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processes and pathological changes, NAFLD can be divided 
into three stages. The earliest stage is simple fatty liver. At 
this stage, there is excessive fat deposition in liver cells, but 
it has not yet caused liver cell damage. The second stage is 
non-alcoholic steatohepatitis (NASH), with liver cell dam-
age and inflammatory cell infiltration. In the third stage, 
intrahepatic fibrosis or even cirrhosis occurs. Therefore, 
NAFLD is also the pathophysiological basis of many dis-
eases (steatohepatitis, liver fibrosis, cirrhosis and hepato-
cellular carcinoma) and threatens human health 2, 3. Aside 
from lifestyle modification and weight loss, there is no effec-
tive treatment for NAFLD 4, 5. The formation of large lipid 
droplets in hepatocytes is caused by excessive inflamma-
tion, endoplasmic reticulum (ER) stress and oxidative stress 
6. NAFLD mouse livers show oxidative damage, excessive 
inflammation and liver damage 7. ER stress triggers the 
unfolded protein response (UPR), resulting in inflammation 
and inflammasome activation of hepatocytes 8.

The mitogen-activated protein kinase (MAPK) signal-
ling pathway is fundamental in inflammation and oxidative 
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Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments 
because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the 
role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD.
Methods HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids 
(FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of 
HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling.
Results Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knock-
down of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which 
was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were 
improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA 
inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis.
Conclusion HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism 
and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment 
of NAFLD.
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stress because it regulates nuclear factor E2-related fac-
tor 2 (Nrf2) and nuclear factor kappa B (NF-κB), which 
are involved in liver and metabolic diseases 9, 10. Serum 
vitamin D deficiency (VDD) patients show upregulation 
of p-MAPK expression in the serum 11. Activation of 
MAPK signalling in high fat diet (HFD)-fed mice contrib-
utes to lipid accumulation and inflammatory and reactive 
oxygen species (ROS) production 12. The R4/B subfamily 
regulators of G protein signalling protein 5 (RGS5) inhibit 
the activation of JNK/p38 pathways, which is a promising 
target for NAFLD 13, 14. The inactivation of NF-κB and 
MAPK cascades reverses hepatic steatosis, inflammation, 
and abnormal lipid metabolism, representing a potential 
strategy for NAFLD treatment 15. Lipid accumulation and 
inflammatory responses are triggered by MAPK signalling 
to exacerbate NAFLD progression 16. Activation of MAPK 
modulates lipid metabolism-related gene expression to par-
ticipate in NAFLD progression 17. Insulin resistance is 
induced by activation of MAPK to promote NAFLD devel-
opment 18. Lipid accumulation is induced by an ERK1/2-
dependent pathway to promote NAFLD development 19.

Mitogen-activated protein kinase kinase 3 (MKK3) acti-
vates MAPK to regulate inflammation 20, oxidative stress 
21 and ER stress 22. Phosphorylation of MKK3 (p-MKK3) 
is increased in the NAFLD mouse liver, and melatonin 
alleviates NAFLD phenotypes such as body weight gain, 
hepatic lipid accumulation, and fibrosis by inhibiting 
p-MKK3 expression 23. MKK3 upregulates TNF-α produc-
tion to exacerbate inflammation, which results in liver dam-
age 24. However, the regulatory mechanism of the MKK3 
pathway in NAFLD progression is still unknown.

Hydroxyl CoA dehydrogenase alpha subunit (HADHA) 
regulates fatty acid beta-oxidation 25, lipid programming 
26 and mitochondrial function 27, which are involved 
in inflammatory and oxidative stress response. Recent 
research findings show that acetylation of the mitochon-
drial β-oxidation enzyme HADHA modulates hepatic fatty 
acid oxidation activity, and HADHA may be a key regula-
tor during the pathogenesis of fatty liver disease 28. The 
diabetic myocardium decreases the activity of HADHA to 
promote lipid droplet accumulation and elevate ER stress 
29. The decreased expression of HADHA in NASH liver 
was verified by western blotting, which was used as a com-
plementary technique to confirm the proteomic results 30. 
Nevertheless, the beneficial role of HADHA in NAFLD 
remains unclear.

Here, our study showed that HADHA expression was 
decreased in both free fatty acid (FFA)-treated L02 cells 
and NAFLD mouse liver tissues. In addition, HADHA 
overexpression in NAFLD mice inhibited the progression 
of hepatic steatosis. Mechanistic studies demonstrated that 
HADHA inactivated the MAPK pathway. Upregulation of 

HADHA alleviated lipid accumulation and oxidative stress 
in NAFLAD mice. Knocking down HADHA aggravated the 
damage caused by NAFLD. In summary, our findings reveal 
a previously unappreciated role of HADHA in NAFLD 
development, which may be a potential therapeutic target 
for NAFLD.

Materials and methods

Cell line culture and treatment

L02 normal human liver cells were purchased from the 
ATCC and cultured in RPMI 1640 medium (Thermo Scien-
tific™, # 88,365) with 10% foetal bovine serum (Gibco™, 
#30,044,333) and 1% penicillin/streptomycin in a humidi-
fied atmosphere with 5% CO2 at 37 °C. We used 1 mM FFA 
(FFA; oleate acid and palmitate acid (2:1)) to treat L02 cells 
to establish a NAFLD cell model. L02 cells were cultured in 
RPMI 1640 medium containing FBS until the cells reached 
80% confluence and then treated with 1 mM FFA for 24 h 
(24 h). The cells were transfected with 25 nM siHADHA or 
siControl for 24 h. The siRNA sequence for HADHA was 
5`-TGGTGACAAGATTTGTGAA-3`. The siRNA sequence 
for the control was 5`-TTCTCCGAACGTGTCACGT-3`.

Animals and treatment

Adenovirus (Adv) vectors were used to drive the expression 
of GFP (Adv-NC) or HADHA (Adv-HADHA) in mouse 
livers. Eight-week-old male C57BL/6 mice were randomly 
divided into 4 groups: the control group was fed a standard 
chow diet; the NAFLD model group was fed a HFD for 8 
weeks (8 w); the HFD + Adv-NC group was fed a HFD for 
6 weeks and then administered 2 × 109 ifu Adv-NC by tail 
vein injection; and the HFD + Adv-HADHA group was fed 
a HFD for 6 weeks and then administered 2 × 109 ifu Adv-
HADHA by tail vein injection. Two weeks after virus injec-
tion, the mice were sacrificed using isoflurane. All animal 
studies were approved by the Animal Care and Use Com-
mittee of Zhejiang University in accordance with the Chi-
nese guidelines for the care and use of laboratory animals.

Western blot assay

RIPA lysis buffer (Thermo Scientific™, 89,900) contain-
ing PMSF (Thermo Scientific™, #36,978) was used to 
lyse L02 cells. The BCA method (Thermo Scientific™, 
#23,225) was used to measure the concentration of the 
protein lysate. After mixing 60 µg of cell lysate with 5× 
sample buffer, SDS–PAGE was used to separate the pro-
teins, and the separated proteins were transferred to a PVDF 
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membrane (Bio-Rad, #162–0177). After blocking with 
4% milk containing 0.1% Tween, the following antibodies 
were added, and the membrane was incubated overnight at 
4 °C: phosphor-MKK3 (1:2000, Cell Signaling Technol-
ogy, #9231), MKK3 (1:2000, Cell Signaling Technology, 
#5674), HADHA (1:2000, Abcam, ab203114), phosphor-
MAPK (1:1000, Cell Signaling Technology, #4370), MAPK 
(1:2000, Cell Signaling Technology, #9102), and GAPDH 
(1:1500, Abcam, ab9485). After washing the membrane 3 
times with PBS solution containing 0.1% Tween, 4% milk 
containing 0.1% Tween and an HRP secondary antibody 
(1:4000; Abcam, ab205718)) were added, and the mem-
brane was incubated for 2 h at room temperature. The mem-
brane was removed, and ECL reagent (Bio-Rad, 170–5060) 
was added to the membrane. The membrane was placed into 
a Micro-Chemi 4.2 imaging system (Bio-Rad). ImageJ soft-
ware was used to perform optical density analysis.

qRT–PCR assays

TRIzol reagent (Invitrogen, #12,183,555) was used to 
extract total RNA. cDNA synthesis was performed using 
a high-capacity cDNA reverse transcription kit (Applied 
Biosystems, #4,368,813). The qRT–PCR experiment was 
performed using a StepOnePlus Real-Time PCR system 
with the SYBR Green experimental method (Applied Bio-
systems). The relative expression of genes was calculated 
by the 2−ΔΔCt method. The qRT–PCR primer sequences and 
related primer sequences are listed in Table 1.

Oil red O staining in L02 cells and liver tissues

Cells on slides were fixed with 4% paraformaldehyde and 
Oil red O staining solution (Nanjing Jiancheng Bioengi-
neering Institute (NJBI), D027) for 15 min, washed in 60% 
isopropanol and counterstained with haematoxylin after 
rinsing in distilled water.

Detection of mitochondrial membrane potential 
(MMP) in L02 cells and liver tissues

Mitochondrial depolarization was analysed with an MMP 
assay kit with JC-1 (Abcam, ab141387) according to the 
manufacturer’s instructions. Mitochondrial JC-1 monomers 
(green) and aggregates (red) were detected by fluorescence 
microscopy and laser confocal microscopy.

Measurement of ROS

L02 cells were inoculated into 6-well plates, transfected 
with siHADHA or siControl for 24 h, and then treated with 
1 mM FFA for 24 h. The cells were incubated with 2ʹ,7ʹ-
dichlorofluorescein diacetate in the dark for 0.5 h in the 
presence or absence of NAC (ROS scavenger N-acetylcys-
teine, 3 mM). The cells were washed to eliminate extracel-
lular DCFH-DA with PBS, and intracellular DCFH-DA was 
transformed into fluorescent dichlorofluorescein (DCF). 
Then, DCF fluorescence of the cells was analysed by flow 
cytometry at 480 nm/520 nm.

Biochemical analysis

The triglyceride (TG, NJBI, A110-1), alanine aminotrans-
ferase (ALT, NJBI, C009-2), aspartate transaminase (AST, 
NJBI, C101-2), adenosine triphosphate (ATP, NJBI, A095), 
hydrogen peroxide (H2O2, NJBI, A064-1), catalase (CAT, 
NJBI, A007-1-1) and total cholesterol (TC, NJBI, A111-1-
1) levels in vivo and in vitro were measured according to the 
manufacturer’s instructions.

Table 1 qRT–PCR primer sequences and related primer sequences
Gene Forward Primer (5`-3`) Reverse Primer 

(5`-3`)
Mus-HADHA TGCATTTGCCGCAGCTTTAC GTTGGCCCA-

GATTTC-
GTTCA

Human-
HADHA

TCAAGCAGGGGAAGGTCA CTGGAG-
GATTCGGAT-
GACTT

Human-
PPARα

GCGAGCTCGCCTCCCTGTT-
GTTTCTA

GCGTCGACG-
GTGGCAT-
CAGTCTTCAT

Human-CPT2 CATACAAGCTACATTTC-
GGGACC

AGCCCG-
GAGT-
GTCTTCAGAA

Human-
GAPDH

TCAAGAAGGTGGT-
GAAGCAGG

TCAAAGGTG-
GAG-
GAGTGGGT

Human-
EHHADH

AAACTCAGACCCGGTT-
GAAGA

TTG-
CAGAGTC-
TAC-
GGGATTCT

Human-
ECHS1

TGTCCTGTTGAGACACTG-
GTG

ACAAAC-
GCGGT-
CATCCCTTC

Human-
HADHB

CTGTCCAGACCAAAAC-
GAAGAA

CGATGCAA-
CAAACCCG-
TAAGC

Human-
HADH

CACACAGTAGTGTTGG-
TAGACC

TGC-
CACTTTCCTA-
AGGCTTTC

Human-
ACOX1

TGTCCTATTTGAACGACCT-
GCCCA

AGGTTC-
CAAGC-
TACCTCCTT-
GCTT

Mus-GAPDH AGGCCGGTGCTGAGTATGTC TGCCT-
GCTTCAC-
CACCTTCT
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Knockdown of HADHA accelerated hepatic steatosis 
in FFA-treated L02 cells

To study the role of HADHA in the pathological process 
of NAFLD, we successfully constructed siHADHA, and 
L02 cells transfected with siHADHA had low expression 
of HADHA protein and mRNA (Fig. 2 A). High levels of 
TG were observed in FFA-treated L02 cells transfected 
with siHADHA (Fig. 2B). In addition, Oil red O staining 
showed increased lipid accumulation in FFA-treated L02 
cells transfected with siHADHA (Fig. 2 C). Decreases in 
the expression of genes associated with lipid metabolism-
related factors, including peroxisome proliferator-activated 
receptor-α (PPARα), carnitine palmitoyl transferase 2 
(CPT2), acyl-CoA oxidase 1 (ACOX1), enoyl-CoA hydra-
tase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), 
enoyl-CoA hydratase, short chain 1 (ECHS1), hydroxyacyl-
CoA dehydrogenase trifunctional multienzyme complex 
subunit beta (HADHB) and hydroxyacyl-CoA dehydroge-
nase (HADH), were detected in FFA-treated L02 cells trans-
fected with siHADHA (Fig. 2D). Collectively, the findings 
above indicated that downregulation of HADHA acceler-
ated lipid accumulation in NAFLD cells.

Inhibition of HADHA accelerated mitochondrial 
dysfunction and oxidative stress in L02 cells

Phosphorylation of MKK3 (p-MKK3) which is the key 
upstream signal of MAPK, increases in the NAFLD liver 
and inhibiting p-MKK3 alleviates hepatic lipid accumula-
tion and exacerbate inflammation 31, 32. Therefore, the reg-
ulatory mechanism of HADHA on the activation of MKK3 
and MAPK was explored. In L02 cells treated with FFA, 

HE staining

Tissue sections were stained with Mayer’s haematoxylin 
staining solution for 5–7 min, washed in ddH2O to turn blue, 
incubated with 1% hydrochloric acid alcohol for differen-
tiation for 2–5 seconds, and washed with ddH2O. After air-
drying, the slides were mounted with neutral gum. Finally, 
the morphologic changes in the liver tissues were observed 
under a light microscope.

Statistical analysis

The data were analysed by SPSS 18.0 and are presented as 
the mean ± SEM (standard error of the mean). Significant 
differences between groups were determined by two-way 
ANOVA followed by Tukey post hoc tests. A P value < 0.05 
was considered to indicate statistical significance.

Results

The expression of HADHA was decreased in FFA-
treated cells and NAFLD mouse liver tissues

To study the potential role of HADHA in the develop-
ment of NAFLD, we measured the expression of HADHA 
in FFA-treated L02 and NAFLD mouse liver tissues. FFA 
treatments inhibited the expression of HADHA in L02 
cells (Fig. 1 A and Fig. 1B). In addition, liver tissues from 
NAFLD patients showed decreases in HADHA mRNA and 
protein levels (Fig. 1 C and Fig. 1D). Together, these results 
demonstrated that HADHA may be related to the progres-
sion of NAFLD.

Fig. 1 The expression of HADHA was decreased in FFA-treated cells 
and liver tissues of NAFLD mice. A-B: HADHA mRNA and protein 
levels in FFA-treated L02 cells were examined by qRT–PCR and 

western blotting. C-D: HADHA mRNA and protein levels in NAFLD 
mouse liver tissues were examined by qRT–PCR and western blotting. 
*P < 0.05 compared with the control group
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HADHA overexpression decreased the TG, TC, ALT and 
AST levels (Fig. 4 A). Oil Red O staining showed that 
NAFLD mouse liver tissues had large numbers of red-
stained lipid droplets and that overexpression of HADHA 
decreased the numbers of red-stained lipid droplets in 
NAFLD mouse liver tissues (Fig. 4B). HE staining showed 
that the liver tissues of the NAFLD mice had increases in 
ballooning and degeneration of hepatocytes and visible 
focal necrosis, while overexpression of HADHA alleviated 
liver tissue lesions in NAFLD mice (Fig. 4 C). The above 
results indicate that upregulation of HADHA alleviated the 
abnormal lipid metabolism and inflammation of NAFLD 
mice.

Upregulation of HADHA alleviated mitochondrial 
dysfunction and oxidative stress in NAFLD mice

Moreover, Adv-HADHA effectively upregulated the 
expression of HADHA while downregulating p-MAPK in 

the expression of p-MKK3 and p-MAPK was increased 
by HADHA inhibition (Fig. 3 A). MAPK regulates oxida-
tive stress, which is related to NAFLD development 17, 
33. Inhibition of HADHA resulted in high ROS produc-
tion (Fig. 3B). Moreover, MMP decreased when HADHA 
was inhibited (Fig. 3 C). In addition, ATP content and CAT 
activity decreased when HADHA was downregulated, 
while H2O2 levels increased when HADHA was downregu-
lated (Fig. 3D). In summary, the regulation of HDAHA in 
NAFLD was associated with MKK3/MAPK activation, 
mitochondrial function, and oxidative stress.

Upregulation of HADHA alleviated hepatic steatosis 
and inflammation in NAFLD mice

To further verify the regulation of HADHA, NAFLD mice 
were fed a HFD for 8 weeks, and Adv-HADHA was used 
for tail vein injection. We found that the TG, TC, ALT and 
AST levels in NAFLD mouse serum were increased, while 

Fig. 2 Knockdown of HADHA accelerated hepatic steatosis in FFA-
treated L02 cells A: L02 cells were transfected with siHADHA or 
siControl for 24 h, and western blotting and qRT–PCR were used to 
analyse the protein and mRNA expression of HADHA. B: L02 cells 
were transfected with siHADHA or siControl for 24 h and then treated 

with 1 mM FFA for 24 h. TG kits were used to measure the TG content. 
C: Oil Red O staining assay detected the accumulation of lipid droplets 
in L02 cells (200×). D: qRT–PCR detected lipid metabolism-related 
gene expression. *P < 0.05 compared with the control group; #P < 0.05 
compared with the FFA + siControl group
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Fig. 3 Inhibition of HADHA accelerated mitochondrial dysfunction 
and oxidative stress in L02 cells A: L02 cells were transfected with 
siHADHA or siControl for 24 h and then treated with 1 mM FFA for 
24 h. The proteins p-MAPK, MAPK, MKK3 and p-MKK3 were exam-
ined by western blotting. B: DCF fluorescence staining was used to 

examine ROS production. C: A JC-1 assay was used to examine MMP 
(400×). D: The levels of H2O2, ATP, and CAT in L02 cells were exam-
ined by biochemical tests. *P < 0.05 compared with the control group; 
#P < 0.05 compared with the FFA + siControl group
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stimulated by FFA markedly promoted lipid accumulation, 
mitochondrial dysfunction, and oxidative stress. In contrast, 
overexpression of HADHA alleviated lipid accumulation, 
liver lesions, and oxidative stress in NAFLD mice. Finally, 
we showed that HFD feeding or FFA administration acti-
vated the MKK3/MAPK pathway, and this activation was 
reversed by downregulation of HADHA. In summary, our 
findings strongly suggest that targeting HADHA with the 
MKK3/MAPK pathway may attenuate NAFLD progression.

Growing evidence has shown that the pathogenesis of 
NAFLD is complicated and involves lipid accumulation, 
oxidative stress, mitochondrial dysfunction, and ER stress 
35, 36, 37, 38. And the activation of MAPK is related to 
hepatic lipid deposition in patients with NASH and the 
pathogenesis of NASH-related fibrosis 37. For example, 
the activating the MAPK pathway exacerbates liver fibro-
sis by inducing inflammatory factor secretion and abnormal 
lipid metabolism 39. Downregulation of MAPK inhibits 
hepatic steatosis and inflammation in L02 cells 40. IL11 
leads to hepatocyte death via NADPH oxidase 4 (NOX4)-
derived ROS and activation of MAPK to impair mitochon-
drial function and inhibit fatty acid oxidation 41. Oleic acid 

the liver tissue of NAFLD mice (Fig. 5 A). In addition, the 
liver weight/body weight ratio decreased when HADHA 
was upregulated (Fig. 5B). Moreover, the levels of H2O2 
and ROS in the NAFLD mice were increased, while the ATP 
activity and MMP were reduced. The H2O2 and ROS levels 
in Adv-HADHA-treated NAFLD mice were reduced, while 
the ATP activity and MMP were increased (Fig. 5 C and 
Fig. 5D). In summary, HADHA improved the pathological 
changes in NAFLD liver tissue.

Discussion

NAFLD, a metabolic disorder with a growing incidence, 
can progress to cirrhosis and liver cancer to threaten human 
life and health, but the mechanism of NAFLD is unclear 
34. Apart from lifestyle changes and weight loss, there is 
a lack of an effective treatment strategy for NAFLD. Here, 
we identified HADHA as a key inhibitor of NAFLD. The 
expression of HADHA mRNA and protein was decreased in 
NAFLD mouse livers and human normal hepatocytes L02 
stimulated by FFA. Knockdown of HADHA in L02 cells 

Fig. 4 Upregulation of HADHA alleviated hepatic steatosis and 
inflammation in NAFLD mice. NAFLD mice were fed a HFD for 8 
weeks, and Adv-NC or Adv-HADHA was used for tail vein injection 
once 2 weeks before sacrifice. A: TG, TC, ALT and AST in NAFLD 
mouse serum were examined by biochemical tests. B: An Oil Red O 

staining assay detected the accumulation of lipid droplets in mouse 
liver tissues (400×). C: An HE staining assay was used to analyse the 
liver tissue lesions of mice (400×). *P < 0.05 compared with the control 
group; #P < 0.05 compared with the HFD + Adv-NC group
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production, TG and H2O2. Moreover, our study showed 
that the expression of p-MAPK was decreased in HFD-
challenged mouse livers when HADHA was overexpressed. 
MKK3, an upstream activator of p38 MAPK, increases 
p-MAPK expression, leading to the phosphorylation of 

upregulates the expression of hepassocin (HPS) to activate 
MAPK, leading to lipid accumulation in HepG2 cells 19. 
Consistent with our research, FFA-treated L02 cells had 
increased p-MAPK levels upon inhibition of HADHA, and 
these increases were accompanied by increases in ROS 

Fig. 5 Upregulation of HADHA alleviated mitochondrial dysfunction 
and oxidative stress in NAFLD mice. NAFLD mice were fed a HFD 
for 8 weeks, and Adv-NC or Adv-HADHA was used for tail vein injec-
tion once 2 weeks before sacrifice. A: The expression of MAPK and 
p-MAPK in mouse liver tissues was examined by western blotting. B: 

The liver weight/body weight ratio was determined. C: H2O2 and ROS 
production were examined. D: ATP activity and MMP were examined. 
*P < 0.05 compared with the control group; #P < 0.05 compared with 
the HFD + Adv-NC group
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MKK-3/6 and upregulation of ERK1/2 in macrophages 
42, 43. In addition, the p-MKK3 protein was upregulated 
by HADHA inhibition in FFA-treated cells. Therefore, 
HADHA can inactivate MKK3/MAPK pathways to protect 
against NAFLD.

HADHA, a fatty acid β-oxidation-related factor, medi-
ates lipid programming to regulate multiple cellular pro-
grams, such as apoptosis, fat metabolism and mitochondrial 
function 26, 44, 45, 46, 47. Increasing research has shown 
the important role of HADHA in metabolic dysfunction in 
the liver. Recent studies have demonstrated that downregu-
lation of HADHA expression is related to oxidative stress, 
hepatic steatosis and mitochondrial function in the liver 
28, 47. Therefore, we hypothesized that HADHA partici-
pates in NAFLD progression to maintain the homeostasis of 
lipid metabolism. CPT2 mediates the β-oxidation of long-
chain acyl-CoA in the mitochondrial matrix 48. Abnormal 
lipid accumulation of hepatocytes increases ALT and AST 
content while decreasing ATP content 49,50. Consistent 
with our research, HADHA showed a positive correlation 
with the expression of CPT2. However, overexpression of 
HADHA decreased the content of H2O2, ALT and AST. 
In summary, HADHA had a protective effect on steatotic 
cells via inhibition of MKK3 activation and MAPK signal-
ling pathways, subsequently alleviating lipid accumulation, 
inflammation, ROS production, and ER stress.

Conclusion

In summary, our study revealed a protective effect of 
HADHA against NAFLD progression. HADHA inhibi-
tion significantly accelerated lipid accumulation, oxidative 
stress, mitochondrial dysfunction, and ER stress by activat-
ing MKK3, which subsequently activated the downstream 
MAPK signalling pathways to promote p-MAPK expres-
sion. Finally, overexpression of HADHA alleviated ste-
atosis and liver damage. Therefore, inhibition of MKK3/
MAPK pathways by HADHA may be an effective treat-
ment for NAFLD. However, considering the complexity of 
NAFLD pathogenesis, more studies to determine new tar-
gets for NAFLD treatments are needed.
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