Skip to main content

Advertisement

Log in

Narrowing down molecular targets for improving phosphorus-use efficiency in maize (Zea mays L.)

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Conventional agricultural practices rely heavily on chemical fertilizers to boost production. Among the fertilizers, phosphatic fertilizers are copiously used to ameliorate low-phosphate availability in the soil. However, phosphorus-use efficiency (PUE) for major cereals, including maize, is less than 30%; resulting in more than half of the applied phosphate being lost to the environment. Rock phosphate reserves are finite and predicted to exhaust in near future with the current rate of consumption. Thus, the dependence of modern agriculture on phosphatic fertilizers poses major food security and sustainability challenges. Strategies to optimize and improve PUE, like genetic interventions to develop high PUE cultivars, could have a major impact in this area. Here, we present the current understanding and recent advances in the biological phenomenon of phosphate uptake, translocation, and adaptive responses of plants under phosphate deficiency, with special reference to maize. Maize is one of the most important cereal crops that is cultivated globally under diverse agro-climatic conditions. It is an industrial, feed and food crop with multifarious uses and a fast-rising global demand and consumption. The interesting aspects of diversity in the root system architecture traits, the interplay between signaling pathways contributing to PUE, and an in-depth discussion on promising candidate genes for improving PUE in maize are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lott JNA (1984) Accumulation of seed reserves of phosphorus and other minerals. In: Murray DR (ed) Seed physiology, vol I. Academic Press, Sydney, pp 139–166

    Google Scholar 

  2. Wang C, Ning P (2019) Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield. Front Plant Sci 10:784

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Kauwenbergh SJ (2010) World Phosphate Rock Reserves and Resources. International Fertilizer Development Center, IFDC Technical Bulletin No. 75. Alabama: Muscle Shoals, 58. https://pdf.usaid.gov/pdf_docs/Pnadw835.PDF

  4. Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049

    Article  Google Scholar 

  5. Vu DT, Tang C, Armstrong RD (2008) Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant Soil 304:21–33

    Article  CAS  Google Scholar 

  6. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693. https://doi.org/10.1146/annurev.arplant.50.1.665

    Article  CAS  PubMed  Google Scholar 

  7. Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. In: Plaxton WC, Lambers H (eds) Annual plant reviews volume 48: phosphorus metabolism in plants. Wiley, Hoboken, pp 1–22

    Google Scholar 

  8. Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3(3):182–187

    Article  CAS  PubMed  Google Scholar 

  9. Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14(8):1751–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Physiol 65:95–123

    Google Scholar 

  11. Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A et al (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu G, Chague V, Melamed B et al (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza enhanced expression. J Exp Bot 58(10):2491–2501

    Article  CAS  PubMed  Google Scholar 

  13. Smith SE, Anderson IC, Smith FA (2015) Mycorrhizal associations and P acquisition: from cells to ecosystems. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants, Annual plant reviews. Wiley, Oxford, pp 409–440

    Google Scholar 

  14. Ai P, Sun S, Zhao J, Fan X, Xin W et al (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57(5):798–809

    Article  CAS  PubMed  Google Scholar 

  15. Stigter KA, Plaxton WC (2015) Molecular mechanisms of phosphorus metabolism and transport during leaf senescence. Plants (Basel) 4(4):773–798

    Article  CAS  PubMed  Google Scholar 

  16. Gu M, Chen A, Sun S, Xu G (2016) Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant 9(3):396–416. https://doi.org/10.1016/j.molp.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  17. Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W et al (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol 8(2):186–197. https://doi.org/10.1055/s-2005-873052

    Article  CAS  PubMed  Google Scholar 

  18. Liu F, Xu Y, Jiang H, Jiang C, Du Y, Gong C, Wang W, Zhu S, Han G, Cheng B (2016) Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. Int J Mol Sci 17(6):930. https://doi.org/10.3390/ijms17060930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sawers RJ, Svane SF, Quan C, Gronlund M, Wozniak B, Gebreselassie MN, Gonzalez-Munoz E, Montes RAC, Baxter I, Goudet J et al (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214(2):632–643. https://doi.org/10.1111/nph.14403

    Article  CAS  PubMed  Google Scholar 

  20. Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23:507–514. https://doi.org/10.1007/s00572-013-0491-1

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Xu Y, Han G, Wang W, Li X, Cheng B (2018) Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant Cell Physiol 59(8):1683–1694. https://doi.org/10.1093/pcp/pcy094

    Article  CAS  PubMed  Google Scholar 

  22. Xu Y, Liu F, Li X, Cheng B (2018) The mycorrhiza-induced maize ZmPt9 gene affects root development and phosphate availability in nonmycorrhizal plant. Plant Signal Behav 13(12):e1542240. https://doi.org/10.1080/15592324.2018.1542240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roch GV, Marharajan T, Ceasar SA, Ignacimuthu S (2019) The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit Rev Plant Sci 38(3):171–198. https://doi.org/10.1080/07352689.2019.1645402

    Article  CAS  Google Scholar 

  24. Hamburger D, Rezzonico E, Petetot MacDonald-Comber J et al (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14:889–902. https://doi.org/10.1105/tpc.000745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015) Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–2831. https://doi.org/10.1104/pp.15.01005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun Y, Mu C, Chen Y et al (2016) Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiol Biochem 109:467–481. https://doi.org/10.1016/j.plaphy.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  27. Gaume A, Machler F, De Leon C, Narro L, Frossard E (2001) Low-P tolerance by maize (Zea mays L) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil 228:253–264. https://doi.org/10.1023/A:1004824019289

    Article  CAS  Google Scholar 

  28. Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56(3):192–220. https://doi.org/10.1111/jipb.12163

    Article  CAS  PubMed  Google Scholar 

  29. Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143(4):1789–1801. https://doi.org/10.1104/pp.106.093971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou J, Jiao FC, Wu ZC et al (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146(4):1673–1686. https://doi.org/10.1104/pp.107.111443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21(11):3554–3566. https://doi.org/10.1105/tpc.108.064980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J (2011) Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233:1129–1143. https://doi.org/10.1007/s00425-011-1368-1

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Sun J, Miao J, Guo J, Shi Z, He M et al (2013) A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot 111(6):1139–1153. https://doi.org/10.1093/aob/mct080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF (2015) WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol 167(4):1579–1591. https://doi.org/10.1104/pp.114.253799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15(16):2122–2133. https://doi.org/10.1101/gad.204401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Ruan W, Shi J et al (2014) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate- dependent manner. Proc Natl Acad Sci USA 111(41):14953–14958. https://doi.org/10.1073/pnas.1404680111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pei LM, Jin Z, Li KP, Yin HY, Wang JM, Yang AF (2013) Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiol Biochem 70:221–234. https://doi.org/10.1016/j.plaphy.2013.05.043

    Article  CAS  PubMed  Google Scholar 

  38. Tian J, Liao H (2015) The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants annual plant reviews, vol 48. Wiley, Hoboken, pp 265–288

    Google Scholar 

  39. Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D (2005) Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol 59(4):581–594. https://doi.org/10.1007/s11103-005-0183-0

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Q, Wang C, Tian J, Li K, Shou H (2011) Identification of rice purple acid phosphatases related to posphate starvation signalling. Plant Biol 13:7–15. https://doi.org/10.1111/j.1438-8677.2010.00346.x

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Gui S, Yang T, Walk T, Wang X, Liao H (2012) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109(1):275–285. https://doi.org/10.1093/aob/mcr246

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Munoz E, Avendano-Vazquez AO, Montes RA, Sde F, Andres-Hernandez L, Abreu-Goodger C, Sawers RJ (2015) The maize (Zea mays ssp mays var B73) genome encodes 33 members of the purple acid phosphatase family. Front Plant Sci 6:341. https://doi.org/10.3389/fpls.2015.00341

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bhadouria J, Singh AP, Mehra P, Verma L, Srivastawa R, Parida SK, Giri J (2017) Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed phytate accumulation. Sci Rep 7:11012. https://doi.org/10.1038/s41598-017-11490-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin HJ, Gao J, Zhang ZM, Shen YO, Lan H, Liu L et al (2013) Transcriptional responses of maize seedling root to phosphorus starvation. Mol Biol Rep 40:5359–5379. https://doi.org/10.1007/s11033-013-2636-x

    Article  CAS  PubMed  Google Scholar 

  45. Xu Y, Liu F, Han G, Cheng B (2018) Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants. Plant Cell Rep 37:711–726. https://doi.org/10.1007/s00299-018-2262-0

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Zhang X, Liu X, Zhao Y, Wang B, Zhang J (2016) miRNA alterations are important mechanism in maize adaptations to low-phosphate environments. Plant Sci 252:103–117. https://doi.org/10.1016/j.plantsci.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  47. Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223(2):548–564. https://doi.org/10.1111/nph.15738

    Article  PubMed  Google Scholar 

  48. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2010) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87. https://doi.org/10.1007/s11104-010-0623-8

    Article  CAS  Google Scholar 

  49. Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602. https://doi.org/10.1104/pp.113.233916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun B, Gao Y, Lynch JP (2018) Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol 177(1):90–104. https://doi.org/10.1104/pp.18.00234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walk TC, Jaramillo R, Lynch JP (2006) Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition. Plant Soil 279:347–366. https://doi.org/10.1007/s11104-005-0389-6

    Article  CAS  Google Scholar 

  52. Zhu J, Lynch JP (2004) The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings. Funct Plant Biol 31(10):949–958. https://doi.org/10.1071/FP04046

    Article  CAS  PubMed  Google Scholar 

  53. Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize (Zea mays L) under phosphorus deficiency. Plant Soil 270(1):299–310. https://doi.org/10.1007/s11104-004-1697-y

    Article  CAS  Google Scholar 

  54. Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57. https://doi.org/10.1023/B:PLSO.0000030168.53340.bc

    Article  Google Scholar 

  55. Galindo-Castaneda T, Brown KM, Lynch JP (2018) Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant Cell Environ 41:1579–1592. https://doi.org/10.1111/pce.13197

    Article  CAS  PubMed  Google Scholar 

  56. Postma JA, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841. https://doi.org/10.1093/aob/mcq199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L) under differential phosphorus supply. Theor Appl Genet 111(4):688–695. https://doi.org/10.1007/s00122-005-2051-3

    Article  CAS  PubMed  Google Scholar 

  58. Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L) seedlings grown under differential phosphorus levels. Theor Appl Genet 113(1):1–10. https://doi.org/10.1007/s00122-006-0260-z

    Article  CAS  PubMed  Google Scholar 

  59. Chen J, Xu L (2011) The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L). Front Agric China 5(4):456–462. https://doi.org/10.1007/s11703-011-1079-1

    Article  Google Scholar 

  60. Azevedo GC, Cheavegatti-Gianotto A, Negri BF et al (2015) Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol 15(1):1–7. https://doi.org/10.1186/s12870-015-0561-y

    Article  CAS  Google Scholar 

  61. Chen J, Xu L (2011) Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L) and cross phosphorus levels on two growth stages. Front Agric China 5(3):284–290. https://doi.org/10.1007/s11703-011-1075-5

    Article  CAS  Google Scholar 

  62. Qin H, Cai Y, Sun H, Wang J, Wang G, Liu Z (2011) QTL mapping of root exudates related to phosphorus efficiency in maize (Zea mays L). J Agric Biotechnol 19(1):93–101

    CAS  Google Scholar 

  63. Qiu H, Liu C, Yu T, Mei X, Wang G, Wang J, Cai Y (2014) Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress. Euphytica 197(1):133–143. https://doi.org/10.1007/s10681-013-1058-0

    Article  CAS  Google Scholar 

  64. Mendes FF, Guimarães LJ, Souza JC, Guimarães PE, Magalhaes JV et al (2014) Genetic architecture of phosphorus use efficiency in tropical maize cultivated in a low-p soil. Crop Sci 54(4):1530–1538. https://doi.org/10.2135/cropsci2013.11.0755

    Article  CAS  Google Scholar 

  65. Brady SM, Song S, Dhugga KS, Rafalski A, Benfey PN (2006) Combining expression and comparative evolutionary analysis: the COBRA gene family. Plant Physiol 143:172–187. https://doi.org/10.1104/pp.106.087262

    Article  CAS  PubMed  Google Scholar 

  66. Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643. https://doi.org/10.1104/pp.105.062174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen J, Xu L, Cai Y, Xu J (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L) at two sites. Plant Soil 313(1):251–266. https://doi.org/10.1007/s11104-008-9698-x

    Article  CAS  Google Scholar 

  68. Gu R, Chen F, Long L, Cai H, Liu Z et al (2016) Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Gene Genomics 43(11):663–672. https://doi.org/10.1016/j.jgg.2016.11.002

    Article  Google Scholar 

  69. Henry A, Rosas JC, Beaver JS, Lynch JP (2010) Multiple stress response and belowground competition in multilines of common bean (Phaseolus vulgaris L). Field Crops Res 117:209–218. https://doi.org/10.1016/j.fcr.2010.03.004

    Article  Google Scholar 

  70. Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genet 7:e1002021. https://doi.org/10.1371/journal.pgen.1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park BS, Seo JS, Chua NH (2014) Nitrogen limitation adaptation recruits phosphate2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26(1):454–464. https://doi.org/10.1105/tpc.113.120311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu H, Yang H, Wu C, Feng J, Liu X, Qin H, Wang D (2009) Overexpressing HRS1 confers hypersensitivity to low phosphate-elicited inhibition of primary root growth in Arabidopsis thaliana. J Integr Plant Biol 51(4):382–392. https://doi.org/10.1111/j.1744-7909.2009.00819.x

    Article  CAS  PubMed  Google Scholar 

  73. Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford NM et al (2015) AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat Commun 6(1):1–1

    Article  Google Scholar 

  74. Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T et al (2018) A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun 9(1):1–4

    Article  Google Scholar 

  75. Medici A, Szponarski W, Dangeville P, Safi A, Dissanayake IM, Saenchai C et al (2019) Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell 31(5):1171–1184. https://doi.org/10.1105/tpc.18.00656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y et al (2019) Nitrate–NRT1 1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants 5(4):401–413

    Article  CAS  PubMed  Google Scholar 

  77. Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J et al (2014) SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26(4):1586–1597. https://doi.org/10.1105/tpc.114.123208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sega P, Pacak A (2019) Plant PHR transcription factors: put on a map. Genes. https://doi.org/10.3390/genes10121018

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang X, Wang HF, Chen Y, Sun MM, Wang Y, Chen YF (2020) The transcription factor NIGT1 2 modulates both phosphate uptake and nitrate influx during phosphate starvation in arabidopsis and maize. Plant Cell 32(11):3519–3534. https://doi.org/10.1105/tpc.20.00361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu B, Chu C (2019) Nitrogen–phosphorus interplay: old story with molecular tale. New Phytol 225(4):1455–1460. https://doi.org/10.1111/nph.16102

    Article  CAS  PubMed  Google Scholar 

  81. Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130(3):1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero RM, Martínez V (2014) A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiol Plant 152(3):558–570

    Article  CAS  PubMed  Google Scholar 

  83. Ródenas R, Martínez V, Nieves-Cordones M, Rubio F (2019) High external K+ concentrations impair Pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants. Int J Mol Sci 20(9):2237

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhu Z, Li D, Wang P, Li J, Lu X (2020) Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor Exp Plant Physiol 32(4):271–285

    Article  CAS  Google Scholar 

  85. Poirier Y, Jung JY (2015) Phosphate transporters. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants, annual plant reviews. Wiley, Oxford, pp 125–158

    Google Scholar 

  86. Wu P, Xu JM (2010) Does OsPHR2, central Pi-signaling regulator, regulate some unknown factors crucial for plant growth? Plant Signal Behav 5(6):712–714. https://doi.org/10.4161/psb.5.6.11645

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over expression of a high-affinity phosphate transporter in transgenic barley does not enhance phosphorus uptake rates. Funct Plant Biol 31:141–148. https://doi.org/10.1071/FP03159

    Article  CAS  PubMed  Google Scholar 

  88. Oono Y, Kawahara Y, Yazawa T, Kanamori H, Kuramata M, Yamagata H et al (2013) Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles. Plant Mol Biol 83:523–537. https://doi.org/10.1007/s11103-013-0106-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, Wissuwa M, Delhaize E, Rouached H (2017) Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J 90(5):868–885

    Article  CAS  PubMed  Google Scholar 

  90. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase OsPSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539. https://doi.org/10.1038/nature11346

    Article  CAS  PubMed  Google Scholar 

  91. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5(6):735–745. https://doi.org/10.1111/j.1467-7652.2007.00281.x

    Article  CAS  PubMed  Google Scholar 

  92. Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 65(12):3045–3053. https://doi.org/10.1093/jxb/eru149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096. https://doi.org/10.1104/pp.105.063115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen JY, Liu Y, Ni J, Wang YF, Bai YH, Shi J, Gan J, Wu ZC, Wu P (2011) OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157(1):269–278. https://doi.org/10.1104/pp.111.181669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu P, Shou HX, Xu GH, Lian XM (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212. https://doi.org/10.1016/j.pbi.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  96. Wang XH, Bai JR, Liu HM, Sun Y, Shi XY, Ren ZQ (2013) Overexpression of a maize transcription factor ZmPHR1 improves shoot inorganic phosphate content and growth of Arabidopsis under low-phosphate conditions. Plant Mol Biol Rep 31:665–677. https://doi.org/10.1007/s11105-012-0534-3

    Article  CAS  Google Scholar 

  97. Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative comparison of the role of the phosphate response1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168(4):1762–1776. https://doi.org/10.1104/pp.15.00736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dai X, Wang Y, Yang A, Zhang WH (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159(1):169–183. https://doi.org/10.1104/pp.112.194217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ouyang X, Hong X, Zhao X, Zhang W, He X, Ma W et al (2016) Knock out of the PHOSPHATE2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Sci Rep 6:29850. https://doi.org/10.1038/srep29850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang F, Wu XN, Zhou HM, Wang DF, Jiang TT, Sun YF, Cao Y, Pei WX, Sun SB, Xu GH (2014) Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 384:259–270. https://doi.org/10.1007/s11104-014-2168-8

    Article  CAS  Google Scholar 

  101. Yan W, Chen GH, Yang LF, Gai JY, Zhu YL (2014) Overexpression of the rice phosphate transporter gene OsPT6 enhances tolerance to low phosphorus stress in vegetable soybean. Sci Hortic 177:71–76. https://doi.org/10.1016/j.scienta.2014.07.037

    Article  CAS  Google Scholar 

  102. Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Ma JF, Xu GH (2019) OsPHT1;3 mediates uptake, translocation and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol 179(2):656–670. https://doi.org/10.1104/pp.18.01097

    Article  CAS  PubMed  Google Scholar 

  103. Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195(2):356–371. https://doi.org/10.1111/j.1469-8137.2012.04167.x

    Article  CAS  PubMed  Google Scholar 

  104. Lapis-Gaza HR, Jost R, Finnegan PM (2014) Arabidopsis phosphate transporter1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol 14:334. https://doi.org/10.1186/s12870-014-0334-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shi SL, Wang DF, Yan Y, Zhang F, Wang HD, Gu M et al (2013) Function of phosphate transporter OsPHT2;1 in improving phosphate utilization in rice. Chin J Rice Sci 27(5):457–465. https://doi.org/10.3969/j.issn.1001-7216.2013.05.002

    Article  CAS  Google Scholar 

  106. Costas AM, White AK, Metcalf WW (2001) Purification and characterization of a novel Phosphorus-oxidising enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276(20):17429–17436. https://doi.org/10.1074/jbc.M011764200

    Article  CAS  PubMed  Google Scholar 

  107. Lopez-Arredondo DL, Herrera-Estrella L (2012) Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol 30:889–893. https://doi.org/10.1038/nbt.2346

    Article  CAS  PubMed  Google Scholar 

  108. Manna M, Achary MM, Islam T, Agarwal PK, Reddy MK (2016) The development of a phosphite-mediated fertilization and weed control system for rice. Sci Rep 6:24941. https://doi.org/10.1038/srep24941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Achary VMM, Ram B, Manna M, Datta D, Bhatt A, Reddy MK et al (2017) Phosphite: a novel P-fertilizer for weed management and pathogen control. Plant Biotechnol J 15(12):1493–1508. https://doi.org/10.1111/pbi.12803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55(396):285–293. https://doi.org/10.1093/jxb/erh009

    Article  CAS  PubMed  Google Scholar 

  111. Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59(9):2479–2497. https://doi.org/10.1093/jxb/ern115

    Article  CAS  PubMed  Google Scholar 

  112. Yadava P, Dayaman V, Agarwal A, Kumar K, Singh I, Verma R, Kaul T (2022) Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize (Zea mays L). Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-022-01155-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Indian Council of Agricultural Research (ICAR) and the National Agricultural Science Fund (NASF/GTR-5004/2015-16/204) for financial support. AKJ acknowledges ICAR-IIMR support in the form of YP fellowship under the in-house project (Project Code: AR:DMR:16:02).

Funding

National Agricultural Science Fund (NASF/GTR-5004/2015–16/204).

Author information

Authors and Affiliations

Authors

Contributions

KK conceptualized the idea; KK, MC, and MG collected literature and prepared the preliminary draft, which was edited and improved by PY, SHW, ZAD, BK, and SR. KK and AKJ prepared figures.

Corresponding authors

Correspondence to Krishan Kumar or Sujay Rakshit.

Ethics declarations

Competing interest

The authors have no financial and non-financial interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Yadava, P., Gupta, M. et al. Narrowing down molecular targets for improving phosphorus-use efficiency in maize (Zea mays L.). Mol Biol Rep 49, 12091–12107 (2022). https://doi.org/10.1007/s11033-022-07679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07679-5

Keywords

Navigation