Skip to main content

Advertisement

Log in

Polyene phosphatidylcholine ameliorates synovial inflammation: involvement of PTEN elevation and glycolysis suppression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Synovial inflammation, characterized by the activation of synovial fibroblasts (SFs), is a crucial factor to drive the progression of rheumatoid arthritis (RA). Polyene phosphatidylcholine (PPC), the classic hepatoprotective drug, has been reported to ameliorate arthritis in animals. However, the molecular mechanism remains poorly understood.

Methods and results

Using in vitro primary synovial fibroblast (SFs) culture system, we revealed that phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, mediates the anti-inflammatory effect of PPC in lipopolysaccharide (LPS)-stimulated primary SFs. PPC decreased the production of TNF-α and IL-6 production while elevating the level of IL-10 and TGF-β. Furthermore, PPC up-regulated the expression of PTEN, but inhibited the expression of p-AKT (ser473) and PI3K-p85α. Moreover, pre-treatment of SF1670 (the inhibitor of PTEN) or 740Y-P (the agonist of AKT/PI3K pathways) partially abrogated the anti-inflammatory effect of PPC. In addition, PPC could inhibit the expression of GLUT4, a key transporter of glucose that fuels the glycolysis, which is accompanied by the expression downregualtion of glycolytic enzymes PFKFB3 and PKM2. Furthermore, PPC could reduce ROS production and mitochondrial membrane potential in LPS-stimulated SFs and MH7A cell line.

Conclusion

The present study supported that PPC can alleviate synovial inflammation, which involves in the elevation of PTEN and blockage of glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K (2018) Rheumatoid arthritis. Nat Rev Dis Primers 4(1):18001

    Article  Google Scholar 

  2. Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, Doria A (2012) Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun Rev 11(8):604–609

    Article  Google Scholar 

  3. Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233–255

    Article  CAS  Google Scholar 

  4. Danks L, Sabokbar A, Gundle R, Athanasou NA (2002) Synovial macrophage-osteoclast differentiation in inflammatory arthritis. Ann Rheum Dis 61(10):916–921

    Article  CAS  Google Scholar 

  5. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169(4):570–586

    Article  CAS  Google Scholar 

  6. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356:1026–1030

    Article  CAS  Google Scholar 

  7. Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, Fearon U, Biniecka M (2018) Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthr Res Ther 20:95

    Article  Google Scholar 

  8. Young SP, Kapoor SR, Viant MR, Byrne JJ, Filer A, Buckley CD, Kitas GD, Raza K (2013) The impact of inflammation on metabolomic profiles in patients with arthritis. Arthr Rheum 65(8):2015–2023

    Article  CAS  Google Scholar 

  9. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M (2017) Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthr Res Ther 19(1):110

    Article  Google Scholar 

  10. Yang XY, Zheng KD, Lin K, Zheng G, Zou H, Wang JM, Lin YY, Chuka CM, Ge RS, Zhai W, Wang JG (2015) Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS ONE 10(7):e0132695

    Article  Google Scholar 

  11. Henderson B, Bitensky L, Chayen J (1979) Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Ann Rheum Dis 38(1):63–67

    Article  CAS  Google Scholar 

  12. Ahn JK, Kim S, Hwang J, Kim J, Lee YS, Koh EM, Kim KH, Cha HS (2015) Metabolomic elucidation of the effects of curcumin on fibroblast-like synoviocytes in rheumatoid arthritis. PLoS ONE 10(12):e0145539

    Article  Google Scholar 

  13. Petrasca A, Phelan JJ, Ansboro S, Veale DJ, Fearon U, Fletcher JM (2020) Targeting bioenergetics prevents CD4 T cell-mediated activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology (Oxford) 59(10):2816–2828

    Article  CAS  Google Scholar 

  14. Kvacskay P, Yao N, Schnotz JH, Scarpone R, Carvalho RA, Klika KD, Merkt W, Tretter T, Lorenz HM, Tykocinski LO (2021) Increase of aerobic glycolysis mediated by activated T helper cells drives synovial fibroblasts towards an inflammatory phenotype: new targets for therapy? Arthr Res Ther 23:56

    Article  CAS  Google Scholar 

  15. Bustamante MF, Oliveira PG, Garcia-Carbonell R, Croft AP, Smith JM, Serrano RL, Sanchez-Lopez E, Liu X, Kisseleva T, Hay N, Buckley CD, Firestein GS, Murphy AN, Miyamoto S, Guma M (2018) Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis 77:1636–1643

    Article  CAS  Google Scholar 

  16. Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, Pan Y, Ma R, Liu H, Wei F (2021) The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol 140:186–195

    Article  CAS  Google Scholar 

  17. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414

    Article  CAS  Google Scholar 

  18. Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149(1):49–62

    Article  CAS  Google Scholar 

  19. Pap T, Franz JK, Hummel KM, Jeisy E, Gay R, Gay S (2000) Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthr Res 2(1):59–64

    Article  CAS  Google Scholar 

  20. Chen D, Liu D, Liu D, He M, Peng A, Xu J, Lin L, Luo F, Chen L, Huang X, Zhuang J, Xu J (2017) Rheumatoid arthritis fibroblast-like synoviocyte suppression mediated by PTEN involves survivin gene silencing. Sci Rep 7(1):367

    Article  Google Scholar 

  21. Wang CR, Shiau AL, Chen SY, Lin LL, Tai MH, Shieh GS, Lin PR, Yo YT, Lee CH, Kuo SM, Liu MF, Jou IM, Yang CY, Shen PC, Lee HL, Wu CL (2008) Amelioration of collagen-induced arthritis in rats by adenovirus-mediated PTEN gene transfer. Arthr Rheum 58(6):1650–1656

    Article  CAS  Google Scholar 

  22. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16(2):178–187

    Article  CAS  Google Scholar 

  23. Lei X, Zhang J, Xu Q, Li J, Qian Y, Zhang J, Liu L, Zhong W, Wang Y, Han X, Tang J, Zeng M, Mao Y (2021) Exploring the efficacy and safety of polyene phosphatidylcholine for treatment of drug-induced liver injury using the Roussel Uclaf causality assessment method: a propensity score matching comparison. J Int Med Res 49(8):3000605211039810

    Article  CAS  Google Scholar 

  24. Cao M, Li X, Zhang B, Han S, Yang Y, Zhou B, Zhang Y (2016) The effect of polyene phosphatidyl choline intervention on nonalcoholic steatohepatitis and related mechanism. Am J Transl Res 8(5):2325–2330

    CAS  Google Scholar 

  25. Bashi T, Shovman O, Fridkin M, Volkov A, Barshack I, Blank M, Shoenfeld Y (2016) Novel therapeutic compound tuftsin-phosphorylcholine attenuates collagen-induced arthritis. Clin Exp Immunol 184(1):19–28

    Article  CAS  Google Scholar 

  26. Ben-Ami Shor D, Bashi T, Lachnish J, Fridkin M, Bizzaro G, Barshak I, Blank M, Shoenfeld Y (2015) Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease. J Autoimmun 56:111–117

    Article  CAS  Google Scholar 

  27. Feng TT, Yang XY, Hao SS, Sun FF, Huang Y, Lin QS, Pan W (2020) TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization. Immunol Res 68(1):28–38

    Article  CAS  Google Scholar 

  28. Pan W, Hao WT, Xu HW, Qin SP, Li XY, Liu XM, Sun FF, Li H, Tang RX, Zheng KY (2017) Polyene phosphatidylcholine inhibited the inflammatory response in LPS-stimulated macrophages and ameliorated the adjuvant-induced rat arthritis. Am J Transl Res 9(9):4206–4216

    CAS  Google Scholar 

  29. Zhao J, Ouyang Q, Hu Z, Huang Q, Wu J, Wang R, Yang M (2016) A protocol for the culture and isolation of murine synovial fibroblasts. Biomed Rep 5(2):171–175

    Article  CAS  Google Scholar 

  30. Mills EL, Kelly B, Logan A, Costa A, Varma M, Bryant CE, Tourlomousis P, Däbritz J, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O’Neill L (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2):457–470

    Article  CAS  Google Scholar 

  31. Li XF, Song B, Xu QQ, Yin SQ, Chen X, Xu L, Zhang L, Wen JG, Huang C, Meng XM, Li J (2019) Over-expression of PTEN suppresses the proliferation and migration of fibroblast-like synoviocytes in adjuvant-induced arthritis. Cell Physiol Biochem 52(6):1446–1462

    Article  CAS  Google Scholar 

  32. Okano T, Saegusa J, Takahashi S, Ueda Y, Morinobu A (2018) Immunometabolism in rheumatoid arthritis. Immunol Med 41(3):89–97

    Article  Google Scholar 

  33. Ijuin T, Takenawa T (2012) Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1. Mol Cell Biol 32(17):3570–3584

    Article  Google Scholar 

  34. Xu D, Liang J, Lin J (2019) PKM2: a potential regulator of rheumatoid arthritis via glycolytic and non-glycolytic pathways. Front Immunol 10:2919

    Article  CAS  Google Scholar 

  35. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, Mitchell R, Bucala R (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887

    CAS  Google Scholar 

  36. Lorenz W, Buhrmann C, Mobasheri A, Lueders C, Shakibaei M (2013) Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthr Res Ther 15(5):R111

    Article  Google Scholar 

  37. Qin Y, Chen Y, Wang W, Wang Z, Tang G, Zhang P, He Z, Liu Y, Dai SM, Shen Q (2014) HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death Dis 5(2), e1077

    Article  CAS  Google Scholar 

  38. Xu Z, Hao W, Xu D, He Y, Yan Z, Sun F, Li X, Yang X, Yu Y, Tang R, Zheng K, Pan W (2022) Polyene phosphatidylcholine interacting with TLR-2 prevents the synovial inflammation via inactivation of MAPK and NF-κB pathways. Inflamm 45(4):1507–1519

    Article  CAS  Google Scholar 

  39. Lee EK, Kang SM, Paik DJ, Kim JM, Youn J (2005) Essential roles of Toll-like receptor-4 signaling in arthritis induced by type II collagen antibody and LPS. Int Immunol 17:325–333

    Article  CAS  Google Scholar 

  40. Jin XN, Yan EZ, Wang HM, Sui HJ, Liu Z, Gao W, Jin Y (2016) Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacol Sin 37(5):674–686

    Article  CAS  Google Scholar 

  41. Taylor H, Laurence A, Uhlig HH (2019) The role of PTEN in innate and adaptive immunity. Cold Spring Harbor Perspect Med 9(12):a036996

    Article  CAS  Google Scholar 

  42. Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, Netea MG, de Vries I, Hoogerbrugge N (2019) PTEN hamartoma tumor syndrome and immune dysregulation. Transl Oncol 12(2):361–367

    Article  Google Scholar 

  43. Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J (2019) PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. Artif Cells Nanomed Biotechnol 47(1):3687–3696

    Article  CAS  Google Scholar 

  44. Zhang W, Du Z, Zhu J, Yu J, Xu Y (2015) Sprouty2 suppresses the inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes through regulating the Raf/ERK and PTEN/AKT signals. Mol Immunol 67(2 Pt B):532–539

    Article  CAS  Google Scholar 

  45. Malemud CJ (2015) The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem 7(9):1137–1147

    Article  CAS  Google Scholar 

  46. Chen L, Guo D (2017) The functions of tumor suppressor PTEN in innate and adaptive immunity. Cell Mol Immunol 14(7):581–589

    Article  CAS  Google Scholar 

  47. Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H, Boss GR, Tiziani S, Murphy AN, Guma M, Hoboken (2016) Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthr Rheumatol 68(7):1614–1626

    Article  CAS  Google Scholar 

  48. Zou Y, Zeng S, Huang M, Qiu Q, Xiao Y, Shi M, Zhan Z, Liang L, Yang X, Xu H (2017) Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br J Pharmacol 174(9):893–908

    Article  CAS  Google Scholar 

  49. Laragione T, Gulko PS (2010) mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 16(9–10):352–358

    Article  CAS  Google Scholar 

  50. Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, Gallagher L, Smith T, Phelan JJ, Ryan J, O’Sullivan J, Ng CT, Veale DJ, Fearon U (2016) Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 75(12):21922200

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the Starting Foundation for Talents of Xuzhou Medical College (No. D2015004), the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 15KJB310025), the Jiangsu Qinglan Project, and the Liangshan Research Project (2021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: WP, DHW, YHY, KYZ. Performed the experiments: FFS, WTH, XRM. Analyzed the data: FFS, WTH, XRM, XYL. Contributed reagents/materials/analysis tools: WP, DHW. Wrote the manuscript: FFS, WP. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Dahui Wang or Wei Pan.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Xuzhou Medical University (Xuzhou, China, SYXK (Su) 2015-0009). All animal care and experiments were performed in strict accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the Ministry of Health (China).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2022_8043_MOESM1_ESM.jpg

Supplementary Fig. 1 PPC does not significantly affect the normal proliferation of SFs. SFs were prepared from the joint of C57BL/6J mice. CCK-8 assay was used to determine the proliferative profile of 24 h (A) and 48 h (B) post mentioned concentration of PPC. Supplementary material 1 (JPG 46.6 kb)

11033_2022_8043_MOESM2_ESM.jpg

Supplementary Fig. 2 PPC decreases the mitochondrial membrane potential and ROS production in SFs. Primary SFs cells were stimulated with PPC (20 µg/ml) with or without LPS (100 ng/ml) for 24 h. The cells were collected to determine the mitochondrial membrane potential and ROS production by Mitochondrial membrane potential assay kit (A) and Reactive Oxygen Species Assay Kit (B), respectively. The ROS (C) and mitochondrial membrane potential (D) were determined in the MH7A cell line treated with PPC (20 µg/ml) for 24 h using the colorimetric assay. **P < 0.01, ***P < 0.001. Supplementary material 2 (JPG 75.8 kb)

11033_2022_8043_MOESM3_ESM.jpg

Supplementary Fig. 3 SF1670 with indicated concentrations does not affect the proliferation and migration of normal SFs. (A) the effect of SF1670 pretreatment on the proliferative profile of SFs in the presence of PPC determined by CCK-8 assay, (B) the migratory profile of SFs after exposure to SF1670 evaluated by wound-healing assay. Supplementary material 3 (JPG 139.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Hao, W., Meng, X. et al. Polyene phosphatidylcholine ameliorates synovial inflammation: involvement of PTEN elevation and glycolysis suppression. Mol Biol Rep 50, 687–696 (2023). https://doi.org/10.1007/s11033-022-08043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08043-3

Keywords

Navigation