Skip to main content
Log in

Interferon-γ enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood.

Methods and results

The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10.

Conclusion

Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. Zhan XS, El-Ashram S, Luo DZ, Luo HN, Wang BY, Chen SF, Bai YS, Chen ZS, Liu CY, Ji HQ (2019) A Comparative study of biological characteristics and transcriptome profiles of mesenchymal stem cells from different canine tissues. Int J Mol Sci 20:1485. https://doi.org/10.3390/ijms20061485

    Article  CAS  PubMed Central  Google Scholar 

  2. Chen Y, Zeng Z, Sun J, Zeng H, Huang Y, Zhang Z (2015) Mesenchymal stem cell–conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J Radiat Res 56:700–708. https://doi.org/10.1093/jrr/rrv026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM (2017) Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cell Transl Med 6:2173–2185. https://doi.org/10.1002/sctm.17-0129

    Article  Google Scholar 

  4. Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y, Shi Y (2012) Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 1:51–58. https://doi.org/10.5966/sctm.2011-0019

    Article  CAS  PubMed  Google Scholar 

  5. Glenn JD, Whartenby KA (2014) Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 6:526–539. https://doi.org/10.4252/wjsc.v6.i5.526

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim HW, Song WJ, Li Q, Han SM, Jeon KO, Park SC, Ryu MO, Chae HK, Kyeong K, Youn HY (2016) Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci 17:539–548. https://doi.org/10.4142/jvs.2016.17.4.539

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li N, Hua J (2017) Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 74:2345–2360. https://doi.org/10.1007/s00018-017-2473-5

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Y, Yamamoto Y, Xiao Z, Ochiya T (2019) The Immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 8:1025. https://doi.org/10.3390/jcm8071025

    Article  CAS  PubMed Central  Google Scholar 

  9. Huaman O, Bahamonde J, Cahuascanco B, Jervis M, Palomino J, Torres CG, Peralta OA (2019) Immunomodulatory and immunogenic properties of mesenchymal stem cells derived from bovine fetal bone marrow and adipose tissue. Res Vet Sci 124:212–222. https://doi.org/10.1016/j.rvsc.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  10. Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917. https://doi.org/10.1155/2015/394917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hawkins KE, Corcelli M, Dowding K, Ranzoni AM, Vlahova F, Hau KL, Hunjan A, Peebles D, Gressens P, Hagberg H, de Coppi P, Hristova M, Guillot PV (2018) Embryonic stem cell-derived Mesenchymal Stem Cells (MSCs) have a superior neuroprotective capacity over fetal MSCs in the hypoxic-ischemic mouse brain. Stem Cells Transl Med 7:439–449. https://doi.org/10.1002/sctm.17-0260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Xu CX, Liang H, Xi Z, Pan J, Yang Y, Sun Q, Yang G, Sun Y, Bian L (2020) Bone marrow mesenchymal stem cells transplantation alleviates brain injury after intracerebral hemorrhage in mice through the Hippo signaling pathway. Aging 12:6306–6323. https://doi.org/10.18632/aging.103025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song WJ, Li Q, Ryu MO, Ahn JO, Bhang DH, Jung YC, Youn HY (2018) TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice. Stem Cell Res Ther 9:91. https://doi.org/10.1186/s13287-018-0841-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cabezas J, Rojas D, Wong Y, Telleria F, Manriquez J, Mancanares ACF, Rodriguez-Alvarez LL, Castro FO (2020) In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness. Vet Immunol Immunopathol 228:110100. https://doi.org/10.1016/j.vetimm.2020.110100

    Article  CAS  PubMed  Google Scholar 

  15. Song WJ, Li Q, Ryu MO, Nam A, An JH, Jung YC, Ahn JO, Youn HY (2019) Canine adipose tissue-derived mesenchymal stem cells pre-treated with TNF-alpha enhance immunomodulatory effects in inflammatory bowel disease in mice. Res Vet Sci 125:176–184. https://doi.org/10.1016/j.rvsc.2019.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398. https://doi.org/10.1634/stemcells.2005-0008

    Article  CAS  PubMed  Google Scholar 

  17. Boland L, Burand AJ, Brown AJ, Boyt D, Lira VA, Ankrum JA (2018) IFN-gamma and TNF-alpha Pre-licensing protects mesenchymal stromal cells from the pro-inflammatory effects of palmitate. Mol Ther 26:860–873. https://doi.org/10.1016/j.ymthe.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  18. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y (2014) Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 10:1301–1315. https://doi.org/10.4161/auto.28771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jie L, Lipeng B, Xi C, Fang Y, Liuhong S, Suizhong C, Zhicai Z, Zhihua R, Miaoping M, Shumin Y (2017) Isolation, cultivation and identification of canine bone marrow mesenchymal stem cells ( BMSCs) in vitro. Acta Agric Zhejiangensis 29:751–759. https://doi.org/10.3969/j.issn.1004-1524.2017.05.10

    Article  Google Scholar 

  20. Hu CD, Kosaka Y, Marcus P, Rashedi I, Keating A (2019) Differential immunomodulatory effects of human bone marrow-derived mesenchymal stromal cells on natural killer cells. Stem Cells Dev 28:933–943. https://doi.org/10.1089/scd.2019.0059

    Article  CAS  PubMed  Google Scholar 

  21. Xin Y, Gao J, Hu R, Li H, Li Q, Han F, He Z, Lai L, Su M (2020) Changes of immune parameters of T lymphocytes and macrophages in EAE mice after BM-MSCs transplantation. Immunol Lett 225:66–73. https://doi.org/10.1016/j.imlet.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  22. Deng J, Ouyang P, Li W, Zhong L, Gu C, Shen L, Cao S, Yin L, Ren Z, Zuo Z, Deng J, Yan Q, Yu S (2021) Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expansion by activating the autophagy pathway. Int J Mol Sci 22:11356. https://doi.org/10.3390/ijms222111356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haque N, Kasim NH, Rahman MT (2015) Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci 11:324–334. https://doi.org/10.7150/ijbs.10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lian Q, Zhang Y, Liang X, Gao F, Tse H-F (2016) Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells. In: Gnecchi M (ed) Mesenchymal Stem Cells: Methods and Protocols. Springer, New York, pp 289–298. https://doi.org/10.1007/978-1-4939-3584-0_17

    Chapter  Google Scholar 

  25. Sun YQ, Zhang Y, Li X, Deng MX, Gao WX, Yao Y, Chiu SM, Liang X, Gao F, Chan CW, Tse HF, Shi J, Fu QL, Lian Q (2015) Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon-gamma-induced HLA expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD scid gamma mice. Stem Cells 33:3452–3467. https://doi.org/10.1002/stem.2094

    Article  CAS  PubMed  Google Scholar 

  26. Delarosa O, Dalemans W, Lombardo E (2012) Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 3:182. https://doi.org/10.3389/fimmu.2012.00182

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cassano JM, Schnabel LV, Goodale MB, Fortier LA (2018) The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand. Vet Immunol Immunopathol 195:33–39. https://doi.org/10.1016/j.vetimm.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Jafari M, Asghari A, Delbandi AA, Jalessi M, Jazayeri MH, Samarei R, Tajik N (2020) Priming TLR3 and TLR4 in human adipose- and olfactory mucosa-derived mesenchymal stromal cells and comparison of their cytokine secretions. Cytotechnology 72:57–68. https://doi.org/10.1007/s10616-019-00357-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Huang L, Cai Z, Deng W, Wang P, Su H, Wu Y, Shen H (2019) A study of the immunoregulatory function of TLR3 and TLR4 on mesenchymal stem cells in ankylosing spondylitis. Stem Cells Dev 28:1398–1412. https://doi.org/10.1089/scd.2019.0039

    Article  CAS  PubMed  Google Scholar 

  30. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, Tolosa E, Hoberg M, Anderl J, Aicher WK, Weller M, Wick W, Platten M (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27:909–919. https://doi.org/10.1002/stem.7

    Article  CAS  PubMed  Google Scholar 

  31. Liang C, Jiang E, Yao J, Wang M, Chen S, Zhou Z, Zhai W, Ma Q, Feng S, Han M (2018) Interferon-gamma mediates the immunosuppression of bone marrow mesenchymal stem cells on T-lymphocytes in vitro. Hematology 23:44–49. https://doi.org/10.1080/10245332.2017.1333245

    Article  CAS  PubMed  Google Scholar 

  32. Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, Sung KW, Koo HH, Yoo KH (2018) Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-gamma. EBioMedicine 28:261–273. https://doi.org/10.1016/j.ebiom.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A New Mesenchymal Stem Cell (MSC) Paradigm: Polarization into a Pro-Inflammatory MSC1 or an Immunosuppressive MSC2 Phenotype. PLoS One 5:e10088. https://doi.org/10.1371/journal.pone.0010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim KD, Lim HY, Lee HG, Yoon DY, Choe YK, Choi I, Paik SG, Kim YS, Yang Y, Lim JS (2005) Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun 338:1126–1136. https://doi.org/10.1016/j.bbrc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  35. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363. https://doi.org/10.1111/j.1365-2249.2007.03422.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramaswamy K, Kumar P, He YX (2000) A role for parasite-induced PGE2 in IL-10-mediated host immunoregulation by skin stage schistosomula of Schistosoma mansoni. J Immunol 165:4567–4574. https://doi.org/10.4049/jimmunol.165.8.4567

    Article  CAS  PubMed  Google Scholar 

  37. Connard SS, Linardi RL, Even KM, Berglund AK, Schnabel LV, Ortved KF (2021) Effects of continuous passage on the immunomodulatory properties of equine bone marrow-derived mesenchymal stem cells in vitro. Vet Immunol Immunopathol 234:110203. https://doi.org/10.1016/j.vetimm.2021.110203

    Article  CAS  PubMed  Google Scholar 

  38. Lu Z, Chang W, Meng S, Xu X, Xie J, Guo F, Yang Y, Qiu H, Liu L (2019) Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res Ther 10:372. https://doi.org/10.1186/s13287-019-1488-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y (2018) Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 14:493–507. https://doi.org/10.1038/s41581-018-0023-5

    Article  CAS  PubMed  Google Scholar 

  40. Fan LX, Hu CX, Chen JJ, Cen PP, Wang J, Li LJ (2016) Interaction between mesenchymal stem cells and B-cells. Int J Mol Sci 17:650. https://doi.org/10.3390/ijms17050650

    Article  CAS  PubMed Central  Google Scholar 

  41. Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, Wei C, Li J, Zhang L (2019) Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int Immunopharmacol 74:105687. https://doi.org/10.1016/j.intimp.2019.105687

    Article  CAS  PubMed  Google Scholar 

  42. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621. https://doi.org/10.1182/blood-2003-11-3909

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Zhang X, Xie J, Xue M, Liu L, Yang Y, Qiu H (2020) Overexpression of TGFbeta1 in murine mesenchymal stem cells improves lung inflammation by impacting the Th17/Treg balance in LPS-induced ARDS mice. Stem Cell Res Ther 11:311. https://doi.org/10.1186/s13287-020-01826-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65. https://doi.org/10.1186/scrt216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729. https://doi.org/10.1182/blood-2002-07-2104

    Article  CAS  PubMed  Google Scholar 

  46. Bruno G, Saracino A, Monno L, Angarano G (2017) The revival of an “Old” marker: CD4/CD8 ratio. AIDS Rev 19:81–88

    PubMed  Google Scholar 

  47. Crespo AC, van der Zwan A, Ramalho-Santos J, Strominger JL, Tilburgs T (2017) Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections. J Reprod Immunol 119:85–90. https://doi.org/10.1016/j.jri.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  48. Basu R, Whitlock BM, Husson J, Le Floc’h A, Jin WY, Oyler-Yaniv A, Dotiwala F, Giannone G, Hivroz C, Biais N, Lieberman J, Kam LC, Huse M (2016) Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165:100–110. https://doi.org/10.1016/j.cell.2016.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duggleby R, Danby RD, Madrigal JA, Saudemont A (2018) Clinical grade regulatory CD4(+) T cells (Tregs): moving toward cellular-based immunomodulatory therapies. Front Immunol 9:252. https://doi.org/10.3389/fimmu.2018.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M, Rosendahl K, Tammik C, Ringden O (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60:307–315. https://doi.org/10.1111/j.0300-9475.2004.01483.x

    Article  PubMed  Google Scholar 

  51. Groh ME, Maitra B, Szekely E, Koc ON (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33:928–934. https://doi.org/10.1016/j.exphem.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  52. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135. https://doi.org/10.1155/2012/925135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P (2012) The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 30:1664–1674. https://doi.org/10.1002/stem.1132

    Article  CAS  PubMed  Google Scholar 

  54. Tian J, Zhu Q, Zhang Y, Bian Q, Hong Y, Shen Z, Xu H, Rui K, Yin K, Wang S (2020) Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and treg cell responses. Front Immunol 11:598322. https://doi.org/10.3389/fimmu.2020.598322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tay SS, Plain KM, Bishop GA (2009) Role of IL-4 and Th2 responses in allograft rejection and tolerance. Curr Opin Organ Transplant 14:16–22. https://doi.org/10.1097/MOT.0b013e32831ebdf5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the experimental equipment support provided by Sichuan Agricultural University. Thanks are also due to Liping Yang for taking care of the animals used in this work.

Funding

This work was funded by the dual support plan for discipline construction of Sichuan. Agricultural University (035/2121993256).

Author information

Authors and Affiliations

Authors

Contributions

JQD, DTL, and XYH: made substantial contributions to the conception and design of the study, acquisition of data, analysis and interpretation of data. JQD, DTL, XYH, WYL, FFZ, and CWG: contributed to manuscript preparation. LHS, SZC, ZHR, ZCZ, JLD, and SMY: gave critical revision for important intellectual content and final approval for the manuscript.

Corresponding author

Correspondence to Shumin Yu.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethics approval and consent to participate

This study was approved by the Faculty Animal Care and Use Committee of Sichuan Agricultural University (Ya’an, China; Approval No.2013–028) for the use of animals in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Li, D., Huang, X. et al. Interferon-γ enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway. Mol Biol Rep 49, 8337–8347 (2022). https://doi.org/10.1007/s11033-022-07648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07648-y

Keywords

Navigation