​ACC​G

Ls_37372 OQ472640 AC 16 F-TGT​ATC​AGT​CGG​GGG​TTG​AG 195
R-CTC​TGC​ACT​TCT​ATT​CCT​GTAGC​

Ls_395648 OQ472641 AC 13 F-TCG​TAG​ATT​GGG​GCG​AGA​AG 243
R-TCT​GCA​CTT​CCA​TTC​ATG​TAGC​

Ls_421659 OQ472642 GGA​ 8 F-TAC​GCA​GAA​TGG​TGG​TTT​GG 189
R-AGT​TTC​ATC​GTT​GTG​GAC​GC

Ls_807222 OQ472643 TTC​ 9 F-AAG​ATG​TGC​CCT​CTC​CAT​CC 173
R-GAA​CCC​TGC​TTC​TGG​TTC​AAG​

Ls_889692 OQ472644 GAA​ 14 F-TGC​CAT​TCA​AAG​GTA​GTG​AAAC​ 192
R-AAT​TCG​TCA​AGG​AGG​CAA​CG

Ls_9438 OQ472645 GAA​ 24 F-TCA​AAT​TGC​CCA​ACA​ATT​CTAGC​ 247
R-AAT​TCG​TCA​AGG​AGG​CAA​CG
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LIZ internal size standard. Allele binning and calling were 
performed in Geneious (Biomatters).

For each locus and population, the number of alleles per 
locus (A), observed heterozygosity (HO) and expected hete-
rozygosity (HE) were calculated with the popgenreport func-
tion of R package PopGenReport [26]. The deviation from 
Hardy-Weinberg equilibrium for each locus was tested using 
the function mk.hw. The presence of null alleles was tested 
with the function null, following the methods of Brookfield 
[27] ⁠and Chakraborty et al. [28].

Results and discussion

In this study, we characterized 12 SSR markers for Linum 
suffruticosum based on a genomic library developed with 
new generation sequencing, and tested their transferability to 
the sister species L. tenuifolium. The 12 SSR markers ampli-
fied and showed high levels of polymorphism in the seven 
populations tested for each evaluated species. All microsat-
ellite regions were deposited in NCBI Genbank (Table 1).

In L. suffruticosum, the number of alleles per locus per 
population (A) ranged from 2 to 16, with a mean of 6.7; 
the observed heterozygosity (HO) ranged from 0.09 to 1, 
with a mean of 0.83; and the expected heterozygosity (HE) 
ranged from 0.45 to 0.9, with a mean of 0.69 (Table 2). In 
each population, four to nine loci deviated significantly 
from Hardy–Weinberg equilibrium after Bonferroni cor-
rection, and two to four loci showed presence of null alleles 
(Table 2). In L. tenuifolium, the number of alleles per locus 
per population (A) ranged from 2 to 10, with a mean of 
5.1; the observed heterozygosity (HO) ranged from 0 to 1, 
with a mean of 0.77; and the expected heterozygosity (HE) 
ranged from 0.05 to 0.88, with a mean of 0.62 (Table 3). In 
each population, five to twelve loci deviated significantly 
from Hardy–Weinberg equilibrium after Bonferroni correc-
tion, and two to four loci showed presence of null alleles 
(Table 3). We found high levels of genetic diversity and 
significant deviations from Hardy–Weinberg equilibrium. 
These are congruent with the inherent outcrossing of the 
three-dimensional heterostylous L. suffruticosum, as well as 
with the potential hybridization between the two taxa in the 
analysed populations.

These SSR markers will be a useful tool to investigate 
the mating patterns within and between L. suffruticosum 
and L. tenuifolium in their contact zone, and patterns of 
gene flow and spatial genetic structuring among and within 
pure and mixed populations. The genus Linum has been the 
object of renewed attention for the study of heterostyly, from 
macroevolutionary patterns [5, 6] to finer scale processes 
within or across Linum species and populations [2, 29], and 
polyploidy [25, Valdés et al., under review]. Given the full 

transferability success shown, these SSR markers could 
potentially be applied to other Linum species for studies of 
ecological genetics.
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