Skip to main content

Advertisement

Log in

Lower expression of the equine maternally imprinted gene IGF2R is related to the slow proliferation of hinny embryonic fibroblast in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Proliferation of embryonic fibroblasts under the same cell culture conditions, hinny embryonic fibroblasts (HiEFs) was slower than horse embryonic fibroblast (HEFs), donkey embryonic fibroblasts (DEFs) and mule embryonic fibroblasts (MuEFs). The imprinted genes IGF2 and IGF2R are important for cell proliferation. Therefore, we investigated whether the slower proliferation of HiEFs is related to an aberrant gene expression of IGF2 or its receptors or genes influencing the expression of the IGF2 system.

Methods and Results

Real-time polymerase chain reaction, immunofluorescence and cell starving experiment in HEFs, DEFs, MuEFs and HiEFs revealed that the slower proliferation of HiEF in vitro was related to its lower expression of IGF2R (P < 0.001). Moreover, quantification of allele-specific expression and bisulfate assay confirmed that in both MuEFs and HiEFs, IGF2R had normal maternal imprinting, implying that the imprint aberrant was not involved in the lower IGF2R expression in HiEFs.

Conclusions

The reduction of IGF2R expression in HiEFs is associated with its slower proliferation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575. https://doi.org/10.1038/nrg3032

    Article  CAS  Google Scholar 

  2. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183. https://doi.org/10.1016/0092-8674(84)90313-1

    Article  CAS  Google Scholar 

  3. Li HW, Tsao SW, Cheung AN (2002) Current understandings of the molecular genetics of gestational trophoblastic diseases. Placenta 23:20–31. https://doi.org/10.1053/plac.2001.0744

    Article  Google Scholar 

  4. Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87. https://doi.org/10.1038/349084a0

    Article  CAS  Google Scholar 

  5. Hughes J, Surakhy M, Can S, Ducker M, Davies N, Szele F, Buhnemann C, Carter E, Trikin R, Crump MP, Frago S, Hassan AB (2019) Maternal transmission of an Igf2r domain 11: IGF2 binding mutant allele (Igf2r(I1565A)) results in partial lethality, overgrowth and intestinal adenoma progression. Sci Rep 9:11388. https://doi.org/10.1038/s41598-019-47827-9

    Article  CAS  Google Scholar 

  6. Chaillet JR, Vogt TF, Beier DR, Leder P (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66:77–83. https://doi.org/10.1016/0092-8674(91)90140-t

    Article  CAS  Google Scholar 

  7. Ueda T, Yamazaki K, Suzuki R, Fujimoto H, Sasaki H, Sakaki Y, Higashinakagawa T (1992) Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis. Development 116:831–839. https://doi.org/10.1242/dev.116.4.831

    Article  CAS  Google Scholar 

  8. Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, Cedar H (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12:3669–3677. https://doi.org/10.1002/j.1460-2075.1993.tb06041.x

    Article  CAS  Google Scholar 

  9. Stoger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71. https://doi.org/10.1016/0092-8674(93)90160-r

    Article  CAS  Google Scholar 

  10. Lerchner W, Barlow DP (1997) Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo. Mech Dev 61:141–149. https://doi.org/10.1016/s0925-4773(96)00630-2

    Article  CAS  Google Scholar 

  11. Latos PA, Stricker SH, Steenpass L, Pauler FM, Huang R, Senergin BH, Regha K, Koerner MV, Warczok KE, Unger C, Barlow DP (2009) An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias. Development 136:437–448. https://doi.org/10.1242/dev.032060

    Article  CAS  Google Scholar 

  12. Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5:74–78. https://doi.org/10.1038/ng0993-74

    Article  CAS  Google Scholar 

  13. Torrente Y, Bella P, Tripodi L, Villa C, Farini A (2020) Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy. Cells 9. https://doi.org/10.3390/cells9020441

  14. Hernandez L, Kozlov S, Piras G, Stewart CL (2003) Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc Natl Acad Sci U S A 100:13344–13349. https://doi.org/10.1073/pnas.2234026100

    Article  CAS  Google Scholar 

  15. Liu SB, Zhou LB, Wang HF, Li G, Xie QP, Hu B (2020) Loss of IGF2R indicates a poor prognosis and promotes cell proliferation and tumorigenesis in bladder cancer via AKT signaling pathway. Neoplasma 67:129–136. https://doi.org/10.4149/neo_2019_190206N108

    Article  CAS  Google Scholar 

  16. Ou JM, Lian WS, Qiu MK, Dai YX, Dong Q, Shen J, Dong P, Wang XF, Liu YB, Quan ZW, Fei ZW (2014) Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol 45:1241–1249. https://doi.org/10.3892/ijo.2014.2512

    Article  CAS  Google Scholar 

  17. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, Belicchi M, Erratico S, D’Ursi P, Bianco F, Legato M, Ruocco C, Sitzia C, Sangiorgi S, Villa C, D’Antona G, Milanesi L, Nisoli E, Mauri P, Torrente Y (2020) Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med 12:e11019. https://doi.org/10.15252/emmm.201911019

    Article  CAS  Google Scholar 

  18. Fargeas CA, Florek M, Huttner WB, Corbeil D (2003) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596. https://doi.org/10.1074/jbc.M210640200

    Article  CAS  Google Scholar 

  19. Spicer LJ, Aad PY (2007) Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biol Reprod 77:18–27. https://doi.org/10.1095/biolreprod.106.058230

    Article  CAS  Google Scholar 

  20. Zaina S, Squire S (1998) The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem 273:28610–28616. https://doi.org/10.1074/jbc.273.44.28610

    Article  CAS  Google Scholar 

  21. Wolf JB, Oakey RJ, Feil R (2014) Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications. Heredity (Edinb) 113:167–175. https://doi.org/10.1038/hdy.2014.11

    Article  CAS  Google Scholar 

  22. Perrino BA, Xie Y, Alexandru C (2021) Analyzing the Integrin Adhesome by In Situ Proximity Ligation Assay. Methods Mol Biol 2217:71–81. https://doi.org/10.1007/978-1-0716-0962-0_7

    Article  CAS  Google Scholar 

  23. Vrana PB, Guan XJ, Ingram RS, Tilghman SM (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20:362–365. https://doi.org/10.1038/3833

    Article  CAS  Google Scholar 

  24. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749. https://doi.org/10.1038/39631

    Article  CAS  Google Scholar 

  25. Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176:1059–1088. https://doi.org/10.1534/genetics.106.065979

    Article  Google Scholar 

  26. Wang X, Miller DC, Harman R, Antczak DF, Clark AG (2013) Paternally expressed genes predominate in the placenta. Proc Natl Acad Sci U S A 110:10705–10710. https://doi.org/10.1073/pnas.1308998110

    Article  Google Scholar 

  27. Gelman MS, Ye XK, Stull R, Suhy D, Jin L, Ng D, Than B, Ji M, Pan A, Perez P, Sun Y, Yeung P, Garcia LM, Harte R, Lu Y, Lamar E, Tavassoli R, Kennedy S, Osborn S, Chin DJ, Meshaw K, Holzmayer TA, Axenovich SA, Abo A (2004) Identification of cell surface and secreted proteins essential for tumor cell survival using a genetic suppressor element screen. Oncogene 23:8158–8170. https://doi.org/10.1038/sj.onc.1208054

    Article  CAS  Google Scholar 

  28. Chappell SA, Walsh T, Walker RA, Shaw JA (1997) Loss of heterozygosity at the mannose 6-phosphate insulin-like growth factor 2 receptor gene correlates with poor differentiation in early breast carcinomas. Br J Cancer 76:1558–1561. https://doi.org/10.1038/bjc.1997.596

    Article  CAS  Google Scholar 

  29. Jang HS, Kang KM, Choi BO, Chai GY, Hong SC, Ha WS, Jirtle RL (2008) Clinical significance of loss of heterozygosity for M6P/IGF2R in patients with primary hepatocellular carcinoma. World J Gastroenterol 14:1394–1398. https://doi.org/10.3748/wjg.14.1394

    Article  CAS  Google Scholar 

  30. Oka Y, Waterland RA, Killian JK, Nolan CM, Jang HS, Tohara K, Sakaguchi S, Yao T, Iwashita A, Yata Y, Takahara T, Sato S, Suzuki K, Masuda T, Jirtle RL (2002) M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology 35:1153–1163. https://doi.org/10.1053/jhep.2002.32669

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Natural Science Foundation of Inner Mongolia Autonomous Region (2019ZD03), the Research project on Applied Technology in Inner Mongolia Autonomous Region (2019GG242), and Youth Fund Project of College of Animal Science, Inner Mongolia Agricultural University (BZCG202112).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, X.W., G.B. and M.D.; sampling, X.W., T.D., Y.S., N.A., H.R., M.W., A.B., T.U.; methodology, X.W., G.B., M.Y., B.Z.; software, X.W., G.B.; formal analysis, X.W.; writing— original draft preparation, X.W.; writing—review and editing, X.W., G.B.; supervision, G.B., B.L.; project administration, G.B., M.D.; funding acquisition, M.D., G.B. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Manglai Dugarjav or Gerelchimeg Bou.

Ethics declarations

Ethical animal research

Inner Mongolia Agricultural University Ethics Committee approved the study.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xisheng Wang and Nairag Asgenbaatar authors contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Asgenbaatar, N., Shen, Y. et al. Lower expression of the equine maternally imprinted gene IGF2R is related to the slow proliferation of hinny embryonic fibroblast in vitro. Mol Biol Rep 50, 185–192 (2023). https://doi.org/10.1007/s11033-022-07937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07937-6

Keywords

Navigation