Skip to main content
Log in

Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

AMPK:

AMP-activated protein kinase

CCA:

Cholangiocarcinoma

CDK:

Cyclin-dependent kinase

CK1:

Casein kinase 1

CML:

Chronic myeloid leukemia

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma

GSK3:

Glycogen synthase kinase 3

HCC:

Hepatocellular carcinoma

HNSCC:

Head and neck squamous cell carcinomas

IHC:

Immunohistochemistry

IKK:

IκB kinase

LATS1/2:

Large tumor suppressor kinase 1/2

LKB1:

Liver kinase B1

MAP4Ks:

Mitogen-activated protein kinase kinase kinase kinases

MAPKs:

Mitogen-activated protein kinases

MOB1:

Mps one binder kinase activator 1

MPM:

Malignant pleural mesothelioma

MST1/2:

Mammalian Ste20-like kinase 1/2

mTOR:

Mammalian target of rapamycin

NDR1/2:

Nuclear Dbf2-related kinase 1/2

NGF:

Nerve growth factor

NF-κB:

Nuclear factor-κB

NLK:

Nemo-like kinase

NSCLC:

Non-small cell lung cancer

NTRK1:

Neurotrophic receptor tyrosine kinase 1

PDGFR:

Platelet derived growth factor receptor

PDK1:

3-phosphoinositide-dependent protein kinase-1

PDX:

Patient-derived xenograft

Ph +:

Philadelphia chromosome-positive

ROCK1/2:

Rho-associated protein kinase 1 and 2

RTK:

Receptor tyrosine kinase

SAV1:

Salvador homologue 1

SFK:

Src family tyrosine kinase

SH3:

Src homology domain 3

STK38:

Serine/threonine kinase 38

TCF/LEF:

T-cell factor/lymphoid enhancer factor

TEADs:

TEA domain family members

TFIIH:

Transcriptional initiation factor II-H

TKI:

Tyrosine kinase inhibitor

TNBC:

Triple-negative breast cancer

UPS:

Ubiquitin-proteasome system

VGLL4:

Vestigial-like protein 4

References

  1. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434. https://doi.org/10.1016/j.cell.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312. https://doi.org/10.1152/physrev.00005.2014

    Article  CAS  PubMed  Google Scholar 

  3. Papaspyropoulos A, Bradley L, Thapa A et al (2018) RASSF1A uncouples wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nat Commun 9:424. https://doi.org/10.1038/s41467-017-02786-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie Q, Chen J, Feng H et al (2013) YAP/TEAD-mediated transcription controls cellular senescence. Cancer Res 73:3615–3624. https://doi.org/10.1158/0008-5472.Can-12-3793

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Q, Liu N, Bai J et al (2020) Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway. Faseb j 34:4178–4188. https://doi.org/10.1096/fj.201902147R

    Article  CAS  PubMed  Google Scholar 

  6. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  7. Holmes B, Benavides-Serrato A, Saunders JT, Kumar S, Nishimura RN, Gera J (2021) mTORC2-mediated direct phosphorylation regulates YAP activity promoting glioblastoma growth and invasive characteristics. Neoplasia 23:951–965. https://doi.org/10.1016/j.neo.2021.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Z, Wu H, Jiang K et al (2016) MAPK-Mediated YAP activation Controls Mechanical-Tension-Induced Pulmonary Alveolar Regeneration. Cell Rep 16:1810–1819. https://doi.org/10.1016/j.celrep.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  9. Deng Y, Lu J, Li W et al (2018) Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun 9:4564. https://doi.org/10.1038/s41467-018-07022-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Badouel C, Garg A, McNeill H (2009) Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 21:837–843. https://doi.org/10.1016/j.ceb.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Deng Y, Pang A, Wang JH (2003) Regulation of mammalian STE20-like kinase 2 (MST2) by protein phosphorylation/dephosphorylation and proteolysis. J Biol Chem 278:11760–11767. https://doi.org/10.1074/jbc.M211085200

    Article  CAS  PubMed  Google Scholar 

  12. Lin Z, Xie R, Guan K, Zhang M (2020) A WW Tandem-Mediated Dimerization Mode of SAV1 essential for Hippo Signaling. Cell Rep 32:108118. https://doi.org/10.1016/j.celrep.2020.108118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi S, Zhu Y, Liu X et al (2022) WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell. https://doi.org/10.1016/j.molcel.2022.03.027

    Article  PubMed  Google Scholar 

  14. Meng Z, Moroishi T, Mottier-Pavie V et al (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357. https://doi.org/10.1038/ncomms9357

    Article  CAS  PubMed  Google Scholar 

  15. Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283:5496–5509. https://doi.org/10.1074/jbc.M709037200

    Article  CAS  PubMed  Google Scholar 

  16. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24:72–85. https://doi.org/10.1101/gad.1843810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang S, Zhang L, Liu M, Chong R, Ding SJ, Chen Y, Dong J (2013) CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res 73:6722–6733. https://doi.org/10.1158/0008-5472.Can-13-2049

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Zhang L, Chen X, Chen Y, Dong J (2015) Oncoprotein YAP regulates the spindle checkpoint activation in a mitotic phosphorylation-dependent manner through up-regulation of BubR1. J Biol Chem 290:6191–6202. https://doi.org/10.1074/jbc.M114.624411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122. https://doi.org/10.1186/gb4184

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D (2013) The Hippo effector yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 25:388–401. https://doi.org/10.1016/j.devcel.2013.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zeng Y, Stauffer S, Zhou J, Chen X, Chen Y, Dong J (2017) Cyclin-dependent kinase 1 (CDK1)-mediated mitotic phosphorylation of the transcriptional co-repressor Vgll4 inhibits its tumor-suppressing activity. J Biol Chem 292:15028–15038. https://doi.org/10.1074/jbc.M117.796284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carlsten JO, Zhu X, Gustafsson CM (2013) The multitalented mediator complex. Trends Biochem Sci 38:531–537. https://doi.org/10.1016/j.tibs.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  23. Firestein R, Bass AJ, Kim SY et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551. https://doi.org/10.1038/nature07179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou J, Zeng Y, Cui L et al (2018) Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation. Proc Natl Acad Sci U S A 115:E6760–e9. https://doi.org/10.1073/pnas.1800621115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118:5171–5180. https://doi.org/10.1242/jcs.02718

    Article  CAS  PubMed  Google Scholar 

  26. Miao J, Kyoyama H, Liu L et al (2020) Inhibition of cyclin-dependent kinase 7 down-regulates yes-associated protein expression in mesothelioma cells. J Cell Mol Med 24:1087–1098. https://doi.org/10.1111/jcmm.14841

    Article  CAS  PubMed  Google Scholar 

  27. Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, Yue T, Yang Y, Jiang J (2020) CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev 34:53–71. https://doi.org/10.1101/gad.333146.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. https://doi.org/10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang N, Zhang C, Dill P et al (2014) Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med 211:2249–2263. https://doi.org/10.1084/jem.20140341

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sciarretta S, Zhai P, Maejima Y et al (2015) mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep 11:125–136. https://doi.org/10.1016/j.celrep.2015.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aharonov A, Shakked A, Umansky KB et al (2020) ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 22:1346–1356. https://doi.org/10.1038/s41556-020-00588-4

    Article  CAS  PubMed  Google Scholar 

  32. Jia Y, Li HY, Wang J, Wang Y, Zhang P, Ma N, Mo SJ (2019) Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis 8:31. https://doi.org/10.1038/s41389-019-0143-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. https://doi.org/10.1128/mmbr.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong AW, Meng Z, Yuan HX, Plouffe SW, Moon S, Kim W, Jho EH, Guan KL (2017) Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep 18:72–86. https://doi.org/10.15252/embr.201642681

    Article  CAS  PubMed  Google Scholar 

  35. Seo J, Kim MH, Hong H, Cho H, Park S, Kim SK, Kim J (2019) MK5 regulates YAP Stability and is a molecular target in YAP-Driven cancers. Cancer Res 79:6139–6152. https://doi.org/10.1158/0008-5472.Can-19-1339

    Article  CAS  PubMed  Google Scholar 

  36. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the yes proto-oncogene product. Oncogene 9:2145–2152

    CAS  PubMed  Google Scholar 

  37. Taniguchi K, Wu LW, Grivennikov SI et al (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:57–62. https://doi.org/10.1038/nature14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smoot RL, Werneburg NW, Sugihara T et al (2018) Platelet-derived growth factor regulates YAP transcriptional activity via src family kinase dependent tyrosine phosphorylation. J Cell Biochem 119:824–836. https://doi.org/10.1002/jcb.26246

    Article  CAS  PubMed  Google Scholar 

  39. Sugihara T, Werneburg NW, Hernandez MC et al (2018) YAP Tyrosine Phosphorylation and Nuclear localization in Cholangiocarcinoma cells are regulated by LCK and Independent of LATS Activity. Mol Cancer Res 16:1556–1567. https://doi.org/10.1158/1541-7786.Mcr-18-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Tang F, Terracciano L et al (2015) NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr Biol 25:296–305. https://doi.org/10.1016/j.cub.2014.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. González A, Hall MN, Lin SC, Hardie DG (2020) AMPK and TOR: the Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 31:472–492. https://doi.org/10.1016/j.cmet.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  42. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17:500–510. https://doi.org/10.1038/ncb3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17:490–499. https://doi.org/10.1038/ncb3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeRan M, Yang J, Shen CH et al (2014) Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9:495–503. https://doi.org/10.1016/j.celrep.2014.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H, Guan KL, Xu Y (2010) Structural insights into the YAP and TEAD complex. Genes Dev 24:235–240. https://doi.org/10.1101/gad.1865810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mukhopadhyay H, Lee NY (2020) Multifaceted roles of TAK1 signaling in cancer. Oncogene 39:1402–1413. https://doi.org/10.1038/s41388-019-1088-8

    Article  CAS  PubMed  Google Scholar 

  47. Santoro R, Zanotto M, Simionato F et al (2020) Modulating TAK1 expression inhibits YAP and TAZ oncogenic functions in pancreatic Cancer. Mol Cancer Ther 19:247–257. https://doi.org/10.1158/1535-7163.Mct-19-0270

    Article  CAS  PubMed  Google Scholar 

  48. Wang G, Sun Q, Zhu H, Bi Y, Zhu H, Xu A (2021) The stabilization of yes-associated protein by TGFβ-activated kinase 1 regulates the self-renewal and oncogenesis of gastric cancer stem cells. J Cell Mol Med 25:6584–6601. https://doi.org/10.1111/jcmm.16660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu F, Xia Y, Parker AS, Verma IM (2012) IKK biology. Immunol Rev 246:239–253. https://doi.org/10.1111/j.1600-065X.2012.01107.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Xie F, Chu F et al (2017) YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKɛ-mediated phosphorylation. Nat Immunol 18:733–743. https://doi.org/10.1038/ni.3744

    Article  CAS  PubMed  Google Scholar 

  51. Santoro R, Zanotto M, Carbone C, Piro G, Tortora G, Melisi D (2018) MEKK3 sustains EMT and stemness in pancreatic Cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res 38:1937–1946. https://doi.org/10.21873/anticanres.12431

    Article  CAS  PubMed  Google Scholar 

  52. Lu J, Hu Z, Deng Y, Wu Q, Wu M, Song H (2021) MEKK2 and MEKK3 orchestrate multiple signals to regulate Hippo pathway. J Biol Chem 296:100400. https://doi.org/10.1016/j.jbc.2021.100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun A, Zhu J, Xia S, Li Y, Wu T, Shao G, Yang W, Lin Q (2021) MEKK5 interacts with and negatively regulates the E3 ubiquitin ligase NEDD4 for mediating Lung Cancer Cell Migration. Life (Basel) 11:1153. https://doi.org/10.3390/life11111153

    Article  CAS  PubMed  Google Scholar 

  54. Han T, Gao J, Wang L et al (2020) ASK1 inhibits proliferation and migration of lung cancer cells via inactivating TAZ. Am J Cancer Res 10:2785–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, Xiong Y, Lei QY, Guan KL (2012) The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFβ-TrCP-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem 287:26245–26253. https://doi.org/10.1074/jbc.M112.382036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S (2012) Role of TAZ as mediator of wnt signaling. Cell 151:1443–1456. https://doi.org/10.1016/j.cell.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  57. Boudeau J, Sapkota G, Alessi DR (2003) LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett 546:159–165. https://doi.org/10.1016/s0014-5793(03)00642-2

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen HB, Babcock JT, Wells CD, Quilliam LA (2013) LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap. Oncogene 32:4100–4109. https://doi.org/10.1038/onc.2012.431

    Article  CAS  PubMed  Google Scholar 

  59. Mohseni M, Sun J, Lau A et al (2014) A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 16:108–117. https://doi.org/10.1038/ncb2884

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Ma K, Zhou C et al (2019) LKB1 and YAP phosphorylation play important roles in Celastrol-induced β-catenin degradation in colorectal cancer. Ther Adv Med Oncol 11:1758835919843736. https://doi.org/10.1177/1758835919843736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zagórska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR, Alessi DR (2010) New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal 3:ra25. https://doi.org/10.1126/scisignal.2000616

    Article  CAS  PubMed  Google Scholar 

  62. Lefebvre DL, Rosen CF (2005) Regulation of SNARK activity in response to cellular stresses. Biochim Biophys Acta 1724:71–85. https://doi.org/10.1016/j.bbagen.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  63. Yuan WC, Pepe-Mooney B, Galli GG et al (2018) NUAK2 is a critical YAP target in liver cancer. Nat Commun 9:4834. https://doi.org/10.1038/s41467-018-07394-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gill MK, Christova T, Zhang YY et al (2018) A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat Commun 9:3510. https://doi.org/10.1038/s41467-018-05939-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan R, Kim NG, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A 110:2569–2574. https://doi.org/10.1073/pnas.1216462110

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim NG, Gumbiner BM (2015) Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210:503–515. https://doi.org/10.1083/jcb.201501025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. da Cunha Santos G, Shepherd FA, Tsao MS (2011) EGFR mutations and lung cancer. Annu Rev Pathol 6:49–69. https://doi.org/10.1146/annurev-pathol-011110-130206

    Article  CAS  PubMed  Google Scholar 

  68. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136:331–345. https://doi.org/10.1007/s10549-012-2289-9

    Article  CAS  PubMed  Google Scholar 

  69. Freed DM, Bessman NJ, Kiyatkin A et al (2017) EGFR Ligands differentially stabilize receptor dimers to Specify Signaling Kinetics. Cell 171:683 – 95.e18 https://doi.org/10.1016/j.cell.2017.09.017

  70. Ando T, Arang N, Wang Z et al (2021) EGFR regulates the Hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun Biol 4:1237. https://doi.org/10.1038/s42003-021-02744-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xia H, Dai X, Yu H, Zhou S, Fan Z, Wei G, Tang Q, Gong Q, Bi F (2018) EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death Dis 9:269. https://doi.org/10.1038/s41419-018-0302-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moon H, Park H, Chae MJ, Choi HJ, Kim DY, Ro SW (2022) Activated TAZ induces liver cancer in collaboration with EGFR/HER2 signaling pathways. BMC Cancer 22:423. https://doi.org/10.1186/s12885-022-09516-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panciera T, Citron A, Di Biagio D et al (2020) Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat Mater 19:797–806. https://doi.org/10.1038/s41563-020-0615-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017) Targeting TRK family proteins in cancer. Pharmacol Ther 173:58–66. https://doi.org/10.1016/j.pharmthera.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  75. Yang X, Shen H, Buckley B et al (2019) NTRK1 is a positive regulator of YAP oncogenic function. Oncogene 38:2778–2787. https://doi.org/10.1038/s41388-018-0609-1

    Article  CAS  PubMed  Google Scholar 

  76. Zucchini C, Manara MC, Cristalli C et al (2019) ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity. J Exp Clin Cancer Res 38:503. https://doi.org/10.1186/s13046-019-1506-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Esposito D, Pant I, Shen Y, Qiao RF, Yang X, Bai Y, Jin J, Poulikakos PI, Aaronson SA (2022) ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun 13:703. https://doi.org/10.1038/s41467-022-28319-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK, Kim SW (2019) Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. Faseb j 33:11109–11122. https://doi.org/10.1096/fj.201900325R

    Article  CAS  PubMed  Google Scholar 

  79. Mezquita B, Mezquita P, Pau M, Gasa L, Navarro L, Samitier M, Pons M, Mezquita C (2018) All-trans-retinoic acid activates the pro-invasive Src-YAP-Interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action. Sci Rep 8:7047. https://doi.org/10.1038/s41598-018-25526-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCafferty EH, Dhillon S, Deeks ED (2018) Dasatinib: a review in Pediatric Chronic myeloid leukemia. Paediatr Drugs 20:593–600. https://doi.org/10.1007/s40272-018-0319-8

    Article  PubMed  Google Scholar 

  81. Garmendia I, Pajares MJ, Hermida-Prado F et al (2019) YES1 drives Lung Cancer Growth and Progression and predicts sensitivity to Dasatinib. Am J Respir Crit Care Med 200:888–899. https://doi.org/10.1164/rccm.201807-1292OC

    Article  CAS  PubMed  Google Scholar 

  82. Oku Y, Nishiya N, Shito T, Yamamoto R, Yamamoto Y, Oyama C, Uehara Y (2015) Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio 5:542–549. https://doi.org/10.1016/j.fob.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang H, Sun B, Xu K et al (2021) Pharmaco-transcriptomic correlation analysis reveals novel responsive signatures to HDAC inhibitors and identifies Dasatinib as a synergistic interactor in small-cell lung cancer. EBioMedicine 69:103457. https://doi.org/10.1016/j.ebiom.2021.103457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Slemmons KK, Yeung C, Baumgart JT, Juarez JOM, McCalla A, Helman LJ (2020) Targeting Hippo-Dependent and Hippo-Independent YAP1 Signaling for the treatment of Childhood Rhabdomyosarcoma. Cancer Res 80:3046–3056. https://doi.org/10.1158/0008-5472.Can-19-3853

    Article  CAS  PubMed  Google Scholar 

  85. Rao G, Kim IK, Conforti F, Liu J, Zhang YW, Giaccone G (2018) Dasatinib sensitises KRAS-mutant cancer cells to mitogen-activated protein kinase kinase inhibitor via inhibition of TAZ activity. Eur J Cancer 99:37–48. https://doi.org/10.1016/j.ejca.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  86. Kelley MJ, Jha G, Shoemaker D, Herndon JE 2nd, Gu L, Barry WT, Crawford J, Ready N (2017) Phase II study of Dasatinib in previously treated patients with Advanced Non-Small Cell Lung Cancer. Cancer Invest 35:32–35. https://doi.org/10.1080/07357907.2016.1253710

  87. Besse B, Adjei A, Baas P et al (2014) 2nd ESMO Consensus Conference on Lung Cancer: non-small-cell lung cancer first-line/second and further lines of treatment in advanced disease. Ann Oncol 25:1475-84. https://doi.org/10.1093/annonc/mdu123

  88. Soria JC, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 378:113–125. https://doi.org/10.1056/NEJMoa1713137

    Article  CAS  PubMed  Google Scholar 

  89. Cortot AB, Jänne PA (2014) Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 23:356–366. https://doi.org/10.1183/09059180.00004614

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ghiso E, Migliore C, Ciciriello V et al (2017) YAP-Dependent AXL overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia 19:1012–1021. https://doi.org/10.1016/j.neo.2017.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nilsson MB, Sun H, Robichaux J et al (2020) A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaz4589

  92. Park HS, Lee DH, Kang DH et al (2021) Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma. Cancer Med 10:1405–1417. https://doi.org/10.1002/cam4.3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cunningham R, Hansen CG (2022) The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 136:197–222. https://doi.org/10.1042/cs20201474

    Article  CAS  PubMed  Google Scholar 

  95. Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, Yerabolu JR, Scopton AP, Dar AC (2020) Structural basis for the action of the drug trametinib at KSR-bound MEK. Nature 588:509–514. https://doi.org/10.1038/s41586-020-2760-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kurppa KJ, Liu Y, To C et al (2020) Treatment-Induced Tumor Dormancy through YAP-Mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37:104–22e12. https://doi.org/10.1016/j.ccell.2019.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gold KA, Lee JJ, Harun N et al (2014) A phase I/II study combining erlotinib and dasatinib for non-small cell lung cancer. Oncologist 19:1040–1041. https://doi.org/10.1634/theoncologist.2014-0228

    Article  PubMed  PubMed Central  Google Scholar 

  98. Creelan BC, Gray JE, Tanvetyanon T, Chiappori AA, Yoshida T, Schell MJ, Antonia SJ, Haura EB (2019) Phase 1 trial of dasatinib combined with afatinib for epidermal growth factor receptor- (EGFR-) mutated lung cancer with acquired tyrosine kinase inhibitor (TKI) resistance. Br J Cancer 120:791–796. https://doi.org/10.1038/s41416-019-0428-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim C, Liu SV, Crawford J et al (2021) A phase I trial of Dasatinib and Osimertinib in TKI Naïve patients with Advanced EGFR-Mutant Non-Small-Cell Lung Cancer. Front Oncol 11:728155. https://doi.org/10.3389/fonc.2021.728155

    Article  PubMed  PubMed Central  Google Scholar 

  100. Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR (2023) Olig1/2-expressing intermediate lineage progenitors are predisposed to PTEN/p53-loss-induced gliomagenesis and harbor specific therapeutic vulnerabilities. Cancer Res. https://doi.org/10.1158/0008-5472.Can-22-1577

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Wannian Yang for very helpful discussions and critical reading of this manuscript. We apologize for not being able to include some original work due to space constraints.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81372208 and 81871888).

Author information

Authors and Affiliations

Authors

Contributions

JZ, TW and QL designed and organized the manuscript. JZ wrote the manuscript and prepared the figures. TW reviewed and edited the manuscript. JZ, WT and QL finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiong Lin.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Ethical Approval

The review does not cover human participants and animal studies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wu, T. & Lin, Q. Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 50, 4565–4578 (2023). https://doi.org/10.1007/s11033-023-08329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08329-0

Keywords

Navigation