Skip to main content

Advertisement

Log in

Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast Cancer: possible clinical application

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aim: Folate receptor expression increase up to 30% in breast cancer cells and could be used as a possible ligand to couple to folate-functionalized nanoparticles. Metformin (Met) is an anti-hyperglycemic agent whose anti-cancer properties have been formerly reported. Consequently, in the current study, we aimed to synthesize and characterize folate-functionalized PLGA-PEG NPs loaded with Met and evaluate the anti-cancer effect against the MDA-MB-231 human breast cancer cell line. Methods: FA-PLGA-PEG NPs were synthesized by employing the W1/O/W2 technique and their physicochemical features were evaluated by FE-SEM, TEM, FTIR, and DLS methods. The cytotoxic effects of free and Nano-encapsulated drugs were analyzed by the MTT technique. Furthermore, RT-PCR technique was employed to assess the expression levels of apoptotic and anti-apoptotic genes. Result: MTT result indicated Met-loaded FA-PLGA-PEG NPs exhibited cytotoxic effects in a dose-dependently manner and had more cytotoxic effects relative to other groups. The remarkable down-regulation (hTERT and Bcl-2) and up-regulation (Caspase7, Caspase3, Bax, and p53) gene expression were shown in treated MDA-MB-231 cells with Met-loaded FA-PLGA-PEG NPs. Conclusion: Folate-Functionalized PLGA-PEG Nanoparticles are suggested as an appropriate approach to elevate the anticancer properties of Met for improving the treatment effectiveness of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Khoshravan Azar L, Dadashpour M, Hashemi M, Zarghami N (2022) Design and development of Nanostructured Co delivery of artemisinin and Chrysin for Targeting hTERT Gene expression in breast Cancer cell line: possible clinical application in Cancer Treatment. Asian Pac J Cancer Prev 23(3):919–927

    Article  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  3. Soerjomataram I, Bray F (2021) Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat reviews Clin Oncol 18(10):663–672

    Article  Google Scholar 

  4. Salmani Javan E, Lotfi F, Jafari-Gharabaghlou D, Mousazadeh H, Dadashpour M, Zarghami N (2022) Development of a magnetic nanostructure for co-delivery of metformin and silibinin on growth of lung cancer cells: possible action through leptin gene and its receptor regulation. Asian Pac J Cancer Prev 23(2):519–527

    Article  PubMed  Google Scholar 

  5. Mogheri F, Jokar E, Afshin R, Akbari AA, Dadashpour M, Firouzi-amandi A et al (2021) Co-delivery of metformin and silibinin in dual-drug loaded nanoparticles synergistically improves chemotherapy in human non-small cell lung cancer A549 cells. J Drug Deliv Sci Technol 66:102752

    Article  CAS  Google Scholar 

  6. Samadzadeh S, Mousazadeh H, Ghareghomi S, Dadashpour M, Babazadeh M, Zarghami N (2021) In vitro anticancer efficacy of metformin-loaded PLGA nanofibers towards the post-surgical therapy of lung cancer. J Drug Deliv Sci Technol 61:102318

    Article  CAS  Google Scholar 

  7. Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM (2020) Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 34:101517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE et al (2009) Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8(6):909–915

    Article  CAS  PubMed  Google Scholar 

  9. Obukhov AG, Stevens BR, Prasad R, Calzi SL, Boulton ME, Raizada MK et al (2020) SARS-CoV-2 infections and ACE2: clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes 69(9):1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jafari-Gharabaghlou D, Pilehvar-Soltanahmadi Y, Dadashpour M, Mota A, Vafajouy-Jamshidi S, Faramarzi L et al (2018) Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iran J basic Med Sci 21(11):1167

    PubMed  PubMed Central  Google Scholar 

  11. Khodadadi M, Jafari-Gharabaghlou D, Zarghami N (2022) An update on mode of action of metformin in modulation of meta-inflammation and inflammaging.Pharmacological Reports. :1–13

  12. Tong CWS, Wu M, Cho WCS, To KKW (2018) Recent advances in the treatment of breast Cancer.Frontiers in Oncology. ; 8(227)

  13. Morales DR, Morris AD (2015) Metformin in Cancer Treatment and Prevention. Annu Rev Med 66(1):17–29

    Article  CAS  PubMed  Google Scholar 

  14. Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N (2021) Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells. J Drug Deliv Sci Technol 61:102107

    Article  CAS  Google Scholar 

  15. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N (2018) Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P‐gp‐overexpressing MCF‐7 cells. Chem Biol Drug Des 91(1):269–276

    Article  CAS  PubMed  Google Scholar 

  16. Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K (2022) Increased pro-apoptotic and anti-proliferative activities of Simvastatin Encapsulated PCL-PEG nanoparticles on human breast Cancer Adenocarcinoma cells.Journal of Cluster Science. :1–12

  17. Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A (2022) Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance.Journal of Drug Delivery Science and Technology. :103231

  18. Pourgholi A, Dadashpour M, Mousapour A, Amandi AF, Zarghami N (2021) Anticancer potential of silibinin loaded polymeric nanoparticles against breast Cancer cells: insight into the apoptotic genes targets. Asian Pac J Cancer Prevention: APJCP 22(8):2587

    Article  CAS  Google Scholar 

  19. Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y et al (2018) Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci 5(10):1800510

    Article  Google Scholar 

  20. Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X et al (2021) Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv Sci 8(1):2002589

    Article  CAS  Google Scholar 

  21. Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, Sheoran S, Zarghami N (2017) An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother 90:85–92

    Article  CAS  PubMed  Google Scholar 

  22. Dadashpour M, Pilehvar-Soltanahmadi Y, Mohammadi SA, Zarghami N, Pourhassan-Moghaddam M, Alizadeh E et al (2018) Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells. Artif cells Nanomed Biotechnol 46(4):819–830

    Article  CAS  PubMed  Google Scholar 

  23. D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13(9):1257–1275

    Article  PubMed  Google Scholar 

  24. Dickens E, Ahmed S (2018) Principles of cancer treatment by chemotherapy. Surg (Oxford) 36(3):134–138

    Article  Google Scholar 

  25. Adlravan E, Nejati K, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M (2021) Potential activity of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol 61:102256

    Article  CAS  Google Scholar 

  26. Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13(3):256–262

    Article  CAS  PubMed  Google Scholar 

  27. Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N (2021) New insights toward nanostructured drug delivery of plant-derived polyphenol compounds: cancer treatment and gene expression profiles. Curr Cancer Drug Targets 21(8):689–701

    Article  CAS  PubMed  Google Scholar 

  28. Akbarian A, Ebtekar M, Pakravan N, Hassan ZM (2020) Folate receptor alpha targeted delivery of artemether to breast cancer cells with folate-decorated human serum albumin nanoparticles. Int J Biol Macromol 152:90–101

    Article  CAS  PubMed  Google Scholar 

  29. Necela BM, Crozier JA, Andorfer CA, Lewis-Tuffin L, Kachergus JM, Geiger XJ et al (2015) Folate receptor-α (FOLR1) expression and function in triple negative tumors. PLoS ONE 10(3):e0122209

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ghareghomi S, Ahmadian S, Zarghami N, Kahroba H (2021) Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 181:12–24

    Article  CAS  PubMed  Google Scholar 

  31. Maasomi ZJ, Soltanahmadi YP, Dadashpour M, Alipour S, Abolhasani S, Zarghami N (2017) Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pac J Cancer Prevention: APJCP 18(5):1283

    Google Scholar 

  32. Eatemadi A, Daraee H, Aiyelabegan HT, Negahdari B, Rajeian B, Zarghami N (2016) Synthesis and characterization of chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Biomed Pharmacother 84:1915–1922

    Article  CAS  PubMed  Google Scholar 

  33. Ghasemali S, Nejati-Koshki K, Akbarzadeh A, Tafsiri E, Zarghami N, Rahmati-Yamchi M et al (2013) Inhibitory effects of β-cyclodextrin-helenalin complexes on H-TERT gene expression in the T47D breast cancer cell line-results of real time quantitative PCR. Asian Pac J Cancer Prev 14(11):6949–6953

    Article  PubMed  Google Scholar 

  34. Zarghami Khameneh A, Jafari A, Nikookheslat S, Karimi P (2020) Effect of chronic caffeine administration on expression ratio of bax and Bcl-2 proteins in myocardial tissue of male wistar rats with type 2 diabetes. Complement Med J 10(3):206–217

    Article  Google Scholar 

  35. Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y et al (2021) Caspase-independent regulated necrosis pathways as potential targets in Cancer Management. Front Oncol 10:3422

    Article  Google Scholar 

  36. Mohammadian F, Abhari A, Dariushnejad H, Zarghami F, Nikanfar A, Pilehvar-Soltanahmadi Y et al (2015) Upregulation of Mir-34a in AGS gastric Cancer cells by a PLGA-PEG-PLGA chrysin Nano Formulation. Asian Pac J Cancer Prev 16(18):8259–8263

    Article  PubMed  Google Scholar 

  37. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    Article  CAS  PubMed  Google Scholar 

  38. Gholizadeh S, Kamps J, Hennink WE, Kok RJ (2018) PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. Int J Pharm 548(2):747–758

    Article  CAS  PubMed  Google Scholar 

  39. Babos G, Biro E, Meiczinger M, Feczko T (2018) Dual drug delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles.Polymers (Basel). ; 10(8)

  40. Mohammed F, Rashid–Doubell F, Taha S, Cassidy S, Fredericks S (2020) Effects of curcumin complexes on MDA–MB–231 breast cancer cell proliferation. Int J Oncol 57(2):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I (2018) Metformin as an anticancer agent. Trends Pharmacol Sci 39(10):867–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen YC, Li H, Wang J (2020) Mechanisms of metformin inhibiting cancer invasion and migration. Am J Translational Res 12(9):4885

    CAS  Google Scholar 

  43. Camacho L, Dasgupta A, Jiralerspong S (2015) Metformin in breast cancer-an evolving mystery. BioMed Central, pp 1–4

  44. Javidfar S, Pilehvar-Soltanahmadi Y, Farajzadeh R, Lotfi-Attari J, Shafiei-Irannejad V, Hashemi M et al (2018) The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells. J Drug Deliv Sci Technol 43:19–26

    Article  CAS  Google Scholar 

  45. Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist updates: reviews commentaries Antimicrob anticancer Chemother 17(4–6):89–95

    Article  Google Scholar 

  46. Ghareghomi S, Ahmadian S, Zarghami N, Hemmati S (2021) hTERT-molecular targeted therapy of ovarian cancer cells via folate-functionalized PLGA nanoparticles co-loaded with MNPs/siRNA/wortmannin. Life Sci 277:119621

    Article  CAS  PubMed  Google Scholar 

  47. Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y, Zarghami N (2016) Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line.Iranian journal of cancer prevention. ; 9(4)

  48. Tavakoli F, Jahanban-Esfahlan R, Seidi K, Jabbari M, Behzadi R, Pilehvar-Soltanahmadi Y et al (2018) Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif cells Nanomed Biotechnol 46(sup2):75–86

    Article  CAS  PubMed  Google Scholar 

  49. Suo A, Qian J, Xu M, Xu W, Zhang Y, Yao Y (2017) Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. Mater Sci Engineering: C 76:659–672

    Article  CAS  Google Scholar 

  50. Basu A, Upadhyay P, Ghosh A, Bose A, Gupta P, Chattopadhyay S et al (2021) Hyaluronic acid engrafted metformin loaded graphene oxide nanoparticle as CD44 targeted anti-cancer therapy for triple negative breast cancer. Biochimica et Biophysica Acta (BBA) -. Gen Subj 1865(3):129841

    Article  CAS  Google Scholar 

  51. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H et al (2018) Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif cells Nanomed Biotechnol 46(5):917–925

    Article  CAS  PubMed  Google Scholar 

  52. Bhushan B, Gopinath P (2015) Tumor-targeted folate-decorated albumin-stabilised silver nanoparticles induce apoptosis at low concentration in human breast cancer cells. RSC Adv 5(105):86242–86253

    Article  CAS  Google Scholar 

  53. Borghetti G, Yamaguchi AA, Aikawa J, Yamazaki RK, de Brito GAP, Fernandes LC (2015) Fish oil administration mediates apoptosis of Walker 256 tumor cells by modulation of p53, Bcl-2, caspase-7 and caspase-3 protein expression. Lipids Health Dis 14(1):1–5

    Article  Google Scholar 

  54. Gu X, Wang Z, Gao J, Han D, Zhang L, Chen P et al (2019) SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol In Vitro 57:28–38

    Article  CAS  PubMed  Google Scholar 

  55. Hannen R, Bartsch JW (2018) Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett 592(12):2023–2031

    Article  CAS  PubMed  Google Scholar 

  56. Alagheband Y, Jafari-gharabaghlou D, Imani M, Mousazadeh H, Dadashpour M, Firouzi-Amandi A et al (2022) Design and fabrication of a dual-drug loaded nano-platform for synergistic anticancer and cytotoxicity effects on the expression of leptin in lung cancer treatment. J Drug Deliv Sci Technol 73:103389

    Article  CAS  Google Scholar 

  57. Hassani N, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N (2022) The Effect of Dual Bioactive Compounds Artemisinin and Metformin Co-loaded in PLGA-PEG Nano-particles on breast Cancer cell lines: potential apoptotic and anti-proliferative action.Applied Biochemistry and Biotechnology. :1–16

  58. Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Ali MRA (2018) Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer (Dove Med Press) 10:207–217

    CAS  PubMed  Google Scholar 

  59. Rasouli S, Montazeri M, Mashayekhi S, Sadeghi-Soureh S, Dadashpour M, Mousazadeh H et al (2020) Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: possible application in prevention of breast cancer local recurrence. J Drug Deliv Sci Technol 55:101402

    Article  CAS  Google Scholar 

  60. Stur E, Thomas S, Rezzoug F, Miller D, Abstract (2017) Down-regulation of c-MYC and hTERT gene expression in triple negative breast cancer. Cancer Res 1520(13 Supplement):1520

    Article  Google Scholar 

Download references

Acknowledgements

The research protocol was approved & Supported by Student Research Committee, Tabriz University of Medical Sciences (grant number: 65281).

Funding

The authors declare that no funds were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Davoud Jafari-Gharabaghlou: Methodology, Investigation, Data curation, Original draft preparation.

Corresponding author

Correspondence to Nosratollah Zarghami.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Mehdi Dadashpour

Methodology, Reviewing and Editing.

Omid Joodi khanghah

Methodology, Investigation, Original draft preparation.

Elnaz Salmani-Javan

Methodology, Investigation.

Nosratollah Zarghami

Supervision, Conceptualization, Writing- Reviewing and Editing.

Competing Interests

No potential competing interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari-Gharabaghlou, D., Dadashpour, M., khanghah, O.J. et al. Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast Cancer: possible clinical application. Mol Biol Rep 50, 3023–3033 (2023). https://doi.org/10.1007/s11033-022-08171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08171-w

Keywords

Navigation