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Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-
binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved 
in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature 
senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study 
found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature 
reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different 
biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can 
target DDB2.
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Introduction

DDB2 (damage-specific DNA-binding protein 2, also 
known as the p48 subunit) is a DNA repair nuclear pro-
tein encoded by the XPE gene [1–3]. It was originally 
identified as a component of the human damage-specific 
DNA-binding heterodimeric complex UV-DDB, which is 
involved in the early stage of ultraviolet radiation (UV)-
induced nucleotide excision repair (NER) [4, 5]. DDB2 
interacts with DDB1 (damage-specific DNA-binding pro-
tein 1), similar to the CSA (Cockayne-syndrome A) protein 
[6]. UV-DDB forms a larger complex through the binding 
of the DDB1 linker to the cullin 4A (CUL4A)–regulator 
of cullin 1 (ROC1) E3 ubiquitin ligase (CRL) complex 
[7]. DDB2 acts as a substrate receptor in this structure, 
providing substrate specificity capable of recognizing 
lesions induced by UV radiation [8]. DDB2 is ubiquitously 

expressed in human tissues, with a higher expression in 
the testis, kidney, liver, and corneal endothelial cells and 
lower expression in the brain, lung, heart, skin, and muscle 
[9]. Homologs of human DDB2 are only found in mam-
malian species; the mouse DDB2 homolog is only 73% 
identical in amino acid sequence compared to human 
DDB2 [9]. The human DDB2 gene is located on chromo-
some 11p12-p11, with a molecular weight of 48 kDa, and 
encodes a protein composed of 428 amino acids [4, 9]. The 
DDB2 protein contains a terminal seven-bladed WD40 
β-propeller domain (residues 137–454), disordered N-ter-
minal tail, and a helix-loop-helix motif (residues 101–136) 
[10]. The WD40 domain mediates interactions between the 
protein and DNA, while the N-terminal helix-loop-helix 
fragment of DDB2 interacts with the two short repeating 
β-propeller domains of DDB1, which are essential for the 
biological function of DDB2 [2, 10]. P53 can bind to the 
5′-sequence of DDB2 and activate gene expression [11]. 
The P53 protein interacts with BRCA1 (breast cancer-
associated protein 1) to enhance the binding of p53 to 
the DDB2 promoter and induce DDB2 activation [11, 12]. 
In addition, TAp63γ (tumor protein 63 isoform gamma), 
which is structurally similar to p53, can also activate 
DDB2 expression by identifying the same region upstream 
of the transcription start site [13]. Interestingly, DDB2 
can also directly regulate the expression of p53 through 
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a positive feedback loop [14]. Notably, the expression of 
DDB2 is not entirely dependent on p53, as other mecha-
nisms can increase its expression in  p53−/− cells [15]. Roy 
et al. confirmed that ROS could activate the expression of 
DDB2 in a p53-independent manner [1]. In addition, ROS 
is related to the activation of transcription factor AP1 by 
the p38MAPK/JNK pathway, which enhances the binding 
of AP1 to the DDB2 promoter, thereby increasing DDB2 
transcription [1].

The level of DDB2 gradually increases in the mid-
G1-phase, peaks at the G1/S boundary, and then declines 
in the S phase [16]. An analysis of the DDB2 transcrip-
tional regulatory regions revealed core promoter regions 
(located within 220 bp upstream of the transcription start 
site) associated with cell cycle-regulated genes: no TATA 
box, a G/C-rich region, an NF-1 element, and four Sp1 
elements [17]. The Sp1#1 element (+ 29 to − 22) is clos-
est to the transcription start site and is a crucial determi-
nant of promoter activity [17]. Mutations in this element 
resulted in a significant reduction in transcriptional activ-
ity to 17% [17]. Additionally, an E2F element was identi-
fied downstream of the DDB2 transcription start site [9, 
17]. After mutating the E2F sequence (+ 36 to + 43), the 
promoter activity was reduced to 74%, which had a negli-
gible effect on the regulation of DDB2 [17]. DDB2 stimu-
lates the transcriptional activity of the transcription factor 
E2F1, thereby stimulating the expression of multiple target 
genes involved in cell cycle progression [16, 18]. DDB-2 
mediated cell cycle regulation partially involves post-
transcriptional mechanisms. The internal ribosome entry 
site (IRES) element at the 5′-end of the DDB2 mRNA and 
the uracil-rich sequence in the 3′-untranslated region play 
important roles in DDB2 translation [2, 19]. Further stud-
ies revealed that the Cul4A (Cullin 4A) protein induces the 
proteolysis of DDB2 through its ubiquitin ligase function 
during DNA repair [16, 20]. This process is also associ-
ated with the COP9 signalosome [6]. Other studies have 
found that DDB2 degrades the cell cycle-dependent kinase 
(CDK) inhibitors p27 and CDT2 [21, 22]. Recent mech-
anistic studies have revealed that DDB2 also stabilizes 
CDT1 by degrading CDT2 in a PCNA-independent man-
ner and promotes the recruitment of MCM and assembly 
of pre-RC to ensure that DNA replication is initiated in 
the S phase [22].

This article explored the roles of DDB2 in biological 
processes that may affect cancer, including NER, apoptosis, 
and premature senescence. We then summarized multiple 
recent studies describing the regulatory role of DDB2 as an 
oncogene or tumor suppressor gene in different cancers, as 
well as its influence on cancer sensitivity to radiotherapy 
and chemotherapy. In addition, new roles for DDB2 in other 

diseases, including hepatitis, are also discussed. This study 
aims to provide new targets for treating various diseases, 
including cancer, and provide theoretical support for further 
research on DDB2.

The role of DDB2 in NER

NER consists of two distinct sub-pathways, global genome 
NER (GG-NER) and transcription-coupled NER (TC-NER), 
which are the main pathways used to remove massive DNA 
damage in mammals [23]. GG-NER repairs DNA damage 
both in transcribed and non-transcribed DNA strands. The 
XPC-RAD23B complex affects aberration recognition [24], 
and DDB2 specifically binds to the most common UV-dam-
aged DNA damage, including (6–4) pyrimidine-pyrimidine 
ketone photoproducts (6-4PPs) and cyclobutane pyrimidine 
dimers (CPDs), especially critical for the repair of the latter 
[10, 25]. In addition, DDB2 binds to various other forms of 
damaged DNA, including 8-oxoguanine (8-oxoG), abasic 
sites, and single-stranded DNA, and the damage products 
induced by cisplatin, nitrogen mustard, and psoralen [4, 
26]. In contrast, TC-NER occurs only in transcribed DNA 
strands, and RNA polymerase II affects the initial damage 
recognition instead of XPC-RAD23B [9, 24].

Ubiquitination of DDB2

DDB2 is involved in GG-NER [10]. Wakasugi et al. used a 
combination of micropore UV irradiation and immunostain-
ing and found that FLAG-tagged p48 (DDB2) was transferred 
to the UV-irradiated area immediately after irradiation, sug-
gesting that DDB2 participates in the early steps of DNA 
repair [27]. Many NER models are known to involve the 
protein ubiquitination function of DDB2. An initial report 
indicated that DDB2 utilizes its nuclear import function to 
recruit DDB1 into the nucleus and recognize UV-induced 
DNA damage for DNA repair [3]. After damage recognition, 
the Cul4A-DDB1-DDB2 complex recruits XPC to the dam-
age site and ubiquitinates DDB2 [28, 29]. The polyubiquit-
ination of DDB2 results in a decrease in its affinity for DNA 
damage [28]; hence, DDB2 is stimulated to extract from 
DNA by the ubiquitin-dependent segregase p97/VCP, fol-
lowed by proteasome-mediated degradation [30, 31]. During 
this process, the ubiquitination proportion of XPC decreases 
but eventually stabilizes, and its binding ability to DNA is 
enhanced [28, 32]. XPC can relocate from internucleosomal 
DNA fragments to untreated residual UV lesions within the 
nucleosome core particles [33]. Other studies have shown 
that the Cul4A-DDB1-DDB2 complex also monoubiquit-
inates histones H2A25, H3, and H4 at DNA lesion sites and 
promotes histone removal from nucleosomes at the damage 
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site, which contributes to chromatin dedensification to help 
repair factors, such as XPC, enter lesions [34–36].

The SUMOylation and PARylation of DDB2

The post-translational modification of proteins mediated by 
small ubiquitin-related modifiers (SUMOs) is critical for 
maintaining genome stability [37]. SUMOs are covalently 
linked to proteins through ubiquitin-like enzymatic cascade 
activities. A co-immunoprecipitation study demonstrated 
that DDB2 was SUMOylated by the SUMO E3 ligase PIASy 
(a protein inhibitor that activates the STST protein) after 
UV damage [38]. Further screening of the DDB2 sequence 
revealed three potential SUMO modification sites by mutat-
ing lysine residues (Lys5, Lys77, and Lys309) to arginine 
(Arg) [39]. Under UV irradiation, mutations in Lys309 com-
pletely abolished DDB2 modification, whereas mutations in 
Lys5 and Lys77 did not affect UV-induced DDB2 modifica-
tion, suggesting that SUMOylation at Lys309 is functionally 
significant [39]. This modification is necessary to recruit 
XPC to DNA damage sites and regulate the efficient repair 
of CPDs.

In addition, it has been reported that DDB2 is PARylated 
in a PARP-1-dependent manner, which stabilizes UV-DDB 
at the damaged site [40]. Shah et al. used immunoblotting to 
reveal that PARP inhibitors prevent the interaction of DDB2 
with PARP1 or XPC [41]. Further studies have found that 
a lack of PARP-1-mediated DDB2 PARylation results in 
the delayed recruitment of XPC [41]. In summary, ubiq-
uitination, PARylation, and SUMOylation are important 
post-translational modifications (PTMs) that influence the 
NER process. Other studies have speculated that DDB2 may 
be involved in NER through chromatin remodeling at DNA 
damage sites. It has been reported that DDB2 is involved 
in the activation of the SWI/SNF (SWItch/sucrose non-
fermenting) chromatin remodeling complex and the CREB 
(cAMP-response-element-binding protein)-binding protein 
(CBP)/P300 histone acetyltransferase complex. These pro-
cesses play an important role in transcription, replication, 
and DNA repair [42, 43].

DDB2 mediates apoptosis and premature 
senescence

In addition to NER, DDB2 also contributes to cell apopto-
sis and senescence. Mouse embryonic fibroblasts (MEFs) 
and human cells lacking DDB2 expression are resistant to 
apoptosis induced by DNA damage caused by UV irradia-
tion and chemotherapeutic drugs [44, 45]. P21 Waf1/Cip, 
a cyclin-dependent kinase (CDK) inhibitor, acts as a bar-
rier against apoptosis by interacting with the pro-apoptotic 
molecules ASK1, procaspase 3, and caspase 8 [46]. In the 

case of DDB2 depletion, p21 Waf1/Cip1 accumulates in 
cells, blocks apoptosis, and causes S-phase arrest. This 
notion can be verified by the efficient apoptosis observed 
in  DDB2−/−p21−/− mice [47]. Thus, DDB2 ensures efficient 
apoptosis by downregulating p21 expression in DNA-dam-
aged cells. Furthermore, apoptosis may be associated with 
DDB2-induced CDT2 degradation in cancer cells [22].

High levels of p21Waf1/Cip1 were also associated with 
enhanced senescence responses; however, DDB2-deficient 
cells remained resistant to oxidative stress, oncogenic 
effects, and DNA damage-induced senescence even with 
high levels of p21 Waf1/Cip1 [45, 48]. Another study found 
that MEFs isolated from  DDB2−/− embryos lacked p19Arf, 
a key factor in senescence induction. P19Arf overexpression 
rescues the phenotype of senescence-deficient cells [48]. 
Some studies have shown that reducing the expression of 
DDB2 can inhibit the Ras-mediated premature senescence 
response [45]. These results indicate that DDB2 is an essen-
tial mediator of premature senescence. Further studies have 
revealed a positive feedback process between DDB2 and 
reactive oxygen species (ROS). ROS stimulates the expres-
sion of DDB2, then DDB2 restricts the expression of anti-
oxidant genes by modifying the chromatin of MnSOD and 
catalase. This chromatin modification leads to the continu-
ous accumulation of ROS, resulting in premature senescence 
[1, 45, 47]. Interestingly, the increased accumulation of ROS 
caused by high levels of DDB2 is detrimental to the age-
related pathophysiology in the elderly population. Single 
nucleotide polymorphisms (SNPs) of the DDB2 gene have 
been reported to be associated with aging-related degenera-
tive diseases such as arteriosclerosis and neurodegenerative 
disease progressive supranuclear palsy [49, 50].

DDB2 and cancer

DDB2 may also target other proteins for degradation during 
tumor progression and affect several stages of carcinogen-
esis, such as cancer cell proliferation, survival, epithelial-to-
mesenchymal transition, migration and invasion, angiogene-
sis, and cancer stem cell formation. The specific mechanisms 
depend on the type of tumor involved. In this section, we 
focused on the biological effects and potential molecular 
mechanisms of DDB2 on the occurrence and development 
of various cancers. Figures 1 and 2 summarize the roles of 
DDB2 in different cancers.

XPE and skin cancer

Xeroderma pigmentosum (XP) is a rare autosomal reces-
sive inherited disorder associated with defects in the NER 
protein [51]. XP consists of eight complementary groups 
(XPA, XPB, XPC, XPD, XPE, XPF, XPG, and XPV) [52]. 
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Among them, the number of patients with xeroderma pig-
mentosum group E (XPE) is low; currently, approximately 
20 cases have been reported in the literature. Among patients 
with XP, those with XPE have the lowest sensitivity to sun-
light. Compared to patients with XP in the other comple-
ment groups, patients with XPE are 1,000 times more likely 
to develop skin cancer [4, 52]. This type of disease is sig-
nificantly associated with single amino acid substitutions 
or C-terminal truncations induced by DDB2 mutations [53, 
54]. More than ten types of DDB2 mutations are known, 
among which substitution mutations are the most common. 
The most common of these substitution mutations are found 
in exon 7 of the DDB2 gene (refer to Table 1 for further 

detail) [51–60]. Ebru found that changes in the shape, dis-
tribution, and quantity of argyrophilic nucleolar organizing 
region-associated protein (AgNOR) can provide information 
about the diagnosis and prognosis of patients with XPE, 
thereby guiding physicians regarding effective treatment 
strategies [61].

Several studies have reported that the absence of DDB2 
increases the risk of tumor formation in mice after UV 
induction. Yoon et al. found that DDB2-knockout mice are 
more prone to skin cancer after UV exposure than wild-
type mice. DDB2-knockout mice also had a higher chance 
of developing spontaneous tumors, consistent with previous 
observations [44, 62]. Alekseev et al. studied the transgenic 

Fig. 1  Antitumor mechanism of DDB2 in different cancers

Fig. 2  Cancer promoting mechanism of DDB2
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mouse line K14-DDB2 (mice that ectopically express mouse 
DDB2 in their epidermal cells) and found that a high expres-
sion of DDB2 improved the repair of photodamage products 
in skin fibroblasts, delaying and reducing the occurrence 
of skin squamous cell carcinoma, and increased tumor-
free survival [20]. Recent mechanistic studies have shown 
that DDB2 prevents UV-induced skin cancer by increasing 
p53-mediated apoptosis of UV-damaged cells and main-
taining high levels of ROS to induce premature senescence. 
METTL14 was also found to promote m6A (N6-methy-
ladenosine) and YTHDF1 (an m6A reader that promotes 
translation of m6A-modified transcripts)-mediated DDB2 
translation, which promotes GGR to inhibit ultraviolet B 
(UVB) radiation-induced skin carcinogenesis [44, 45, 63]. 
These results suggest the protective role of DDB2 against 
skin tumor formation.

Colorectal cancer (CRC)

The Wnt/β-catenin signaling pathway is crucial in colon car-
cinogenesis [64]. Tumor staining in DDB2-knockout mice 
showed that the expression of the Wnt signaling inhibitor 

RNF43 (ring finger protein 43) decreased and the mRNA 
expression of the Wnt target gene Cdx1 increased [64, 65]. 
Mechanistic research indicated that DDB2 recruits β-catenin 
to the upstream P2/P3 regulatory region of RNF43 to acti-
vate RNF43 by interacting with the H3K27 methylase EZH2 
(zeste homolog enhancer 2) [64, 66]. DDB2 can also activate 
the expression of RNF43 by regulating the interaction of 
the upstream regulatory region of RNF43 with its TCF4-
binding region, which removes the Wnt receptor FZD5 from 
the cell surface and ultimately downregulates Wnt signaling 
in CRC cells [64]. These findings show that DDB2 inhibits 
colon cancer development by suppressing the Wnt signaling 
pathway.

Recently, Yang et al. detected 300 CRC, 300 adjacent, 
and 214 normal tissues and found that the protein expres-
sion of DDB2 in CRC tissues was higher than in non-tumor 
and adjacent tissues [67]. In addition, low DDB2 expres-
sion was found in colon cancer of the T3-T4 stage and infil-
trative growth type, similar to the tendency of decreased 
DDB2 expression in high-grade colon cancer found by Roy 
et al.[68] Survival analysis showed that high DDB2 expres-
sion was associated with good survival in colorectal cancer 

Table 1  Summary of DDB2 mutations in XPE patients

Date Patient Origin Nucleotide (Exon) Amino Acid Zygosity References

1970 34F XP2RO Netherlands c.818 G>A (Ex 6) p. Arg273His Homozygous [55]
1970 29F XP3RO Netherlands c.818 G>A (Ex 6) p. Arg273His Homozygous [55]
1996 41F XP82TO Japan c.730 A>G (Ex 6) p. Lys244Glu Homozygous [53]
1999 62F Ops1 Japan c.937 C>T (Ex 7) p. Arg313X Homozygous [54]
2003 21F GM01389 USA c.1049 T>C 

(Ex 8)/c.1045_1047del (Ex 8)
p. Leu350Pro/p. Asn349del Heterozygous/Heterozygous [56]

2003 18M XP23PV Italy c.703_1023del (del. Ex 6 and 
7)

p. Leu235_Lys341del Homozygous [56]

29F XP25PV c.919 G>T (Ex 7)/c.918 G>A 
(Ex 7)

p. Asp307Tyr/No change Homozygous/Homozygous [56]

35F XP27PV c.730_733del (Ex 
6)/c.703_880del. (Ex 
6)/c.703_1023del (Ex 
6 and 7)

p. Lys244X/p.
Trp236Valfs*10/p. 
Leu235_Lys341del

Homozygous/Homozygous/
Homozygous

[56]

2007 A 12-year-old boy Finland c.574 C>T (Ex 3) p. Arg192X Homozygous [57]
2011 45F XP37BE USA c.818 G>A (Ex 6) p. Arg273His Homozygous [58]
2011 43M XP66BE USA c.818 G>A (Ex 6) p. Arg273His Homozygous [58]
2011 45M XP1GO German c.914 C>A (Ex 7) p. Thr305Asn Homozygous [58]
2011 53F XP408BE USA c.1049 T>C (Ex 8) p. Leu350Pro [58]
2016 49F XP105BR Caucasian  c.1070 C>T (Ex 7)/c.716 G>T 

(Ex 4)
p. Pro357Leu/p. Arg239Ile Heterozygous/Heterozygous [51]

2016 62F XP98BR Caucasian c.161 G>A (Ex 1) p. Trp54X Homozygous [51]
2016 62F XP100BR Caucasian c.457–2 A>C (Ex 3) Splice Homozygous [51]
2016 30F XP115BR Pakistani c.1149delG(Ex 7) p. Met383fs Homozygous [51]
2017 XP51-MAH-1 Tunisian c.1138delG(Ex 7) p. Lys381Argfs*2 Homozygous [59]
2020 18F, 5F, 11F Iraqi c.1063 C>T (Ex 8) p. Arg355Ter Homozygous [52]
2020 28F China c.111_112del(Ex 1) p. A39Efs*6 Homozygous [60]
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patients (adjusted HR 0.20, 95% CI 0.06–0.72, P = 0.014) 
and female colorectal cancer patients (adjusted HR 0.27, 
95% CI 0.08–0.92, P = 0.036) [67]. Epithelial-mesenchymal 
transition (EMT) is fundamental to the malignant progres-
sion of cancer [69]. Roy et al. found that DDB2-knockout 
mice had a higher incidence of lung and liver metastases 
[68]. The loss of DDB2 promotes the development of meta-
static colon cancer and transformation to a mesenchymal 
phenotype, increasing the expression of mesenchymal mark-
ers N-cadherin and vimentin and decreasing the expression 
of E-cadherin. DDB2 can also lead to the trimethylation of 
VEGF, Zeb1, and Snail promoter histone H3K9 by recruit-
ing the histone methyltransferase Suv39h and transcrip-
tionally repressing the expression of these EMT-inducing 
genes [68]. However, in metastatic colon cancer, DDB2 is 
repressed by the overexpression of miR-675-5p, allowing 
EMT-related gene expression [70]. Therefore, we speculate 
that miR-675-5p is expected to become a potential new tar-
get for the treatment of metastatic colon cancer. In addition, 
the primary function of DDB2 in regulating EMT is con-
served in different types of tumors; hence, DDB2 expression 
in tumors may serve as a predictor of EMT progression [68, 
71].

Gastric cancer (GC)

Machlowska et al. performed high-throughput sequencing in 
patients with GC and revealed that DDB2 (rs326212) con-
tributes to gastric carcinogenesis [72]. Through colony for-
mation and MTT assays, we found that the proliferation abil-
ity of DDB2-knockout GC cells was significantly decreased 
[73]. In addition, the results of Transwell and wound-heal-
ing assays showed that the migration ability of cells in the 
DDB2-knockout group was significantly limited [73]. In 
contrast, the knockout of PAQR3 (progestin and adipoQ 3) 
rescued the effects of DDB2 deletion on cell proliferation 
and migration.[73] As a newly discovered tumor suppressor, 
the function of PAQR3 is mainly due to its negative modu-
latory roles in Raf/MEK/ERK signaling pathway [74]. The 
N-terminal amino acid residues 40–60 of the PAQR3 recep-
tor interact with the WD domain of DDB2. DDB2 targets 
Lys61 of PAQR3 for ubiquitination and degradation, which 
alters its protein expression level [73]. In addition, DDB2 
alters the regulation of PAQR3 on EGF (epidermal growth 
factor (EGF) and insulin-initiated cell signaling [73]. These 
results suggest that DDB2 plays an active role in gastric 
carcinogenesis by regulating PAQR3 expression. In addi-
tion, detection of NER pathway polymorphisms, such as in 
DDB2 and XPC, may be applied to future GC risk prediction 
algorithms to provide personalized prevention strategies for 
GC [75].

Head and neck squamous cell carcinoma (HNSCC)

Hypoxia activates the expression of genes involved in EMT 
and metabolic reprogramming, including ZEB1, TWIST, 
SNAIL, and VEGF, in multiple cancers by stabilizing and 
inducing hypoxia-inducible transcription factors (HIFs) 
[76, 77]. DDB2 is upregulated under hypoxic conditions. 
A Kaplan–Meier analysis of data from 81 patients with 
HNSCC from a publicly available dataset (Oncomine) 
showed that patients with higher DDB2 expression had 
longer survival than those with lower DDB2 expression, 
which was significant at an alpha level of 0.05 (log-rank 
P = 0.0404) [71]. Bommi et al. found that DDB2 regulates 
multiple hypoxic signaling genes by downregulating HIF1α 
expression in HNSCC, preferentially inhibiting the expres-
sion of TGFB2 mRNA (transforming growth factor B2 
mRNA), the primary regulator of Snail and Zeb1 [78]. The 
DDB2 homology element in the HIF1A promoter matched 
(90%) with DDB2-binding core sequences in the MnSOD 
and BCL2 promoters [79, 80]. Furthermore, the epigenetic 
regulation patterns of the HIF1A promoter by DDB2 and 
Suv39h1 via histone-marked H3K9Me3 were similar to the 
constitutive repression of DDB2-mediated EMT-related 
regulators in colon adenocarcinoma cells [68]. These results 
highlight the antitumor effect of DDB2 and suggest its thera-
peutic value in HNSCC.

Ovarian cancer (OC)

Cancer stem cells (CSCs) are the most important trigger for 
the occurrence and progression of many cancers, including 
OC [81]. Several studies have shown that DDB2 inhibits 
the NF-kB pathway and the activity of stem cell markers, 
acetaldehyde dehydrogenase (ALDH+) or CD44+CD117+, 
to reduce the abundance of ovarian CSCs, elucidating a new 
mechanism for the DDB2-induced inhibition of cancer cell 
tumorigenicity [82]. Han et al. found that the inhibition 
of the NF-κB pathway is partly due to the DDB2-induced 
upregulation of IκBα expression (an inhibitor of NF-κB) in 
OC cells and ovarian CSCs, which inhibits the self-renewal 
ability of ovarian CSCs and eventually leads to tumor pro-
gression disorder. The results of Ennen et al. are consistent 
with this finding [82, 83]. Another study found that DDB2 
binding to the ALDH1A1 promoter leads to the enrichment 
of histone H3K27me3 or directly competes with the tran-
scription factor C/EBPβ, inhibiting ALDH1A1 promoter 
activity during the process [84]. Cui et al. suggested that 
DDB2 abrogates ovarian CSC properties and inhibits dedif-
ferentiation by downregulating ALDH1A1 expression [84]. 
Neural progenitor cell expression developmental downregu-
lated gene 4-Like (NEDD4L) is a newly discovered target 
gene of DDB2 [85]. High expression of NEDD4L is associ-
ated with poor prognosis in patients with advanced OC [85]. 
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It can inhibit transforming growth factor signaling through 
the targeted activation of Smad2/Smad3 degradation [85]. In 
addition, the study demonstrated that DDB2 also enhances 
transforming growth factor-β (TGF-β) signaling by inhibit-
ing the transcription of NEDD4L, showing antiproliferative 
properties in an in vitro OC model [86]. Here, the TGF-β-
induced phosphorylation of Smad2 is significantly increased, 
and cells respond to TGF-β-induced cell growth inhibition. 
Therefore, DDB2 plays a protective role as a tumor suppres-
sor gene in the onset and development of OC.

Prostate cancer (PC)

A recent study found higher expression levels of nuclear 
receptor-interacting protein (NRIP) and androgen receptor 
(AR) and lower DDB2 expression in PC tissues than in non-
tumor tissues. NRIP is an androgen-regulated gene belong-
ing to the CUL4-DDB1-binding protein family (DCAFs), 
such as DDB2 [87]. Chang et al. demonstrated that DDB2 
interacts with the AR, resulting in its ubiquitination and 
proteasomal degradation. NRIP competes with DDB2 for 
binding to the HBD (C-terminal hormone-binding domain) 
of AR in the AR-DDB2-DDB1-CUL4A complex, protect-
ing the AR [87]. Several studies have demonstrated that PC 
is closely associated with AR [88, 89]. As the expression 
level of DDB2 in PC tissues is lower than in non-tumor 
tissues, the balance between NRIP and DDB2 is disrupted. 
The homeostasis of the AR is then disturbed, which may 
trigger AR-dependent PC. These studies suggest DDB2 as 
a potential therapeutic target for PC.

Breast cancer (BC)

It has been reported that a low expression of DDB2 promotes 
the invasion and metastasis of BC [83]. Relevant mechanis-
tic studies have shown that DDB2 decreases NF-κB activity 
and the expression of matrix metalloproteinase 9 (MMP9) 
by upregulating IκBα gene expression, limiting cancer cell 
invasiveness [83].

Interestingly, despite The Cancer Genome Atlas (TCGA) 
data suggesting that DDB2 mRNA expression levels are 
positively correlated with long-term survival in patients 
with BC, Kattan and colleagues found that the knockdown 
of DDB2 could decrease proliferation and colony formation 
in MCF7 cells. In contrast, DDB2 overexpression promoted 
cell growth and colony formation in MDA-MB231 cells 
[43]. Their study showed that DDB2 functions as an onco-
gene in BC. However, this hypothesis needs to be validated 
in other breast cancer cell lines.

DDB2 acts as a co-activator in E2F1-mediated transcrip-
tional activation, promoting cell cycle progression, espe-
cially during entry into the S phase [43]. E2F1 is a prolif-
eration marker of BC [90]. DDB2 indirectly regulates the 

expression of critical genes involved in DNA replication 
and the G1/S transition with E2F1 transcriptional capaci-
ties, such as DHFR, cyclin E, and PCNA [18, 91]. In addi-
tion, DDB2 stimulates cell growth via the transcriptional 
repression of MnSOD [80]. DDB2 interacts with the spe-
cific DNA sequence AGC CTG CAG CCT  in the proximal 
promoter of SOD2 (superoxide dismutase 2), resulting in 
the removal of H3 histone acetylation and recruitment of the 
AP-2α transcription factor. This inhibits the expression of 
the SOD2 gene and downregulates the constitutive expres-
sion of MnSOD, which in turn causes the accumulation of 
ROS involved in the activation of various signaling pathways 
in BC cell growth [80].

In addition, Barbieux et al. used atomic force microscopy 
(AFM) technology to demonstrate that the DDB2 protein is 
involved in early BC cell metastasis events by promoting 
cortical actin cytoskeleton remodeling and inducing changes 
in adhesion-related gene expression to reduce cell adhesion 
[92]. Therefore, DDB2 could be used as a novel marker of 
metastatic progression in BC.

DDB2 influences sensitivity 
to chemotherapy and radiotherapy

Given the role of DDB2 in DNA repair, its deletion increases 
the sensitivity of breast cancer, HNSCC, and other cancer 
cells to genotoxic therapies such as PARPi (ADP-ribose 
polymerase inhibitors), the chemotherapeutic drug cispl-
atin, and radiotherapy [93]. Zhao et al. found that a loss 
of DDB2 increased the polyubiquitination and proteasome 
degradation of Rad51, inhibited the homologous recombina-
tion repair (HR) pathway, and made TNBC cells more sensi-
tive to DNA damage treatment [94]. It is worth noting that 
ER-positive breast cancer cells are not sensitive to chemo-
therapy, which may be related to the ERα-mediated upregu-
lation of DDB2 expression. Recent studies have revealed 
that ERα induces chemoresistance in BC cells with p53 
mutations. ERα upregulates impaired DDB2 transcription 
by hijacking mutp53, thereby inhibiting the expression of 
lincRNA-p21 by targeting non-B-DNA structures and pro-
moting subsequent DNA repair and chemoresistance [95]. 
Inducing lincRNA-p21 and targeting DDB2 will increase 
chemosensitivity in patients with mutp53 BC.

Chemotherapy resistance has always been a challeng-
ing obstacle for patients with cancer to achieve satisfactory 
therapeutic effects. However, the ability to escape apoptosis 
caused by the dysregulated expression of apoptotic factors 
appears to be essential for OC cells to acquire chemore-
sistance. In contrast to BC, DDB2 deficiency causes OC 
cells to acquire cisplatin resistance [96]. DDB2 and DDB1 
synergistically inhibited Bcl-2 transcription. This process 
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involves DDB2 recognition and binding to the BCP1 site 
at the 5′-end of the Bcl-2 P1 promoter. DDB1 associates 
with DDB2 then recruits HDAC1 (histone deacetylase 1) to 
the P1 core region located 2.2 kb downstream of BCP1 to 
deacetylate histone H3K9,14, inhibiting Bcl-2 transcription, 
stimulating the P53-independent apoptosis of cancer cells, 
and mediating the sensitivity of OC cells to chemotherapy 
[79].

Radiotherapy plays a crucial role in cancer treatment. 
However, unexpected radiotherapy resistance is observed 
in many patients during treatment, resulting in suboptimal 
treatment outcomes. Although there are several studies on 
cancer radiation resistance, its potential underlying mecha-
nisms remain unclear given the heterogeneity of tumors and 
the role of multiple factors in this phenomenon. It has been 
reported that DDB2 is a potential regulator of radiosensitiv-
ity in non-small cell lung cancer (NSCLC) cells. Under ion-
izing radiation (IR), the level of DDB2 transiently increases 
and promotes phosphorylation of the G2-blocker mediator 
Chk1, enhancing the activity of the DNA double-strand 
break (DSB) homologous recombination repair pathway, 
inhibiting cancer cell apoptosis, and ultimately leading to 
radiation resistance in NSCLC [97]. In addition, Sun et al. 
found that DDB2 overexpression could induce the expres-
sion of the anti-apoptotic protein cFLIP (cell membrane-like 
inhibitory protein) in cisplatin-resistant HeLa cells, partially 
inhibit TNF-induced apoptosis, and increase the UV resist-
ance in HeLa cells [98]. These results suggest that DDB2 
can be used to predict chemoradiotherapy sensitivity.

Novel discovery: role of DDB2 in other 
diseases

The hepatitis B virus (HBV) relies on the host DNA repair 
mechanism to convert virus-relaxed circular DNA (rcDNA) 
into covalently closed circular DNA (cccDNA) in the 
nucleus [99]. Marchetti et al. found that UV-DDB, espe-
cially the binding activity of DDB2 to DNA and DDB1, 
and its ubiquitination activity, play an indispensable role in 
HBV infection [100]. DDB2 must combine with DDB1 to 
scan the nuclear HBV rcDNA, sense DNA damage, and be 
ubiquitinated to transfer the rcDNA to the next factor in the 
cccDNA formation pathway. CccDNA formation was sig-
nificantly blocked in HepG2-NTCP-DDB2-knockout cells, 
and the expression of downstream cccDNA markers, such 
as HBV RNA, HBcAg, and HBeAg, was likewise reduced. 
DDB2 recruits ATR kinases to UV-damaged DNA sites to 
initiate the DNA damage response (DDR) involved in form-
ing CM-rcDNA, a hypothetical intermediate precursor for 
cccDNA formation [5, 101]. Therefore, DDB2 plays a vital 
role in cccDNA formation and further improves antiviral 
treatments against hepatitis B.

Qiu et  al. found that the DDB2 miRNA target SNP 
rs1050244 CT/TT genotype was correlated with a reduced 
risk of hepatocellular carcinoma (HCC) in non-HBV-
infected people [102]. It is speculated that the DDB2 SNP 
rs1050244 may interfere with the targeted interaction of 
miRNAs (miR-133a and miR197), resulting in the upregu-
lation of DDB2 mRNA expression, thereby reducing an indi-
vidual’s susceptibility to HCC. However, this result needs to 
be confirmed through functional experiments.

In addition, by studying the colocalization signals in dif-
ferent brain regions and immune cells expressing quantita-
tive characteristic loci, Tietz et al. found that DDB2 may 
be the pathogenic gene that causes anti-NMDAR receptor 
(antiNMDAR) encephalitis [103].

Concluding remarks and outlook

In this review, we found that DDB2 might target other pro-
teins for degradation and affect many biological processes, 
including DNA damage repair, DNA replication, and car-
cinogenesis. As another subunit of the DDB protein com-
plex, DDB1 is a tumor-promoting factor, and its expression 
is upregulated in pancreatic cancer, liver cancer, and osteo-
sarcoma. Its mechanism may be related to the promotion of 
cell cycle progression by regulating two key factors, p21 (a 
CDK2 inhibitor) and CDK2 (cyclin-dependent kinase 2), 
and the enhancement of EMT by upregulating SNAI1 and 
ZEB1 [6, 104–106]. However, DDB2 plays a dual role in 
carcinogenesis by regulating the growth and apoptosis of 
cancer cells. It also has a broader role than DDB1, since it 
may play a more important role in the prognosis and predic-
tive biomarkers of cancer. DDB2 levels may also affect the 
effectiveness of anticancer drugs in cancer treatment and 
be used as a prognostic factor for the sensitivity of patients 
with cancer to chemoradiotherapy. Further research in these 
aspects will broaden our understanding of the multifaceted 
functions of DDB2 and provide new strategies for treating 
other human diseases, such as hepatitis. At present, research 
on DDB2 is not extensive enough, and joint efforts are still 
needed to explore the broader prospects of this protein.
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