Skip to main content

Advertisement

Log in

Effect of diabetes on efferocytosis process

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajkumar V, Levine SN (2022) Latent Autoimmune Diabetes, in StatPearls. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL)

  2. Bardsley JK, Want LL (2004) Overview of diabetes. Crit Care Nurs Q 27(2):106–112

    Article  PubMed  Google Scholar 

  3. De Freitas GR et al (2021) Dry eyes in patients with diabetes mellitus. Prim Care Diabetes 15(1):184–186

    Article  PubMed  Google Scholar 

  4. von Scholten BJ et al (2021) Current and future therapies for type 1 diabetes. Diabetologia 64(5):1037–1048

    Article  Google Scholar 

  5. Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. The Lancet 358(9277):221–229

    Article  CAS  Google Scholar 

  6. Zhou B et al (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. The Lancet 387(10027):1513–1530

    Article  Google Scholar 

  7. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. The Lancet 389(10085):2239–2251

    Article  CAS  Google Scholar 

  8. Marx N et al (2021) Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol 9(1):46–52

    Article  CAS  PubMed  Google Scholar 

  9. Coustan DR (2013) Gestational diabetes mellitus. Clin Chem 59(9):1310–1321

    Article  CAS  PubMed  Google Scholar 

  10. McIntyre HD et al (2019) Gestational diabetes mellitus. Nat reviews Disease primers 5(1):1–19

    Google Scholar 

  11. Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181:471–474

    Article  PubMed  Google Scholar 

  12. King K, Cidlowski J (1998) Cell cycle regulation and apoptosis. Annu Rev Physiol 60(1):601–617

    Article  CAS  PubMed  Google Scholar 

  13. Cotter T, deCathelineau AM, Henson PM (2003) The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39:105–117

    Article  Google Scholar 

  14. Peter C et al (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15(9):1007–1028

    Article  PubMed  Google Scholar 

  15. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poon IK et al (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592

    Article  PubMed  Google Scholar 

  18. Lauber K et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

    Article  CAS  PubMed  Google Scholar 

  19. Elliott MR et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Truman LA et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood The Journal of the American Society of Hematology 112(13):5026–5036

    CAS  Google Scholar 

  21. Abdolmaleki F et al (2018) The role of efferocytosis in autoimmune diseases. Front Immunol 9:1645

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elliott MR, Koster KM, Murphy PS (2017) Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol 198(4):1387–1394

    Article  CAS  PubMed  Google Scholar 

  23. Segawa K, Nagata S (2015) An apoptotic ‘eat me’signal: phosphatidylserine exposure. Trends Cell Biol 25(11):639–650

    Article  CAS  PubMed  Google Scholar 

  24. Kim SJ et al (2002) I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med 196(5):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardai SJ et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334

    Article  CAS  PubMed  Google Scholar 

  26. Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16(4):189–197

    Article  CAS  PubMed  Google Scholar 

  28. Richards DM, Endres RG (2014) The mechanism of phagocytosis: two stages of engulfment. Biophys J 107(7):1542–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosales C, Uribe-Querol E (2017) Phagocytosis: a fundamental process in immunity. BioMed research international, 2017

  30. Ma Z et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor–related protein. J Cell Biol 159(6):1061–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L et al (2020) Potential Mechanisms and Effects of Efferocytosis in Atherosclerosis. Front Endocrinol (Lausanne) 11:585285

    Article  Google Scholar 

  32. Rink J et al (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749

    Article  CAS  PubMed  Google Scholar 

  33. Boada-Romero E et al (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21(7):398–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Werfel TA, Cook RS (2018) Efferocytosis in the tumor microenvironment. Semin Immunopathol 40(6):545–554

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mathis D, Vence L, Benoist C (2001) β-Cell death during progression to diabetes. Nature, 414(6865): p. 792–798

  36. Vives-Pi M, Rodríguez-Fernández S, Pujol-Autonell I (2015) How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: a review. Apoptosis 20(3):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morioka S, Maueröder C, Ravichandran KS (2019) Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 50(5):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Doran AC, Yurdagul A Jr, Tabas I (2020) Efferocytosis in health and disease 20(4):254–267

    CAS  Google Scholar 

  39. Thorp E et al (2011) Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 286(38):33335–33344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Brien BA et al (2002) Clearance of apoptotic β-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death & Differentiation 9(4):457–464

    Article  Google Scholar 

  41. Marée AF et al (2005) Quantifying macrophage defects in type 1 diabetes. J Theor Biol 233(4):533–551

    Article  PubMed  Google Scholar 

  42. Goren I et al (2007) Systemic anti-TNFα treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. J Invest Dermatology 127(9):2259–2267

    Article  CAS  Google Scholar 

  43. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arteriosclerosis, thrombosis, and vascular biology. 25:2255–226411

  44. Thorp E, Tabas I (2009) Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol 86(5):1089–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naghavi M et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672

    Article  PubMed  Google Scholar 

  46. Fredman G et al (2015) Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med 7(275):275ra20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez RM et al (2018) Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice.J Dermatol Sci,

  48. Viola JR et al (2016) Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ Res 119(9):1030–1038

    Article  CAS  PubMed  Google Scholar 

  49. An Y et al (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 33:12515–1252711

  50. Das A et al (2016) Correction of MFG-E8 resolves inflammation and promotes cutaneous wound healing in diabetes. J Immunol 196(12):5089–5100

    Article  CAS  PubMed  Google Scholar 

  51. Saevarsdottir S, Vikingsdottir T, Valdimarsson H (2004) The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 60(1–2):23–29

    Article  CAS  PubMed  Google Scholar 

  52. Nauta AJ et al (2003) Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 33(10):2853–2863

    Article  CAS  PubMed  Google Scholar 

  53. Saevarsdottir S et al (2005) Mannan binding lectin as an adjunct to risk assessment for myocardial infarction in individuals with enhanced risk. J Exp Med 201(1):117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamauchi T et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941):762–769

    Article  CAS  PubMed  Google Scholar 

  55. Takemura Y et al (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest 117(2):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cash JG et al (2012) Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. J Biol Chem 287(33):27876–27884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. An Y et al (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. Faseb j 33(11):12515–12527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kwon CH et al (2020) Clinically confirmed DEL-1 as a myokine attenuates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes via AMPK/HO-1- pathway. Adipocyte 9(1):576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16(4):189–197

    Article  CAS  PubMed  Google Scholar 

  60. Ge Y, Huang M, Yao YM (2022) Efferocytosis and Its Role in Inflammatory Disorders. Front Cell Dev Biol 10:839248

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bitzan M et al (2008) Rituximab treatment of collapsing C1q glomerulopathy: Clinical and histopathological evolution. Pediatr Nephrol 23(8):1355–1361

    Article  PubMed  Google Scholar 

  62. Chao MP et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Albert ML et al (1998) Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188(7):1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenberg ME et al (2006) Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203(12):2613–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hijazi H, Waggiallah H, Alagib A (2013) Oxidative low density lipoprotien prohibited plasmodium falciparum clearance in type 2 diabetes mellitus via cluster differentiation 36. North Am J Med Sci 5(12):703–706

    Article  Google Scholar 

  66. Sóñora C et al (2014) Anti-tissue transglutaminase antibody inhibits apoptotic cell clearance by macrophages in pregnant NOD mice. J Reprod Immunol 103(1):59–66

    Article  PubMed  Google Scholar 

  67. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Reviews Endocrinol 5(4):219–226

    Article  CAS  Google Scholar 

  68. Villalba A et al (2020) Preclinical evaluation of antigen-specific nanotherapy based on phosphatidylserine-liposomes for type 1 diabetes. Artif Cells Nanomed Biotechnol 48(1):77–83

    Article  CAS  PubMed  Google Scholar 

  69. Pujol-Autonell I et al (2015) Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.PLoS ONE, 10(6)

  70. Rodriguez-Fernandez S et al (2018) Phosphatidylserine-liposomes promote tolerogenic features on dendritic cells in human type 1 diabetes by apoptotic mimicry. Frontiers in Immunology, 9(FEB)

  71. Lugovaya A et al (2019) Spontaneous and activation-induced apoptosis of peripheral blood mononuclear cells in the pathogenesis of type 1 diabetes mellitus. Med Immunol (Russia) 22(1):123–134

    Article  Google Scholar 

  72. Lugovaya AV et al (2020) Spontaneous and activation-induced apoptosis of peripheral blood mononuclear cells in the pathogenesis of type 1 diabetes mellitus. Med Immunol (Russia) 22(1):123–134

    Article  Google Scholar 

  73. Kakarla R et al (2020) Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 52(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng C et al (2021) Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles 10(7):e12109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hie M, Yamazaki M, Tsukamoto I (2009) Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocin-induced diabetes. Eur J Pharmacol 621(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  76. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195–214

    Article  CAS  PubMed  Google Scholar 

  77. Davies LC et al (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439

    Article  CAS  PubMed  Google Scholar 

  79. Bain S et al (1997) Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic rats. Bone 21(2):147–153

    Article  CAS  PubMed  Google Scholar 

  80. An Y et al (2019) Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast‐mediated diabetic osteoporosis. FASEB J 33(11):12515–12527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Green D, Oguin T, Martinez J (2016) The clearance of dying cells: table for two. Cell Death & Differentiation 23(6):915–926

    Article  CAS  Google Scholar 

  82. Kantharidis P et al (2011) Diabetes complications: the microRNA perspective. Diabetes 60(7):1832–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Regazzi R (2018) MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Targets 22(2):153–160

    Article  CAS  PubMed  Google Scholar 

  84. Roy S (2016) miRNA in Macrophage Development and Function. Antioxid Redox Signal 25(15):795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh RP et al (2013) The role of miRNA in inflammation and autoimmunity. Autoimmun Rev 12(12):1160–1165

    Article  CAS  PubMed  Google Scholar 

  86. Sen CK, Ghatak S (2015) miRNA control of tissue repair and regeneration. Am J Pathol 185(10):2629–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim SY, Nair MG (2019) Macrophages in wound healing: activation and plasticity. Immunol Cell Biol 97(3):258–267

    Article  PubMed  PubMed Central  Google Scholar 

  88. Das A et al (2016) Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing. Diabetes 196(12):5089–5100

    CAS  Google Scholar 

  89. Sinha M et al (2018) Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.Nature Communications, 9(1)

  90. Dastah S et al (2020) Aerobic exercise leads to upregulation of Mir-126 and angiogenic signaling in the heart tissue of diabetic rats.Gene Reports, 21

  91. Banerjee J et al (2020) Senescence-associated miR-34a and miR-126 in middle-aged Indians with type 2 diabetes. Clin Experimental Med 20(1):149–158

    Article  CAS  Google Scholar 

  92. Liu Y et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15(6):10567–10577

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zampetaki A et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  94. Wang C et al (2017) miR-126-5p Restoration Promotes Cell Apoptosis in Cervical Cancer by Targeting Bcl2l2. Oncol Res 25(4):463–470

    Article  PubMed  PubMed Central  Google Scholar 

  95. Suresh Babu S et al (2016) MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes.Scientific Reports, 6

  96. Sather S et al (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109(3):1026–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Krause S et al (2015) Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood 125(5):820–830

    Article  CAS  PubMed  Google Scholar 

  98. Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123(25):3963–3971

    Article  CAS  PubMed  Google Scholar 

  99. Cai B et al (2020) Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabol 31(2):406–421e7

    Article  CAS  Google Scholar 

  100. Choi JY et al (2013) Upregulation of Mer receptor tyrosine kinase signaling attenuated lipopolysaccharide-induced lung inflammation. J Pharmacol Exp Ther 344(2):447–458

    Article  CAS  PubMed  Google Scholar 

  101. Uchiyama A et al (2017) Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci 86(3):187–197

    Article  CAS  PubMed  Google Scholar 

  102. Khanna S et al (2010) Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE 5(3):e9539

    Article  PubMed  PubMed Central  Google Scholar 

  103. Barman PK, Koh TJ (2020) Macrophage Dysregulation and Impaired Skin Wound Healing in Diabetes. Front cell Dev biology 8:528–528

    Article  Google Scholar 

  104. Li K et al (2021) MRP8/14 mediates macrophage efferocytosis through RAGE and Gas6/MFG-E8, and induces polarization via TLR4-dependent pathway. 236:1375–13902

  105. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  106. Kim SY et al (2022) Efferocytosis and enhanced FPR2 expression following apoptotic cell instillation attenuate radiation-induced lung inflammation and fibrosis. Biochem Biophys Res Commun 601:38–44

    Article  CAS  PubMed  Google Scholar 

  107. Krzyszczyk P et al (2018) The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9:419

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yan J et al (2018) Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 9(1):1–13

    Article  Google Scholar 

  109. Mirza RE et al (2013) Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 62(7):2579–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Q et al (2017) Blocking AGE-RAGE signaling improved functional disorders of macrophages in diabetic wound. Journal of diabetes research, 2017

  111. Gallagher KA et al (2015) Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes 64(4):1420–1430

    Article  CAS  PubMed  Google Scholar 

  112. Yang F et al (2010) Essential role for Smad3 in angiotensin II-induced tubular epithelial–mesenchymal transition. J Pathol 221(4):390–401

    CAS  PubMed  Google Scholar 

  113. Barman PK, Koh TJ (2020) Macrophage dysregulation and impaired skin wound healing in diabetes. Front Cell Dev Biology 8:528

    Article  Google Scholar 

  114. Chen H et al (2015) Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis 6(1):e1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mirza RE et al (2015) Macrophage PPARγ and impaired wound healing in type 2 diabetes. J Pathol 236(4):433–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang Q et al (2017) Blocking AGE-RAGE Signaling Improved Functional Disorders of Macrophages in Diabetic Wound. 2017:1428537

  117. Chatzigeorgiou A et al (2010) The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med 42(6):426–438

    Article  CAS  PubMed  Google Scholar 

  118. Uchiyama A et al (2015) Protective effect of MFG-E8 after cutaneous ischemia–reperfusion injury. J Invest dermatology 135(4):1157–1165

    Article  CAS  Google Scholar 

  119. Jun JI, Kim KH, Lau LF (2015) The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing.Nature Communications, 6

  120. Lima MH et al (2012) Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS ONE 7(5):e36974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huang JJ et al (2020) Annexin A1-derived peptide Ac2‐26 facilitates wound healing in diabetic mice. Wound Repair and Regeneration 28(6):772–779

    Article  PubMed  Google Scholar 

  122. Huang JJ et al (2020) Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair and Regeneration 28(6):772–779

    Article  PubMed  Google Scholar 

  123. Chen X, Liu Y, Zhang X (2012) Topical insulin application improves healing by regulating the wound inflammatory response. Wound Repair and Regeneration 20(3):425–434

    Article  PubMed  Google Scholar 

  124. Yang P et al (2021) Topical insulin application accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization.Journal of Cell Science, 133(19)

  125. Gullo D et al (2021) Insulin autoimmune syndrome misdiagnosed as an insulinoma in a woman presenting with a pancreatic cystic lesion and taking alpha lipoic acid: a lesson to be learned. Hormones 20(3):593–595

    Article  PubMed  Google Scholar 

  126. Erdem N, Montero E, Roep BO (2021) Breaking and restoring immune tolerance to pancreatic beta-cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 28(4):397–403

    CAS  PubMed  Google Scholar 

  127. Wang L, Wang FS, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395

    Article  CAS  PubMed  Google Scholar 

  128. Klein L, Robey EA, Hsieh C-S (2019) Central CD4 + T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol 19(1):7–18

    Article  CAS  PubMed  Google Scholar 

  129. Malhotra D et al (2016) Tolerance is established in polyclonal CD4 + T cells by distinct mechanisms, according to self-peptide expression patterns. Nat Immunol 17(2):187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baccala R et al (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13(5):543–551

    Article  CAS  PubMed  Google Scholar 

  131. Mitchell S et al (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13(10):2497–2507

    Article  CAS  PubMed  Google Scholar 

  132. Libreros S et al (2020) A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Front Immunol 11:631319

    Article  CAS  PubMed  Google Scholar 

  133. Milligan G, Stoddart LA, Brown AJ (2006) G protein-coupled receptors for free fatty acids. Cell Signal 18(9):1360–1365

    Article  CAS  PubMed  Google Scholar 

  134. Peterson EA, Sun J (2022) Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs.Regenerative Systems.9(2)

  135. Vandendriessche S et al (2021) Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 9:624025

    Article  PubMed  PubMed Central  Google Scholar 

  136. Abdolmaleki F et al (2020) Resolvins: emerging players in autoimmune and inflammatory diseases. Clin Rev Allergy Immunol 58(1):82–91

    Article  CAS  PubMed  Google Scholar 

  137. Halban PA (1991) Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34(11):767–778

    Article  CAS  PubMed  Google Scholar 

  138. Martinon F et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  CAS  PubMed  Google Scholar 

  139. Prencipe G et al (2014) Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J Am Soc Nephrol 25(6):1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Engelen-Lee JY et al (2018) Histopathology of Listeria meningitis. J Neuropathol Exp Neurol 77(10):950–957

    Article  PubMed  PubMed Central  Google Scholar 

  141. Suresh Babu S et al (2016) MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci Rep 6(1):36207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mahmoudi A et al (2022) MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Gheibihayat.

Ethics declarations

Conflict of interest

There was no conflict of interest in the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, A., firouzjaei, A.A., darijani, F. et al. Effect of diabetes on efferocytosis process. Mol Biol Rep 49, 10849–10863 (2022). https://doi.org/10.1007/s11033-022-07725-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07725-2

Keywords

Navigation