Skip to main content

Advertisement

Log in

The interplay between HLA-B and NLRP3 polymorphisms may be associated with the genetic susceptibility of gout

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

HLA and NLRP3 play an important role in the development of various autoimmune and autoinflammatory diseases. Gout is an autoinflammatory disease associated with multiple genetic and environmental factors. The objective of the present study was to evaluate the interaction and association between genetic polymorphisms of HLA-B and the NLRP3 gene in Mexican patients with gout.

Methods and results

Eighty-one patients with gout were included and compared with 95 healthy subjects. The polymorphisms rs4349859, rs116488202, rs2734583 and rs3099844 (within the HLA-B region) and rs3806268 and rs10754558 of the NLRP3 gene were genotyped using TaqMan probes in a Rotor-Gene device. The interactions were determined using the multifactorial dimensionality reduction (MDR) method, while the associations were determined through logistic regression models. The MDR analysis revealed significant interactions between the rs116488202 and rs10754558 polymorphisms with an entropy value of 4.31% (p < 0.0001). Significant risk associations were observed with rs4349859 and rs116488202 polymorphisms (p < 0.01); however, no significant associations were observed with the polymorphisms of the NLRP3 gene.

Conclusions

The results suggest that HLA-B polymorphisms and their interaction with NLRP3 may contribute to the genetic susceptibility of gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Luo Y, Wang L, Peng A, Liu JY (2018) Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology (Oxford) 58:345–351. https://doi.org/10.1093/rheumatology/key284

    Article  CAS  Google Scholar 

  2. Zamudio-Cuevas Y, Martínez-Nava GA, Martínez-Flores K, Ventura-Ríos L, Vazquez-Mellado J, Rodríguez-Henríquez P, Pineda C, Franco-Cendejas R, Lozada-Pérez CA, Fernández-Torres J (2021) Synovial fluid analysis for the enhanced clinical diagnosis of crystal arthropathies in a tertiary care institution. Clin Rheumatol 40:3239–3246. https://doi.org/10.1007/s10067-021-05610-0

    Article  PubMed  Google Scholar 

  3. Reginato AM, Mount DB, Yang, Choi HK (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8:610–621. https://doi.org/10.1038/nrrheum.2012.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh JA, Reddy SG, Kundukulam J (2011) Risk factors for gout and prevention: a systematic review of the literature. Curr Opin Rheumatol 23:192–202. https://doi.org/10.1097/BOR.0b013e3283438e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qing YF, Zhang QB, Zhou JG (2013) Innate immunity functional gene polymorphisms and gout susceptibility. Gene 524:412–414. https://doi.org/10.1016/j.gene.2013.04.039

    Article  CAS  PubMed  Google Scholar 

  6. So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13:639–647. https://doi.org/10.1038/nrrheum.2017.155

    Article  CAS  PubMed  Google Scholar 

  7. Yang Q, Guo CY, Cupples LA, Levy D, Wilson PW, Fox CS (2005) Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism 54:1435–1441. https://doi.org/10.1016/j.metabol.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Merriman TR (2015) An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther 17:98. https://doi.org/10.1186/s13075-015-0609-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi HK, Zhu Y, Mount DB (2010) Genetics of gout. Curr Opin Rheumatol 22:144–151. https://doi.org/10.1097/BOR.0b013e32833645e8

    Article  PubMed  Google Scholar 

  10. Wu R, Cheng YJ, Zhu LL, Yu L, Zhao XK, Jia M, Wen CH, Long XZ, Tang T, He AJ, Zeng YY, Ma ZF, Zheng Z, Ni MZ, Cai GJ (2016) Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget 7:81870–81879. https://doi.org/10.18632/oncotarget.13250

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, Lin YL, Lan JL, Yang LC, Hong HS, Chen MJ, Lai PC, Wu MS, Chu CY, Wang KH, Chen CH, Fann CS, Wu JY, Chen YT (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 102:4134–4139. https://doi.org/10.1073/pnas.0409500102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee Y, Hwang J, Desai SH, Li X, Jenkins C, Kopp JB, Winkler CA, Cho SK (2022) Efficacy of xanthine oxidase inhibitors in lowering serum uric acid in chronic kidney disease: a systematic review and meta-analysis. J Clin Med 11:2468. https://doi.org/10.3390/jcm11092468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tohkin M, Kaniwa N, Saito Y, Sugiyama E, Kurose K, Nishikawa J, Hasegawa R, Aihara M, Matsunaga K, Abe M, Furuya H, Takahashi Y, Ikeda H, Muramatsu M, Ueta M, Sotozono C, Kinoshita S, Ikezawa Z, Japan Pharmacogenomics Data Science Consortium (2013) A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J 13:60–69. https://doi.org/10.1038/tpj.2011.41

    Article  CAS  PubMed  Google Scholar 

  14. Saksit N, Nakkam N, Konyoung P, Khunarkornsiri U, Tassaneeyakul W, Chumworathayi P, Kanjanawart S, Sukasem C, Sangviroon A, Pattanacheewapull O, Tassaneeyakul W (2017) Comparison between the HLA-B*58:01 allele and single-nucleotide polymorphisms in chromosome 6 for prediction of allopurinol-induced severe cutaneous adverse reactions. J Immunol Res 2017:2738784. https://doi.org/10.1155/2017/2738784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsu TW, Lee PS, Nfor ON, Lee CL, Chen PH, Tantoh DM, Lin LY, Chou MC, Lee YC, Liaw YP (2019) The interaction between sex and hyperlipidemia on gout risk is modulated by HLA-B polymorphic variants in adult Taiwanese. Genes (Basel) 10:246. https://doi.org/10.3390/genes10030246

    Article  CAS  Google Scholar 

  16. Galozzi P, Bindoli S, Doria A, Oliviero F, Sfriso P (2021) Autoinflammatory features in gouty arthritis. J Clin Med 10(9):1880. https://doi.org/10.3390/jcm10091880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akkoç N, Yarkan H, Kenar G, Khan MA (2017) Ankylosing spondylitis: HLA-B*27-positive versus HLA-B*27-negative disease. Curr Rheumatol Rep 19:26. https://doi.org/10.1007/s11926-017-0654-8

    Article  CAS  PubMed  Google Scholar 

  18. Ho HH, Yu KH, Chen JY, Lin JL, Wu YJ, Luo SF, Liou LB (2007) Coexisting ankylosing spondylitis and gouty arthritis. Clin Rheumatol 26:1655–1661. https://doi.org/10.1007/s10067-007-0563-8

    Article  PubMed  Google Scholar 

  19. Wong DM, Chalmers IM (1994) Coexistent acute gouty arthritis and ankylosing spondylitis. A rare occurrence. J Rheumatol 21:773–774

    CAS  PubMed  Google Scholar 

  20. Duda J, Rovensky J, Tauchmannova H, Bakosova J (2005) Coincidence of ankylosing spondylitis, gouty arthritis and chondrocalcinosis articularis. Isr Med Assoc J 7:679

    CAS  PubMed  Google Scholar 

  21. Gonen T, Tiosano S, Comaneshter D, Amital H, Cohen AD, Shovman O (2020) The coexistence of gout in ankylosing spondylitis patients: a case control study. Rheumatol Int 40:465–470. https://doi.org/10.1007/s00296-019-04462-x

    Article  CAS  PubMed  Google Scholar 

  22. Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol 34(4 Suppl 98):12–16

    PubMed  Google Scholar 

  23. Li Z, Guo J, Bi L (2020) Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 130:110542. https://doi.org/10.1016/j.biopha.2020.110542

    Article  CAS  PubMed  Google Scholar 

  24. Zhang QB, Qing YF, He YL, Xie WG, Zhou JG (2018) Association of NLRP3 polymorphisms with susceptibility to primary gouty arthritis in a Chinese Han population. Clin Rheumatol 37:235–244. https://doi.org/10.1007/s10067-017-3900-6

    Article  CAS  PubMed  Google Scholar 

  25. Meng DM, Zhou YJ, Wang L, Ren W, Cui LL, Han L, Qu ZH, Li CG, Zhao JJ (2013) Polymorphisms in the NLRP3 gene and risk of primary gouty arthritis. Mol Med Rep 7:1761-6. Erratum in: Mol Med Rep 8:1888. https://doi.org/10.3892/mmr.2013.1429

  26. Neogi T, Jansen TL, Dalbeth N, Fransen J, Schumacher HR, Berendsen D et al (2015) 2015 Gout classification criteria: An American College of Rheumatology/European League against rheumatism collaborative initiative. Ann Rheum Dis 74:1789–1798. https://doi.org/10.1136/annrheumdis-2015-208237

    Article  CAS  PubMed  Google Scholar 

  27. Martínez-Nava GA, Zamudio-Cuevas Y, Terrazas-Ontiveros NA, Martínez-Flores K, Espinosa-Morales R, Mijares-Díaz F, Juárez-Barreto SM, Lozada-Pérez C, Valdés-Flores M, Sánchez-Sánchez R, Hidalgo-Bravo A, Fernández-Torres J (2021) A proposed HLA-B*27 screening method for ankylosing spondylitis detection based on tag-single nucleotide polymorphisms: a preliminary study. Mol Biol Rep 48:7819–7829. https://doi.org/10.1007/s11033-021-06801-3

    Article  CAS  PubMed  Google Scholar 

  28. Akar S, Igci YZ, Sari I, Pala E, Geyik E, Tas MN, Solmaz D, Çetin P, Akkoc N (2017) Do major histocompatibility complex tag single nucleotide polymorphisms accurately identify HLA-B27 in the Turkish population? Int J Rheum Dis 20:2035–2039. https://doi.org/10.1111/1756-185X.12719

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157. https://doi.org/10.1002/gepi.10218

    Article  PubMed  Google Scholar 

  30. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382. https://doi.org/10.1093/bioinformatics/btf869

    Article  CAS  PubMed  Google Scholar 

  31. Shiina T, Inoko H, Kulski JK (2004) An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64:631–49. https://doi.org/10.1111/j.1399-0039.2004.00327.x

    Article  CAS  PubMed  Google Scholar 

  32. Sotnik D, Bielska K (1978) HLA antigens in gouty patients. Arch Immunol Ther Exp (Warsz) 26:213–215

    CAS  Google Scholar 

  33. Cassim B, Mody GM, Deenadayalu VK, Hammond MG (1994) Gout in black South Africans: a clinical and genetic study. Ann Rheum Dis 53:759–762. https://doi.org/10.1136/ard.53.11.759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mituszova M, Judák A, Poór G, Gyódi E, Stenszky V (1992) Clinical and family studies in Hungarian patients with gout. Rheumatol Int 12:165–168. https://doi.org/10.1007/BF00302147

    Article  CAS  PubMed  Google Scholar 

  35. Hernández-Molina G, Zúñiga J, Torres-Machorro A, Mena-Hernández L, Cachafeiro A, Granados J, Rull-Gabayet M (2016) HLA-B*60 and HLA-DR*14 alleles might be associated with the hyperuricemic and possibly metabolic syndrome status in renal transplant. J Clin Nephrol Ren Care 2:004

    Article  Google Scholar 

  36. Dalbeth N, Merriman TR, Stamp LK (2016) Gout. Lancet 388:2039–2052. https://doi.org/10.1016/S0140-6736(16)00346-9

    Article  CAS  PubMed  Google Scholar 

  37. Colafrancesco S, Ciccacci C, Priori R, Latini A, Picarelli G, Arienzo F, Novelli G, Valesini G, Perricone C, Borgiani P (2019) STAT4, TRAF3IP2, IL10, and HCP5 polymorphisms in Sjögren’s syndrome: association with disease susceptibility and clinical aspects. J Immunol Res 2019:7682827. https://doi.org/10.1155/2019/7682827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ciccacci C, Perricone C, Ceccarelli F, Rufini S, Di Fusco D, Alessandri C, Spinelli FR, Cipriano E, Novelli G, Valesini G, Borgiani P, Conti F (2014) A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS ONE 9:e111991. https://doi.org/10.1371/journal.pone.0111991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clancy RM, Marion MC, Kaufman KM, Ramos PS, Adler A, International Consortium on Systemic Lupus Erythematosus Genetics, Harley JB, Langefeld CD, Buyon JP (2010) Identification of candidate loci at 6p21 and 21q22 in a genome-wide association study of cardiac manifestations of neonatal lupus. Arthritis Rheum 62:3415–3424. https://doi.org/10.1002/art.27658

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martinon F (2010) Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 233:218–232. https://doi.org/10.1111/j.0105-2896.2009.00860.x

    Article  CAS  PubMed  Google Scholar 

  41. Deng J, Lin W, Chen Y, Wang X, Yin Z, Yao C, Liu T, Lv Y (2015) rs3806268 of NLRP3 gene polymorphism is associated with the development of primary gout. Int J Clin Exp Pathol 8:13747–13752

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang LF, Ding YJ, Zhao Q, Zhang XL (2015) Investigation on the association between NLRP3 gene polymorphisms and susceptibility to primary gout. Genet Mol Res 14:16410–16414. https://doi.org/10.4238/2015.December.9.10

    Article  CAS  PubMed  Google Scholar 

  43. Clavijo-Cornejo D, López-Reyes A, Cruz-Arenas E, Jacobo-Albavera L, Rivera-Tlaltzicapa D, Francisco-Balderas A, Domínguez-Pérez M, Romero-Morelos P, Vázquez-Mellado J, Silveira LH, Pineda C, Martínez-Nava G, Gutierrez M (2022) Inflammasome genes polymorphisms and susceptibility to gout. Is there a link? Rev Invest Clin. https://doi.org/10.24875/RIC.21000603

    Article  PubMed  Google Scholar 

  44. Guggino G, Mauro D, Rizzo A, Alessandro R, Raimondo S, Bergot AS, Rahman MA, Ellis JJ, Milling S, Lories R, Elewaut D, Brown MA, Thomas R, Ciccia F (2021) Inflammasome activation in ankylosing spondylitis is associated with gut dysbiosis. Arthritis Rheumatol 73:1189–1199. https://doi.org/10.1002/art.41644

    Article  CAS  PubMed  Google Scholar 

  45. Méndez-Salazar EO, Vázquez-Mellado J, Casimiro-Soriguer CS, Dopazo J, Çubuk C, Zamudio-Cuevas Y, Francisco-Balderas A, Martínez-Flores K, Fernández-Torres J, Lozada-Pérez C, Pineda C, Sánchez-González A, Silveira LH, Burguete-García AI, Orbe-Orihuela C, Lagunas-Martínez A, Vazquez-Gomez A, López-Reyes A, Palacios-González B, Martínez-Nava GA (2021) Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med 27:50. https://doi.org/10.1186/s10020-021-00311-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by federal resources from the INR-LGII. We thank all the individuals who participated in this study. We thank Dr. Ambar López-Macay for providing us his Rotor-Gene Q real-time thermal cycler for genotyping.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JF-T, YZ-C: Concept and design. JF-T, GAM-N, KM-F, RS-S, LJJ-Q, YZ-C: Experiments and procedures. JF-T, YZ-C, KM-F: Writing of article. JF-T, GAM-N: Statistical analysis. GAM-N, KM-F, RS-S, LJJ-Q: Patient selection. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Yessica Zamudio-Cuevas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics and Research Committee 20 CI 09 013 029 of the Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (registration number INR-07/22). All procedures performed in this study involving human participants were in accordance with the ethical standards of the INR-LGII-Institutional Research and Ethical Committee and with the Helsinki Declaration (1964). Informed consent was obtained from all individual participants included in the study.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36.0 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Torres, J., Martínez-Nava, G.A., Martínez-Flores, K. et al. The interplay between HLA-B and NLRP3 polymorphisms may be associated with the genetic susceptibility of gout. Mol Biol Rep 49, 10205–10215 (2022). https://doi.org/10.1007/s11033-022-07895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07895-z

Keywords

Navigation