
ORIGINAL ARTICLE

Molecular Biology Reports (2023) 50:4309–4316
https://doi.org/10.1007/s11033-023-08315-6

Abbreviations
ACE2	� Angiotensin converting enzyme 2.
COVID 19	� Coronavirus disease 2019.
DHPLC	� Denaturing High-performance Liquid 

Chromatography.
HRM	� High Resolution Melting.
MAF	� Minor allele frequency.
PCR	� Polymerase chain reaction.
PD domain	� Peptidase domain.
RBD	� Receptor binding domain.
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus 2.
WHO	� World Health Organization.

	
 Muhammad Usman Rashid
usmanr@skm.org.pk

1	 Department of Basic Sciences Research, Shaukat 
Khanum Memorial Cancer Hospital and Research Centre 
(SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, 
Pakistan

2	 Department of Radiology, SKMCH&RC, Lahore, Pakistan
3	 Department of Pathology, SKMCH&RC, Lahore, Pakistan
4	 Department of Internal Medicine, SKMCH&RC, Lahore, 

Pakistan

Abstract
Background  The outbreak of coronavirus disease 2019 (COVID-19) has emerged as a serious public health emergency of 
global concern. Angiotensin converting enzyme 2 (ACE2) peptidase domain is important for the cellular entry of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Germline variants in ACE2 peptidase domain may influence the 
susceptibility for SARS-CoV-2 infection and disease severity in the host population. ACE2 genetic analysis among Cauca-
sians showed inconclusive results. This is the first Asian study investigating the contribution of ACE2 germline variants to 
SARS-CoV-2 infection in Pakistani population.
Methods  In total, 442 individuals, including SARS-CoV-2-positive (n = 225) and SARS-CoV-2-negative (n = 217) were 
screened for germline variants in ACE2 peptidase domain (exons 2, 3, 9, and 10) using high resolution melting and denatur-
ing high-performance liquid chromatography analyses followed by DNA sequencing of variant fragments. The identified 
variant was analyzed by in silico tools for potential effect on ACE2 protein.
Results  A missense variant, p.Lys26Arg, was identified in one SARS-CoV-2-positive (1/225; 0.4%) and three SARS-CoV-
2-negative (3/217; 1.4%) individuals. No significant difference in the minor allele frequency of this variant was found among 
SARS-CoV-2-positive and SARS-CoV-2-negative individuals (1/313; 0.3% versus 3/328; 0.9%; P = 0.624), respectively. 
The SARS-CoV-2-positive patient carrying p.Lys26Arg showed mild COVID-19 disease symptoms. It was predicted as 
benign variant by in silico tool. No variant was detected in ACE2 residues important for binding of SARS-CoV-2 spike 
protein.
Conclusion  The p.Lys26Arg variant may have no association with SARS-CoV-2 susceptibility in Pakistani population. 
Whole ACE2 gene screening is warranted to clarify its role in SARS-CoV-2 infection.
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Introduction

The outbreak of coronavirus disease 2019 (COVID-19) 
has emerged as a serious pandemic and accounted for 
617.60 million cases and 6.53 million deaths worldwide, by 
October 8, 2022 (https://covid19.who.int/). A novel coro-
navirus-2019 (2019-nCoV), also named as severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) causes 
this disease [1]. SARS-CoV-2 infection primarily depends 
on the interaction of its spike protein with the host recep-
tor, angiotensin converting enzyme 2 (ACE2). ACE2 is the 
cell membrane receptor of SARS-CoV-2 that mediates viral 
entry into cells [2–4].

The human ACE2 gene (NM_001371415.1) is on the 
short arm of X chromosome (Xp22.2). It has 19 exons that 
encodes a protein of 805 amino acid residues and has two 
functional domains: N-terminal peptidase domain (residues 
19 to 615) and C-terminal collectrin-like domain (residues 
616 to 768) [5]. ACE2 is expressed in epithelial cells of the 
lung, intestine, kidney, blood vessels [6], and on the oral 
mucosa [7]. A recent structural analysis showed several key 
residues (K417, Y453, Q474, F486, Q498, T500, and N501) 
of the receptor binding motif in the SARS-CoV-2 spike pro-
tein receptor-binding domain (RBD) that interact with the 
ACE2 peptidase domain (residues Q24, D30, H34, Y41, 
Q42, M82, K353, and R357) [2, 5]. Another study revealed 
17 residues of SARS-CoV-2 RBD contact 20 residues of 
the ACE2 (residues Q24, T27, F28, D30, K31, H34, E35, 
E37, D38, Y41, Q42, L79, M82, Y83, N330, K353, G354, 
D355, R357, and R393) that are encoded by ACE2 exon 
2, 3, 9, and 10 [8]. Taken together, these studies showed 
that certain amino acid residues in the ACE2 peptidase 
domain are important for the recognition and cellular entry 
of SARS-CoV-2.

ACE2 receptor genetic variability may affect the virion 
entry into the host cell and thus the disease severity [9]. Cao 
and colleagues investigated the ACE2 in public databases 
and identified 32 coding variants that affect ACE2 protein 
[10]. The minor allele frequencies (MAF) of ACE2 variants 
differ in different populations, suggesting a variable influ-
ence [10]. Subsequently, several variants are reported to 
perturb the ACE2 stabilization, and interfere with interac-
tion with viral spike protein [11]. The epidemiological data 
reported a disproportional spread of COVID-19 across vari-
ous populations. It is transmissible in community settings. 
Various local clusters of COVID-19 are also reported [12]. 
However, in such clusters, not all individuals in close contact 
with confirmed COVID-19 patients acquired this infection 
[12]. This differential pattern of infection suggests distinct 
ACE2 genetic variants might influence SARS-CoV-2 sus-
ceptibility in different populations [13, 14]. These studies 
warrant ACE2 variants screening in original populations 

to predict the susceptibility and severity to COVID-19. 
Screening of ACE2 variants in Caucasian populations have 
reported controversial results regarding SARS-CoV-2 infec-
tion and COVID-19 disease outcomes [11, 15–20]. Since 
ACE2 genetic variability is unknown in COVID-19 patients 
in Asian populations, the present study aimed to investigate 
germline variants in peptidase domain (ACE2 exons 2, 3, 9, 
and 10; amino acids 1 to 115 and 301 to 433) of ACE2 in 
COVID-19 patients from Pakistan.

Materials and methods

Study subjects

This study includes 442 Pakistani individuals (≥ 18 years) 
who were tested for SARS-CoV-2 RNA using reverse 
transcription polymerase chain reaction (RT-PCR) at the 
Shaukat Khanum Memorial Cancer Hospital and Research 
Centre (SKM CH&RC), Lahore between June 07, 2020, 
and June 28, 2020. Of these, 225 SARS-CoV-2-positive 
and 217 SARS-CoV-2-negative individuals were retro-
spectively identified. The blood samples from these partici-
pants were collected simultaneously with the nasal swabs 
as per the National Institute of Health, Islamabad guide-
lines. Demographics and clinical data of all study partici-
pants were collected from the electronic medical records 
of SKM CH&RC. The Institutional Review Board of the 
SKM CH&RC approved the study (approval number IRB-
20-15-A1) and granted the waiver of the written informed 
consent from study participants.

Molecular analyses

Genomic DNA was extracted from 3 ml to 5 ml of whole 
blood, as previously described [21]. Comprehensive screen-
ing for ACE2 (NM_001371415.1) exons 2, 3, 9, and 10 
(coding for peptidase domain) was performed by High-Res-
olution Melting (HRM) Analysis using LightCycler 480-II 
(Roche Diagnostics, Indianapolis, IN, USA) or Denatur-
ing High Performance Liquid Chromatography (DHPLC) 
analysis using Wave® DNA Fragment Analysis System 
(Transgenomic Inc., Omaha, NE, USA). Since the ACE2 
is on X chromosome, hemizygous DNA of unknown male 
samples were mixed 1:1 with wildtype male DNA prior to 
the amplification, as previously described [22]. The prim-
ers were designed using Primer3 software freely available 
online (https://www.bioinformatics.nl/cgi-bin/primer3plus/
primer3plus). Primer sequences, the setup of polymerase 
chain reaction (PCR), thermal cycling conditions, and the 
DHPLC running conditions are available upon request. 
Each sample revealing variants detected by either HRM or 
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DHPLC analysis was directly sequenced using BigDye Ter-
minator v.3.1 Cycle Sequencing Kit (Applied Biosystems, 
California, USA). The sequencing reactions were purified 
with BigDye XTerminator Purification Kit (Applied Bio-
systems, California, USA) and sequenced on an automated 
3500 Genetic Analyzer (Applied Biosystems, California, 
USA) according to the manufacturer’s instructions. Bidirec-
tional genomic DNA sequencing was performed to confirm 
the presence of a variant.

In silico analysis

A missense variant was analyzed for the potential effect on 
protein function using the default settings of web tool Var-
Cards that annotates the coding variants using more than 60 
genomic data sources, including 23 in silico algorithms, to 
comprehensively obtain predictive score and pathogenicity 
consequences of missense variants [23].

Statistical analysis

The quantitative variables (ages and vital signs) of the study 
participants were presented as medians/means along with 
ranges. The categorical variables (gender, travel and contact 
history, symptoms, comorbidities, radiological findings, dis-
ease severity, assessment outcomes, and MAF of c.77 A > G 
variant) were presented as frequencies and corresponding 
percentages. The quantitative and categorical variables data 
were analyzed using the independent t-test and Fisher’s 
exact test, respectively. All statistical test were two-sided, 
and the groups were considered as statistically different at 
P-value < 0.05. All statistical analyses were performed using 
IBM SPSS Statistics 20.0 software.

Results

In total, 442 individuals, comprising 225 SARS-CoV-
2-positive and 217 SARS-CoV-2-negative, were included 
in this study. The median age at enrollment was 47.9 years 
(range 18.2–77.5) for male individuals (n = 243) and 47.0 
years (range 18.0–76.0) for female individuals (n = 199). 
Compared to SARS-CoV-2-negative individuals, SARS-
CoV-2-positive individuals were predominantly male 
(P = 0.013), reported a contact history with confirmed or 
suspected COVID-19 patients (P = 0.002), presented with 
COVID-19 disease symptoms (< 0.0001), had a high body 
temperature (P = 0.002), showed mild to severe COVID-19 
disease (P < 0.0001), and had a longer duration of hospital 
stay (P = 0.013). The demographic and clinical characteris-
tics of the study participants are presented in Table 1.

ACE2 exons 2, 3, 9, and 10 were screened for genetic 
variants using HRM and DHPLC, followed by DNA 
sequencing. No variants were detected in exon 3, 9, and 10 
in SARS-CoV-2-positive and SARS-CoV-2-negative indi-
viduals. Only one missense variant in exon 2; c.77 A > G 
(p.Lys26Arg) (rs4646116) was identified in the cohort. 
Among females, it was identified as a heterozygote in one 
SARS-CoV-2-positive individual (1/88; 1.1%) and two 
SARS-CoV-2-negative individuals (2/111; 1.8%). Among 
males, it was identified as a hemizygous in one SARS-CoV-
2-negative individual (1/106; 0.9%) but not among SARS-
CoV-2-positive individuals (n = 137; 0%). There was no 
significant difference (P = 0.624) in the MAF of c.77 A > G 
among SARS-CoV-2-positive and SARS-CoV-2-negative 
(1/313; 0.3% vs. 3/328; 0.9%) individuals, respectively 
(Table 2). There was also no difference (P = 1.0) in the MAF 
of c.77  A > G between SARS-CoV-2-positive female and 
male individuals (1/176; 0.6% vs. 0/137; 0%), respectively 
(Table 2). It has been reported as a rare variant among South 
Asians (MAF = 0.13%; 25/19,044 (gnomAD database: 
https://gnomad.broadinstitute.org/variant/X-15618958-T-
C?dataset=gnomad_r2_1 date last accessed: October 10, 
2022). It was predicted as benign by all the 21 protein func-
tion prediction algorithms integrated in VarCards with a 
damaging score of 0. It has also been reported as a likely 
benign variant in the ClinVar database (https://www.ncbi.
nlm.nih.gov/clinvar/variation/780203/?oq=rs4646116&m=
NM_001371415.1(ACE2):c.77  A%3EG%20(p.Lys26Arg; 
date last accessed: October 10, 2022). Based on these find-
ings, p.Lys26Arg was classified as likely benign.

The three SARS-CoV-2-negative individuals, including 
two females and one male harboring the p.Lys26Arg variant, 
remained asymptomatic for COVID-19 disease. The soli-
tary SARS-CoV-2-positive female carrying the p.Lys26Arg 
variant was presented with mild COVID-19 disease symp-
toms of fever, cough, and sore throat.

Discussion

The clinical presentation of COVID-19 disease is highly 
variable, ranging from asymptomatic infection to severe 
form of pneumonia and respiratory or multi-organ failure. 
This is intriguing that genetic variability may influence the 
susceptibility to SARS-CoV-2 infection and its severity. 
The relevance of germline ACE2 variants as a screening 
target for the risk assessment of SARS-CoV-2 infection is 
of interest. Most of such studies have investigated the asso-
ciation between ACE2 variants and SARS-CoV-2 infec-
tion or COVID-19 disease severity using bioinformatics 
approaches while utilizing the frequencies of ACE2 genetic 
variants from public databases [10, 14, 24–28]. Only two 
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Characteristics SARS-Cov-2-positive (N = 225) SARS-Cov-2-negative (N = 217) P-value
Median age, years (range) 47.9 (18.2–77.5) 47.0 (18.0–76.0) 0.900a

Gender, n (%)
Male 137 (60.9) 106 (48.8) 0.013b

Female 88 (39.1) 111 (51.2)
Travel history, n (%)
Yes 12 (5.3) 15 (6.9) 0.553b

No 201 (89.3) 190 (87.6)
Contact history, n (%)c

Yes 144 (64.0) 104 (47.9) 0.002b

No 78 (34.7) 103 (47.5)
Clinical characteristics
Symptoms, n (%)
Cough 113 (50.2) 50 (23.0) < 0.0001b,d

Myalgia 102 (45.3) 54 (24.9)
Fever 101 (44.9) 52 (24.0)
Sore throat 94 (41.8) 49 (22.6)
Muscle aches 85 (37.8) 48 (22.1)
Shortness of breath 26 (11.6) 11 (5.1)
Chills 23 (10.2) 10 (4.6)
Headache 17 (7.6) 13 (6.0)
Diarrhea 5 (2.2) 4 (1.8)
Vomiting 2 (0.9) 1 (0.5)
Abdominal pain 2 (0.9) 9 (4.1)
Asymptomatic 61 (27.1) 120 (55.3)
Comorbidities, n (%)
None 122 (54.2) 83 (38.2) 0.0003b,e

Cancer 84 (37.3) 112 (51.6)
Diabetes 13 (5.8) 17 (7.8)
Hypertension 13 (5.8) 19 (8.8)
Immunocompromised 5 (2.2) 12 (5.5)
Pneumonia 5 (2.2) 1 (0.5)
Chronic liver disease 4 (1.8) 2 (0.9)
Cardiac disease 4 (1.8) 6 (2.8)
Respiratory illness 3 (1.3) 3 (1.4)
Chronic pulmonary disease 1 (0.4) 1 (0.5)
Acute respiratory syndrome 1 (0.4) 1 (0.5)
Chronic kidney disease 0 3 (1.4)
Vital signs, mean (range)
Temperature 36.7 (36–39) 36.4 (35–40) 0.002a

Heart rate 110 (37–183) 115 (70–160) 0.979a

Respiratory rate 19 (12–26) 23.5 (12–35) 0.599a

Systolic BP, mmHg 135 (90–180) 124.5 (76–173) 0.386a

Diastolic BP, mmHg 87 (54–120) 82.5 (50–115) 0.063a

Oxygen saturation 82 (65–99) 76.5 (53–100) 0.241a

Radiological findings, n (%)
Normal 23 (10.2) 39 (18.0) 0.084b,f

Patchy shadowing 15 (6.7) 11 (5.1)
Consolidation 2 (0.9) 2 (0.9)
Reticulonodular infiltrates 1 (0.4) 1 (0.5)
Disease severity, n (%)
Mild 141 (62.7) 102 (47.0) < 0.0001b,g

Moderate 27 (12.0) 17 (7.8)
Severe 6 (2.7) 3 (1.4)

Table 1  Demographics and clinical characteristics of the study participants
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spike protein. This is consistent with previous reports [11], 
16, 18, 20, 29, 30]. Variants in most of these residues are 
absent or present with a low frequency (MAF < 0.0006) in 
the general population (gnomAD database). These findings 
highlight that coding variants in the ACE2 peptidase domain 
are very rare and may not confer an increased susceptibility 
or resistance to SARS-CoV-2 infection.

In the present study, only one ACE2 missense variant 
c.77 A > G (p.Lys26Arg) was identified with a frequency of 
0.44% (1/225) in SARS-CoV-2-positive and 1.38% (3/217) 
in SARS-CoV-2-negative Pakistani individuals. The allele 
frequency of c.77  A > G among SARS-CoV-2-positive 
(MAF = 0.3%) and SARS-CoV-2-negative (MAF = 0.9%) 
individuals was not significantly different (P = 0.624). In 
consistent with our results, this variant has been reported 
in a German population with a frequency of 0.34% (1/297) 
in SARS-CoV-2-positive and 1.18% (3/253) in SARS-CoV-
2-negative individuals [17]. Recently, a high prevalence of 
this variant (10/164; 6.1%) was reported of in SARS-CoV-
2-positive patients from Serbia [15]. However, it was not 
detected in SARS-CoV-2-positive patients from Italy [11, 
18], Spain [29], and Russia [20]. This variant has been 
reported in gnomAD with MAF of 0.388% and 0.131% in 
the general population and South Asians, respectively. In 
our study the solitary SARS-CoV-2-positive patient carry-
ing p.Lys26Arg variant showed mild COVID-19 disease 
symptoms in agreement with previous reports from Serbia 
[30] and Germany [17]. Collectively, these findings suggest 
that the p.Lys26Arg variant may neither be associated with 
increased SARS-CoV-2 infection nor depict a protective 
effect.

In the current study, p.Lys26Arg was predicted as a 
benign variant using VarCards in silico analysis tool. 

European studies from Germany [17] and Spain [29] inves-
tigated the contribution of ACE2 variants to SARS-CoV-2 
susceptibility among SARS-CoV-2-positive and SARS-
CoV-2-negative individuals. To our knowledge, this is the 
first Asian study to screen ACE2 germline variants in the 
peptidase domain in the Pakistani population.

No germline variant was detected in any of the 20 ACE2 
residues, previously inferred for binding of SARS-CoV-2 

Table 2  Genotype and allele frequency of ACE2 c.77 A > G variant in 
study participants
Gender Geno-

types
and 
alleles

SARS-CoV-
2-positive 
(N = 225)
n (%)

SARS-CoV-
2-negative 
(N = 217)
n (%)

P-valuea

Females AA 87 (98.9) 109 (98.2) 1.0
AG 1 (1.1) 2 (1.8)
GG 0 0

Females A 
allele

175 (99.4) 220 (99.1) 1.0b,c

G 
allele

1 (0.6) 2 (0.9)

Malesd A 
allele

137 (100) 105 (99.1) 0.436

G 
allele

0 1 (0.9)

Both A 
allele

312 (99.7) 325 (99.1) 0.624

G 
allele

1 (0.3) 3 (0.9)

aFisher’s exact test
bSARS-CoV-2-positive females versus SARS-CoV-2-negative 
females
cSARS-CoV-2-positive females versus SARS-CoV-2-positive males
dGiven the location of ACE2 (NM_001371415.1) on X-chromosome, 
only the allele frequencies are given for the males

Characteristics SARS-Cov-2-positive (N = 225) SARS-Cov-2-negative (N = 217) P-value
Asymptomatic 47 (20.9) 85 (39.1)
Assessment outcomes, n (%)
Referred to beds 147 (65.3) 85 (39.1) 0.013b,h

Discharged 48 (21.3) 55 (25.3)
Referred to EAR 7 (3.1) 13 (6.0)
Ventilated 3 (1.3) 1 (0.5)
BP, blood pressure; EAR, emergency assessment room
aIndependent t-test
bFisher’s exact test
cContact with COVID-19 patients as care-giver, health worker, or being patient in healthcare facility
dAsymptomatic versus all symptoms
eNone versus all comorbidities
fNormal versus others
gAsymptomatic versus disease
hDischarged versus others

Table 1  (continued) 
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using HRM and DHPLC assay with variant detection sensi-
tivity < 100%, that may have missed some of the ACE2 vari-
ants. Functional variants in other coding region of ACE2 
may influence COVID-19 disease occurrence and severity 
in the Pakistani population.

Conclusion

In summary, this is the first study investigating the germline 
ACE2 variants in SARS-CoV-2-positive and SARS-CoV-
2-negative individuals from Pakistan. No variants were 
detected in any of the 20 ACE2 residues, previously reported 
for binding of SARS-CoV-2 spike protein. The only identi-
fied missense variant, (p.Lys26Arg) may not be associated 
with increased susceptibility or protective effect for SARS-
CoV-2 infection in the Pakistani population. Screening of 
the complete ACE2 gene is warranted to clarify its role in 
SARS-CoV-2 infection in the Pakistani population.
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Consistently, this variant has been previously classified 
as a benign variant using various in silico analysis tools 
including SIFT, MUTTASTER, PROVEAN, PolyPhen-2, 
CADD, and REVEL [24, 31, 32]. Other studies, based on 
structural modeling and molecular docking simulations 
suggested that the p.Lys26Arg increased binding affinity 
of SARS-CoV-2 spike protein to the ACE2 receptor and 
showed increased SARS-CoV-2 infection as compared to 
the wildtype ACE2 [9, 14, 24, 26, 33, 34]. However, this 
is contradictory to the p.Lys26Arg frequencies in public 
databases or previous studies on SARS-CoV-2-negative and 
SARS-CoV-2-positive individuals [17, 29]. Other computa-
tional chemistry reports showed that p.Lys26Arg decreased 
the SARS-CoV-2/ACE2 electrostatic attraction and binding 
affinity to the host receptor [25, 27, 28]. Further, functional 
assays and screening of the p.Lys26Arg variant in larger 
populations of diverse ethnicities and geographical origin 
may address this discrepancy.

We restricted our analysis to the ACE2 peptidase domain 
variants screening, which have been established as RBD 
contact residues for SARS-CoV-2. Previous studies inves-
tigated the few ACE2 variants [17, 19, 35–37] or screened 
the complete gene [11, 20, 29, 38–40] and reported conflict-
ing results. No association was found in Spanish [29, 39], 
Turkish [41], Russian [20], and British [40] populations. In 
contrast, different ACE2 variants were identified in Saudi 
[36], German [17], Italian [35], Spanish [19], and Polish 
[37] populations, that were linked with genetic susceptibil-
ity to SARS-CoV-2 or severity of the COVID-19 disease. 
However, most of these variants were in the noncoding 
region of the ACE2. Previously, it has been shown that non-
coding variants may perturb the ACE2 gene activity [18]. 
These reports suggest that ACE2 variants, particularly in 
noncoding regions, may have an impact on infection and 
disease severity of COVID-19 among diverse populations. 
Complete ACE2 gene screening of in larger populations 
would be helpful for the clear understanding of its genetic 
association with SARS-CoV-2 infection and the course of 
COVID-19 disease.

Strength of the current study includes the size of study 
population that was well calculated through Online Sample 
Size Estimator (http://osse.bii.a-star.edu.sg/calculation1.
php), complying by scientific standards for sample size. 
Another strength is that all study participants were tested by 
RT-PCR and stratified as SARS-CoV-2-positive or SARS-
CoV-2-negative individuals. Whereas, previous studies 
reported the prevalence of ACE2 variants in SARS-CoV-
2-positive individuals in comparison with healthy controls 
who were not tested for SARS-CoV-2 [11, 18, 20, 35, 36, 
38, 39]. Limitation of this study includes the screening 
of only partial coding sequence (exons 2, 3, 9, and 10) of 
ACE2 peptidase domain. Variant screening was performed 
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