Skip to main content

Advertisement

Log in

Osteoporosis and cardiovascular disease: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Osteoporosis and cardiovascular disease are common diseases encountered globally, especially with advancing age. Osteoporosis occurs when there is a loss of bone mineral density leading to increased predisposition to fragility fracture. The conventional perception of osteoporosis is purely as a metabolic bone disease. However, there are mounting reports from recent studies that osteoporosis could be seen as a risk factor for cardiovascular disease just like other traditional risk factors such as hypertension, dyslipidaemia and diabetes. This is a paradigm shift with regards to the outlook of osteoporosis. Osteoporosis and cardiovascular disease have similar risk factors, including diabetes, smoking, excess alcohol, sedentary lifestyle, ageing and dyslipidaemia. This may partly explain the link between osteoporosis and cardiovascular disease. In addition, both osteoporosis and atherosclerosis, which underlies most cardiovascular disease, are both characterized by low grade chronic inflammation. Moreover, the processes involved in the calcification of atheroma are similar to what is seen in bone remodeling. Both processes also involve similar regulators such as osteoprotegerin and related proteins such as osteonectin, osteopontin and type 1 collagen are found in bone matrix and atheromatous plaques.

Conclusion

There is emerging evidence that individuals with osteoporosis are also at an increased risk of coronary artery disease and stroke even after controlling for other factors. The traditional risk factors for cardiovascular disease also predispose people to developing osteoporosis, suggesting that the same mechanism may be causing the two. Moreover, a number of anti-osteoporotic drugs have also been largely linked with cardiovascular disease. This calls for a change in the view of osteoporosis as a metabolic disease but as a cardio-metabolic disorder thereby emphasizing the need for intensified preventive strategies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatol 4(1):46–56

    Article  Google Scholar 

  2. Barnsley J, Buckland G, Chan PE, Ong A, Ramos AS, Baxter M et al (2021) Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res 33(4):759–773

    Article  CAS  Google Scholar 

  3. Pinheiro MB, Oliveira J, Bauman A, Fairhall N, Kwok W, Sherrington C (2020) Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act 17(1):150

    Article  Google Scholar 

  4. Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S et al (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 16(1):609

    Article  Google Scholar 

  5. Cauley JA (2013) Public health impact of osteoporosis. J Gerontol: Series A 68(10):1243–1251

    Article  Google Scholar 

  6. Pinheiro MM, Ciconelli RM, Jacques NDO, Genaro PS, Martini LA, Ferraz MB (2010) The burden of osteoporosis in Brazil: regional data from fractures in adult men and women–the Brazilian osteoporosis study (BRAZOS). Rev Bras Reumatol 50(2):113–127

    Article  Google Scholar 

  7. Irani AD, Poorolajal J, Khalilian A, Esmailnasab N, Cheraghi Z (2013) Prevalence of osteoporosis in Iran: a meta-analysis. J Res Med Sci 18(9):759–766

    Google Scholar 

  8. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD (2014) Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 9:182

    Article  CAS  Google Scholar 

  9. Chen P, Li Z, Hu Y (2016) Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health 3(16):1039

    Article  Google Scholar 

  10. Adewole OA, Idowu SO, Shoga MO, Kayode MO, Adelowo OO (2021) Frequency of osteoporosis in black nigerian women aged 50 and above with degenerative musculoskeletal diseases and fractures. West Afr J Med 38(4):342–346

    CAS  Google Scholar 

  11. Babhulkar S, Seth S (2021) Prevalence of osteoporosis in India: an observation of 31238 adults. Int J Res Orthop 7(2):362–368

    Article  Google Scholar 

  12. Feng X (2009) Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Curr Chem Biol 3(2):189–196

    CAS  Google Scholar 

  13. Keen RW. Pathophysiology of osteoporosis. 2014 Jul 1 [cited 2022 Aug 16]; Available from: https://academic.oup.com/book/24599/chapter/187875579

  14. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227

    Article  Google Scholar 

  15. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146

    Article  CAS  Google Scholar 

  16. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 13:e421746

    Google Scholar 

  17. Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P (2020) Osteoporosis: pathophysiology and therapeutic options. EXCLI J 20(19):1017–1037

    Google Scholar 

  18. Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31(5):629–662

    Article  CAS  Google Scholar 

  19. Vielma JR, Picon D, Gutiérrez LV, Lara ND (2018) Pathophysiology of osteoporosis: genes, oxidative stress and immunopathogeny. a qualitative systematic review. Avances en Biomedicina 7(2):100–111

    Google Scholar 

  20. Pignolo RJ, Law SF, Chandra A (2021) Bone aging, cellular senescence, and osteoporosis. JBMR Plus 5(4):e10488

    Article  Google Scholar 

  21. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5(8):927–946

    Google Scholar 

  22. Moore K, Sheedy F, Fisher E (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  Google Scholar 

  23. Lusis AJ. Atherosclerosis. Nature. 2000 Sep 14;407(6801):233–41

  24. Bergheanu SC, Bodde MC, Jukema JW (2017) Pathophysiology and treatment of atherosclerosis. Neth Heart J 25(4):231–242

    Article  CAS  Google Scholar 

  25. Whayne TF (2011) Atherosclerosis: current status of prevention and treatment. Int J Angiol 20(4):213–222

    Article  Google Scholar 

  26. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K et al (2022) Pathophysiology of atherosclerosis. Int J Mol Sci 23(6):3346

    Article  CAS  Google Scholar 

  27. Stojanovic OI, Lazovic M, Lazovic M, Vuceljic M (2011) Association between atherosclerosis and osteoporosis, the role of vitamin D. Arch Med Sci 7(2):179–188

    Article  Google Scholar 

  28. Farhat GN, Cauley JA (2008) The link between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab 5(1):19–34

    Google Scholar 

  29. Warburton DE, Nicol CW, Gatto SN, Bredin SS (2007) Cardiovascular disease and osteoporosis: balancing risk management. Vasc Health Risk Manag 3(5):673–689

    Google Scholar 

  30. Hamerman D (2005) Osteoporosis and atherosclerosis: biological linkages and the emergence of dual-purpose therapies. QJM 98(7):467–484

    Article  CAS  Google Scholar 

  31. Pickering ME (2021) Cross-talks between the cardiovascular disease-sarcopenia-osteoporosis triad and magnesium in humans. Int J Mol Sci 22(16):9102

    Article  CAS  Google Scholar 

  32. Zittermann A, Schleithoff SS, Koerfer R (2007) Vitamin D and vascular calcification. Curr Opin Lipidol 18(1):41–46

    Article  CAS  Google Scholar 

  33. Neven E, De Schutter TM, De Broe ME, D’Haese PC (2011) Cell biological and physicochemical aspects of arterial calcification. Kidney Int 79(11):1166–1177

    Article  CAS  Google Scholar 

  34. Alves RD, Eijken M, van de Peppel J, van Leeuwen JP (2014) Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries. BMC Genomics 15(1):965

    Article  Google Scholar 

  35. Yoon V, Maalouf NM, Sakhaee K (2012) The effects of smoking on bone metabolism. Osteoporos Int 23(8):2081–2092

    Article  CAS  Google Scholar 

  36. Al-Bashaireh AM, Haddad LG, Weaver M, Chengguo X, Kelly DL, Yoon S (2018) The effect of tobacco smoking on bone mass: an overview of pathophysiologic mechanisms. J Osteoporos 2(2018):e1206235

    Google Scholar 

  37. Kiyota Y, Muramatsu H, Sato Y, Kobayashi T, Miyamoto K, Iwamoto T et al (2020) Smoking cessation increases levels of osteocalcin and uncarboxylated osteocalcin in human sera. Sci Rep 10(1):16845

    Article  CAS  Google Scholar 

  38. Li H, Wallin M, Barregard L, Sallsten G, Lundh T, Ohlsson C et al (2020) Smoking-induced risk of osteoporosis is partly mediated by cadmium from tobacco smoke: the MrOS Sweden study. J Bone Miner Res 35(8):1424–1429

    Article  CAS  Google Scholar 

  39. Tarantino U, Cariati I, Greggi C, Gasbarra E, Belluati A, Ciolli L et al (2021) Skeletal system biology and smoke damage: from basic science to medical clinic. Int J Mol Sci 22(12):6629

    Article  CAS  Google Scholar 

  40. Rodríguez-Gómez I, Mañas A, Losa-Reyna J, Rodríguez-Mañas L, Chastin SFM, Alegre LM et al (2018) Associations between sedentary time, physical activity and bone health among older people using compositional data analysis. PLoS ONE 13(10):e0206013

    Article  Google Scholar 

  41. Onambele-Pearson G, Wullems J, Doody C, Ryan D, Morse C, Degens H (2019) Influence of habitual physical behavior – sleeping, sedentarism, physical activity – on bone health in community-dwelling older people. Front Physiol. https://doi.org/10.3389/fphys.2019.00408

    Article  Google Scholar 

  42. Sheng B, Li X, Nussler AK, Zhu S (2021) The relationship between healthy lifestyles and bone health: a narrative review. Medicine 100(8):e24684

    Article  Google Scholar 

  43. Kim H, Iwasaki K, Miyake T, Shiozawa T, Nozaki S, Yajima K (2003) Changes in bone turnover markers during 14-day 6 degrees head-down bed rest. J Bone Miner Metab 21(5):311–315

    Article  CAS  Google Scholar 

  44. Movassagh EZ, Vatanparast H (2017) Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr 8(1):1–16

    Article  CAS  Google Scholar 

  45. Finck H, Hart AR, Jennings A, Welch AA (2014) Is there a role for vitamin C in preventing osteoporosis and fractures? a review of the potential underlying mechanisms and current epidemiological evidence. Nutr Res Rev 27(2):268–283

    Article  CAS  Google Scholar 

  46. Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT (2013) Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep 11(3):203–212

    Article  Google Scholar 

  47. Sampson HW (2002) Alcohol and other factors affecting osteoporosis risk in women. Alcohol Res Health 26(4):292–298

    Google Scholar 

  48. Berg KM, Kunins HV, Jackson JL, Nahvi S, Chaudhry A, Harris KA et al (2008) Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med 121(5):406–418

    Article  CAS  Google Scholar 

  49. Gavaler JS (2002) Oral hormone replacement therapy: factors that influence the estradiol concentrations achieved in a multiracial study population. J Clin Pharmacol 42(2):137–144

    Article  CAS  Google Scholar 

  50. Eby JM, Sharieh F, Callaci JJ (2020) Impact of alcohol on bone health, homeostasis and fracture repair. Curr Pathobiol Rep 8(3):75–86

    Article  CAS  Google Scholar 

  51. Godos J, Giampieri F, Chisari E, Micek A, Paladino N, Forbes-Hernández TY et al (2022) Alcohol consumption, bone mineral density, and risk of osteoporotic fractures: a dose-response meta-analysis. Int J Environ Res Public Health 19(3):1515

    Article  Google Scholar 

  52. Chai H, Ge J, Li L, Li J, Ye Y (2021) Hypertension is associated with osteoporosis: a case-control study in Chinese postmenopausal women. BMC Musculoskelet Disord 22(1):253

    Article  Google Scholar 

  53. Do Carmo L, Harrison DG (2020) Hypertension and osteoporosis: common pathophysiological mechanisms. Med Novel Technol Dev 1(8):100047

    Article  Google Scholar 

  54. Hu Z, Yang K, Hu Z, Li M, Wei H, Tang Z et al (2021) Determining the association between hypertension and bone metabolism markers in osteoporotic patients. Medicine 100(24):e26276

    Article  CAS  Google Scholar 

  55. Kar A, Datta S (2018) A study of serum vitamin D level and its association with hypertension. J Family Med Prim Care 7(3):546–550

    Article  Google Scholar 

  56. Kheiri B, Abdalla A, Osman M, Ahmed S, Hassan M, Bachuwa G (2018) Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens 24(1):9

    Article  Google Scholar 

  57. Joukar F, Naghipour M, Hassanipour S, Salari A, Alizadeh A, Saeidi-Saedi H et al (2020) <p>Association of serum levels of vitamin D with blood pressure status in Northern Iranian population: the PERSIAN Guilan cohort study (PGCS)</p>. IJGM 11(13):99–104

    Article  Google Scholar 

  58. Wongdee K, Charoenphandhu N (2011) Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabet 2(3):41–48

    Article  Google Scholar 

  59. Murray CE, Coleman CM (2019) Impact of diabetes mellitus on bone health. Int J Mol Sci 20(19):4873

    Article  CAS  Google Scholar 

  60. Piccinin MA, Khan ZA (2014) Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications. Adipocyte 3(4):263–272

    Article  CAS  Google Scholar 

  61. Savopoulos C, Dokos C, Kaiafa G, Hatzitolios A (2011) Adipogenesis and osteoblastogenesis: trans-differentiation in the pathophysiology of bone disorders. Hippokratia 15(1):18–21

    Google Scholar 

  62. Yamamoto M, Sugimoto T (2016) Advanced glycation end products, diabetes, and bone strength. Curr Osteoporos Rep 14(6):320–326

    Article  Google Scholar 

  63. Anagnostis P, Florentin M, Livadas S, Lambrinoudaki I, Goulis DG (2022) Bone health in patients with dyslipidemias: an underestimated aspect. Int J Mol Sci 23(3):1639

    Article  CAS  Google Scholar 

  64. Mandal CC (2015) High cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol (Lausanne) 23(6):165

    Google Scholar 

  65. Papachristou NI, Blair HC, Kypreos KE, Papachristou DJ (2017) High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol 233(2):R95-107

    Article  CAS  Google Scholar 

  66. McFarlane SI, Sica DA, Sowers JR (2007) Stroke in patients with diabetes and hypertension. J Clin Hypertens (Greenwich) 7(5):286–294

    Article  Google Scholar 

  67. Zeng X, Zhan K, Zhang L, Zeng D, Yu W, Zhang X et al (2017) The impact of high total cholesterol and high low-density lipoprotein on avascular necrosis of the femoral head in low-energy femoral neck fractures. J Orthop Surg Res 12(1):30

    Article  Google Scholar 

  68. Chen SJ, Lin CS, Lin CL, Kao CH (2015) Osteoporosis is associated with high risk for coronary heart disease. Medicine (Baltimore) 94(27):e1146

    Article  CAS  Google Scholar 

  69. Khandkar C, Vaidya K, Karimi Galougahi K, Patel S (2021) Low bone mineral density and coronary artery disease: a systematic review and meta-analysis. Int J Cardiol Heart Vasc 23(37):100891

    Google Scholar 

  70. den Uyl D, Nurmohamed MT, van Tuyl LH, Raterman HG, Lems WF (2011) (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther 13(1):R5

    Article  Google Scholar 

  71. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R (2018) Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging 11(1):127–142

    Article  Google Scholar 

  72. Prasad M, Reriani M, Khosla S, Gössl M, Lennon R, Gulati R, et al. 2014. Coronary microvascular endothelial dysfunction is an independent predictor of development of osteoporosis in postmenopausal women. 533–8.

  73. West SL, O’Donnell E. Cardiovascular disease and bone loss—new research in identifying common disease pathophysiologies and predictors. AME Medical Journal . 2018 Mar 26 [cited 2022 Aug 25];3(3). Available from: https://amj.amegroups.com/article/view/4385

  74. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C (2019) The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci 20(3):705

    Article  CAS  Google Scholar 

  75. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9(9):586

    Article  Google Scholar 

  76. Huo K, Hashim SI, Yong KLY, Su H, Qu QM (2016) Impact and risk factors of post-stroke bone fracture. World J Exp Med 6(1):1–8

    Article  Google Scholar 

  77. Zhang L, Zhang ZH, Wang QR, Su YJ, Lu YY, Zhang CL et al (2021) Stroke and osteoporosis: a Taiwan cohort study. Postgrad Med J 97(1146):211–216

    Article  Google Scholar 

  78. Zhu B, Yang J, Zhou Z, Ling X, Cheng N, Wang Z et al (2022) Total bone mineral density is inversely associated with stroke: a family osteoporosis cohort study in rural China. QJM Int J Med 115(4):228–234

    Article  CAS  Google Scholar 

  79. Nakagami H, Morishita R (2013) Hypertension and osteoporosis. Clin Calcium 23(4):497–503

    CAS  Google Scholar 

  80. Barzilay JI, Buzkova P, Cauley JA, Robbins JA, Fink HA, Mukamal KJ (2018) The associations of subclinical atherosclerotic cardiovascular disease with hip fracture risk and bone mineral density in elderly adults. Osteoporos Int 29(10):2219–2230

    Article  CAS  Google Scholar 

  81. Hamoud H, Mustafa AA, Mohamad H, Kheshen GE (2017) Calcified large arteries, osteoporosis & acute stroke what is the relationship. Orthopedics Rheumatology Open Access J 6(1):32–38

    Google Scholar 

  82. Carda S, Cisari C, Invernizzi M, Bevilacqua M (2009) Osteoporosis after stroke: a review of the causes and potential treatments. Cerebrovasc Dis 28(2):191–200

    Article  Google Scholar 

  83. Borschmann K (2011) Exercise protects bone after stroke, or does it? a narrative review of the evidence. Stroke Res Treat 9(2012):e103697

    Google Scholar 

  84. Poole KES, Reeve J, Warburton EA (2002) Falls, fractures, and osteoporosis after stroke. Stroke 33(5):1432–1436

    Article  Google Scholar 

  85. Jørgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32(1):47–51

    Article  Google Scholar 

  86. Anderson JJB, Kruszka B, Delaney JAC, He K, Burke GL, Alonso A et al (2016) Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-Year follow-up of the multi-ethnic study of atherosclerosis (MESA). J Am Heart Assoc 5(10):e003815

    Article  Google Scholar 

  87. Wasilewski GB, Vervloet MG, Schurgers LJ (2019) The bone—vasculature axis: calcium supplementation and the role of vitamin K. Front Cardiovasc Med 5(6):6

    Article  Google Scholar 

  88. Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Dhillon H, Swaid B et al (2019) Vitamin D supplementation and cardiovascular disease risks in more than 83 000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol 4(8):765–776

    Article  Google Scholar 

  89. Fuggle NR, Cooper C, Harvey NC, Al-Daghri N, Brandi ML, Bruyere O et al (2020) Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 80(15):1537–1552

    Article  CAS  Google Scholar 

  90. Plu-Bureau G, Mounier-Vehier C (2021) Menopausal hormone therapy an cardiovascular risk postmenopausal women management: CNGOF and GEMVi clinical practice guidelines. Gynecol Obstet Fertil Senol 49(5):438–447

    CAS  Google Scholar 

  91. Henderson VW, Lobo RA (2012) Hormone therapy and the risk of stroke: perspectives ten years after the women’s health initiative trials. Climacteric 15(3):229–234

    Article  CAS  Google Scholar 

  92. Taylor JE, Baig MS, Helmy T, Gersh FL (2021) Controversies regarding postmenopausal hormone replacement therapy for primary cardiovascular disease prevention in women. Cardiol Rev 29(6):296–304

    Google Scholar 

  93. Cummings SR, Ettinger B, Delmas PD, Kenemans P, Stathopoulos V, Verweij P et al (2008) The effects of tibolone in older postmenopausal women. N Engl J Med 359(7):697–708

    Article  CAS  Google Scholar 

  94. Park SY, Kim SH, Kim TY, Lee YK, Ha YC, Jang S et al (2021) Incidence and risk of venous thromboembolism in bisphosphonates and selective estrogen receptor modulators treatment in Korea. J Korean Med Sci 36(27):e186

    Article  CAS  Google Scholar 

  95. Walsh BW, Kuller LH, Wild RA, Paul S, Farmer M, Lawrence JB et al (1998) Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 279(18):1445–1451

    Article  CAS  Google Scholar 

  96. Kim DH, Rogers JR, Fulchino LA, Kim CA, Solomon DH, Kim SC (2015) Bisphosphonates and risk of cardiovascular events: a meta-analysis. PLoS ONE 10(4):e0122646

    Article  Google Scholar 

  97. Nitta K, Akiba T, Suzuki K, Uchida K, Watanabe RI, Majima K et al (2004) Effects of cyclic intermittent etidronate therapy on coronary artery calcification in patients receiving long-term hemodialysis. Am J Kidney Dis 44(4):680–688

    Article  CAS  Google Scholar 

  98. Blumenthal RS, Kapur NK (2006) Can a potent statin actually regress coronary atherosclerosis? JAMA 295(13):1583–1584

    Article  CAS  Google Scholar 

  99. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    Article  CAS  Google Scholar 

  100. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None

Funding

Self-fundeD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taoreed Adegoke Azeez.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeez, T.A. Osteoporosis and cardiovascular disease: a review. Mol Biol Rep 50, 1753–1763 (2023). https://doi.org/10.1007/s11033-022-08088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08088-4

Keywords

Navigation