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a major contributor to disability. Ischemic stroke, which is 
the most common type of this event[1], disrupts the pro-
duction and clearance of reactive oxygen species (ROS), 
leading to their accumulation in brain tissue. This, in turn, 
results in the destruction or changes in lipids, proteins and 
nucleic acids in a cascade reaction that ultimately causes 
neuronal death[2]. However, no effective therapeutic strate-
gies have yet been developed to prevent or treat oxidative 
stress injury.

Mesenchymal stem cells (MSCs) have been shown to 
exert antioxidant functions in experimental animals[3]. In 
recent years, MSCs have been widely used in experimental 
investigations of nerve injury repair because of their strong 
regeneration potential and ability to improve the microenvi-
ronment by secreting a variety of cytokines[4]. MSC-condi-
tioned medium (MSC-CM) is heterogeneous and contains 
various soluble factors that can reduce lipid peroxidases 
generation, while promoting antioxidant enzyme produc-
tion[5–8]. However, the mechanism by which MSC-CM 
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Abstract
Background The mechanism by which MSC-CM protects neuronal cells against ischemic injury remains to be elucidated. 
In this study, we aimed to clarify the protective effect of umbilical cord-derived mesenchymal stem cell conditioned medium 
(UC-MSC-CM) on neuronal oxidative injury and its potential mechanism.
Methods and Results Neuronal oxidative damage was mimicked by H2O2 treatment of the HT22 cell line. The numbers of 
cleaved-Caspase-3-positive cells and protein expression of Caspase-9 induced by H2O2 treatment were decreased by UC-
MSC-CM treatment. Furthermore, SOD protein expression was increased in the MSC-CM group compared with that in the 
H2O2 group. The H2O2-induced TRPM2-like currents in HT22 cells were attenuated by MSC-CM treatment. In addition, 
H2O2 treatment downregulated the expression of p-JNK protein in HT22 cells, and this the downward trend was reversed 
by incubation with MSC-CM.
Conclusions UC-MSC-CM protects neurons against oxidative injury, possibly by inhibiting activation of TRPM2 and the 
JNK signaling pathway.
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Experimental design

HT22 cells were divided into the following experimental 
groups: Normal: culture in complete medium; H2O2: treated 
with 100 µM H2O2 for 1 h; MSC-CM: administration of 
UC-MSC-CM after treatment with 100 µM H2O2 for 1 h; 
SP600125 (a JNK inhibitor) and PD98059 (an ERK inhibi-
tor): starved with 0.5% serum for 6 h, and cultured in the pres-
ence of the inhibitors for 24 h (SP600125 50 µM; PD98059 
60 µM; MCE, USA); SP600125/PD98059 + H2O2: cultured 
in the presence of the inhibitors for 24 h before the addition 
of 100 µM H2O2 for 1 h; SP600125/PD98059 + MSC-CM: 
cultured in the presence of the inhibitors for 24 h before 
the addition of 100 µM H2O2 for 1 h, when UC-MSCs-CM 
were added.

Enzyme-linked immunosorbent assay (ELISA)

Cystatin SA, CD200 R1, Pax3, HIF-1beta, Neuroligin2, 
FGF-21, HGF, VEGF, BDNF, EGF, GDNF and NT3 were 
detected in MSC-CM and Fibroblast-CM using commercial 
ELISA kits (Cloud-Clone Corp, China) according to the 
manufacturer’s instructions.

Whole-cell patch clamp experiment

HT22 cells were cultured on Matrigel coated cover slides 
in 35mm culture dishes containing DMEM supplemented 
with 5% FBS. The prepared HT22 cell slides were recorded 
in the whole-cell mode at room temperature. The cells were 
perfused continuously with DMEM supplemented with 5% 
FBS. The pipette solution contained (mM): 125 potassium 
D-gluconate, 8 NaCl, 2 Mg ATP, 0.3 Na GTP, 0.2 EGTA and 
10 HEPES, with the pH adjusted to 7.2–7.4 using KOH. The 
recording glass electrodes were pulled from the borosilicate 
glass using a P97 laser electrode puller (Sutter Instruments 
Company, USA), and the resistance between the electrode 
tip and cell membrane was 8–12 MΩ. Cells were held at 
a potential of − 60mV and current-voltage relations were 
obtained from voltage ramps from − 80 to + 80 mV (50 ms 
duration). Membrane currents were digitally sampled at a 
frequency of 10 kHz and low-pass filtered at 2–5 kHz. H2O2 
(100 µM; Yantai, China) was used to activate the TRPM2 
channels. Data acquisition was performed using EPC-10 
Patch Clamp Amplifier (HEKA Elektronik, Germany). The 
results were analyzed and plotted using GraphPad Prism 
software, version 7.04.

Immunofluorescence staining

HT22 cells were fixed for 10 min with 4% paraformal-
dehyde (Biotopped Life Sciences, China), washed with 

protects neuronal cells against ischemic injury remains to 
be elucidated.

Transient receptor potential melatonin 2 (TRPM2) 
belongs to the TRP family and is a non-selective cation 
channel that allows the entry of calcium ions[9–11]. Stud-
ies have shown that H2O2 and ROS activate TRPM2 to 
induce the accumulation of calcium ions in cells, leading 
to cell death[12]. Importantly, recent studies have shown 
that TRPM2 channels play an important role in ischemic 
stroke, with TRPM2 activation further aggravating the 
condition[13–15].

In this study, we investigated the protective effect of 
umbilical cord-derived MSC-CM on H2O2-induced neuro-
nal injury, and the potential roles of TRPM2 inhibition and 
the MAPK pathway in the underlying mechanism.

Materials and methods

HT22 cell culture

HT22 cells were purchased from Bena Chuang Lian Bio-
technology Co., Ltd(Beijing, China).and cultured in Dul-
becco’s Modified Eagle Medium (DMEM; Gibco, USA) 
containing 5% fetal bovine serum (FBS; Biological Indus-
tries, Israel) and incubated at 37℃ under 5% CO2 in a 
humidified atmosphere.

Preparation of human umbilical cord-MSC-CM

This study was approved by the Ethics Committee of the 
General Hospital of Ningxia Medical University, China. 
Human umbilical cord-MSCs (UC-MSCs) were isolated 
from the umbilical cord connective tissue collected from 
healthy patients after obtaining informed consent. 3×105 
UM-MSCs were seeded in 100mm culture plate contain-
ing Ultra Culture Serum-free Medium (Lonza, Switzerland) 
supplemented with 2% Pall Ultroser G Serum Substitute 
(Pall, USA), and cultured in the CO2 incubator maintained 
at 37°C with 5% CO2 and a humidified atmosphere. Medium 
was changed every 3 days. At approximately 90% conflu-
ence, cells were passaged and 3×105 UM-MSCs reseeded 
in a new 100mm culture plate. 1×106 UC-MSCs at passages 
4 were seeded in a new 100mm culture plate. At 60–70% 
confluence, the medium was changed and the cells cultured 
for a further 24 h before harvesting the conditioned medium 
(CM). The CM was filtered (0.22-µm pore size) to remove 
cellular debris and concentrated using ultrafiltration units 
with a 3-kDa molecular-weight cutoff (Millipore, Burling-
ton, MA) to obtain the MSC-CM.
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independent experiments, averaged and expressed as % of 
total cells in a 200x field.

Western blot analysis

Total proteins were extracted from the HT22 cells using IP 
Lysis buffer (cat. no 87787; Thermo, USA) with protease 
and phosphatase inhibitors (cat. no. 78441; Thermo, USA). 
The concentration was determined using the bicinchoninic 
acid (BCA) method (cat. no. P0012; Beyotime, China). 
Equal amounts of protein samples were separated by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) with 10% and 15% gels (cat. no. PG112 and PG114; 
Epizyme Biotechnology, China) and transferred to polyvi-
nylidene fluoride membranes (Millipore, Burlington, MA, 
USA). The membranes were blocked with 5% non-fat milk 
for 2 h and incubated overnight at 4°C with the following 
primary antibodies: anti-SOD (1:1,000, cat. no. ab183881; 

PBS and permeabilized with 0.5% Triton-X in PBS for 1 
h at room temperature. Non-specific binding was reduced 
by incubation with blocking buffer (0.5% Triton-X in 
PBS + 5% normal goat serum) for 1 h at room tempera-
ture. Cells were then incubated overnight at 4°C with the 
following primary antibodies diluted in blocking buffer: 
anti-Caspase3 (1:1,000, cat. no. ab49822; Abcam, UK), 
anti-TRPM2 (1:500, cat. no. ab11168; Abcam). Cells were 
then incubated for 3 h at room temperature with the fol-
lowing fluorescently-labeled secondary antibody diluted in 
blocking buffer: Cy3-labeled goat anti-rabbit (1:1,000, cat. 
no 111-165-003; Jackson ImmunoResearch Laboratories, 
USA). Cells were incubated with 4′,6′ diamino-2-phenylin-
dole dihydrochloride (DAPI) (1:4; Solarbio, China) for 3–5 
min at room temperature and washed with PBS before col-
lecting images under a fluorescence microscope (Olympus, 
Japan) in the dark. The positive cells were counted in 10 
random microscopic fields of a 25mm culture dish from 3 

Fig. 1 UC-MSCs-CM protected HT22 cells against H2O2-induced neuronal apoptosis. A: Representative images of HT22 cell morphology, scale 
bar = 100 μm; B: Representative images of immunofluorescence staining of cleaved Caspase-3, scale bar = 20 μm; C: Percentages of the Caspase-
3-positive cells. Caspase-3 positive cells were counted in 10 random microscopic fields at 200× magnification of a 25 mm culture dish from 3 
independent experiments, averaged and expressed as % of total cells in a field; D: Representative images of Western blot analysis of cleaved-
Caspase-9; E: Relative expression analysis of cleaved-Caspase-9. Data represent the mean ± SD of 3 independent experiments. *P < 0.05 compared 
with Normal group, #P < 0.05 compared with MSCs-CM group
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infrared scanner (Licor, USA) and optical densities were 
quantified by Image J software. β-actin was used as a load-
ing control.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
software, version 7.04. Data are presented as mean ± stan-
dard deviation (SD) of at least three experiments. One-
way analysis of variance (ANOVA) and repeated measures 

Abcam), anti-pJNK1/2/3 (1:1,000, cat. no. ab219584; 
Abcam), anti-pERK1/2(1:1,000, cat. no. ab201015; Abcam) 
and anti-Caspase9 (1:1,000, cat. no. WL01551; Wanleibio, 
China), and anti-β-actin (1:10,000, cat. no. 66009-1-Ig; Pro-
teintech, USA). The membranes were then incubated for 1 
h at room temperature with the following secondary anti-
bodies: IRDye680RD goat anti-rabbit (1:20,000, cat. no. 
926-68071; Licor, USA), IRDye680RD goat anti-mouse 
(1:20,000, cat. no. 926-68180; Licor) and IRDye800CW 
goat anti-mouse (1:20,000, cat. no. 926-32351; Licor). The 
signal on the membrane were visualized by the Odyssey 

Fig. 2 UC-MSC-CM is com-
posed of cellular growth factors 
and possessed antioxidative 
ability. A: ELISA analysis of 
the concentration of various 
factors in the supernatant of 
MSCs-CM and fibroblast-CM; 
B: Representative images of 
Western blot analysis of SOD; 
C: Relative expression of SOD. 
Data represent the mean ± SD 
of 3 independent experiments. 
*P < 0.05 compared with Nor-
mal group, #P < 0.05 compared 
with MSCs-CM group
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24 h. Compared with the H2O2-treated group, the density of 
HT22 cells was higher after treatment with UC-MSC-CM, 
although there was no morphological difference between 
the cells in the two groups (P < 0.05, Fig. 1A). Fluorescence 
immunostaining showed that the number of Caspase-3 
positive cells was significantly lower in the UC-MSCs-CM 
group compared with that in H2O2-treated group (P < 0.05, 
Fig. 1B and C). Furthermore, Western blot analysis showed 
that the expression level of cleaved-Caspase-9 protein was 
significantly lower in the UC-MSC-CM group compared 
with that in H2O2-treated group (P < 0.05, Fig. 1D and E).

ANOVA were used for multivariate data analyses. P < 0.05 
was set as the threshold for statistical significance.

Results

UC-MSC-CM protects HT22 cells against 
H2O2-induced neuronal apoptosis

To examine the protective ability of UC-MSC-CM, we 
treated H2O2-stimulated HT22 cells with UC-MSC-CM for 

Fig. 3 UC-MSC-CM suppressed 
TRPM2-related currents. A: 
Representative images of 
immunofluorescence staining of 
TRPM2, scale bar = 20 μm.; B: 
I-V curve of TRPM2 showing 
changes in membrane potential
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UC-MSC-CM suppresses TRPM2-related currents

TRPM2 can be activated by H2O2-induced oxidative 
stress[16]. Fluorescence immunostaining confirmed the 
expression of TRPM2 in HT22 cells, with no marked differ-
ences in the number of TRPM2-positive cells and the cellular 
location of TRPM2 between the groups (Fig. 3A). Whole-
cell patch clamp measurement were showed that H2O2 
stimulation of HT22 cells evoked a non-selective inward 
current with current–voltage properties similar to those 
that are characteristic of TRPM2[17]. This H2O2-induced 

UC-MSC-CM is composed of cellular growth factors 
and mediates anti-oxidative functions

The cytotropic factors secreted into the UC-MSC-CM 
were analyzed by ELISA. Many growth factors, such as 
EGF, BDNF, GDNF and HGF, were detected in the UC-
MSCs-CM (Fig. 2A). Western blot analysis showed that the 
expression level of SOD protein was significantly higher in 
UC-MSC-CM group compared with that in the H2O2-treated 
group (P < 0.05, Fig. 2B and C).

Fig. 4 UC-MSCs-CM protection of HT22 cells was mediated via the JNK signaling pathway. A: Representative images of the Western blot analy-
sis of the protein expression of p-JNK1/2/3 protein expression; B: Relative expression of p-JNK1/2/3; C: Representative images of the Western 
blot analysis of cleaved-Caspase-9 protein expression; D: Relative expression of cleaved-Caspase 9; E: Representative images of the Western 
blot analysis of p-ERK1/2 protein; F: Relative expression of p-ERK1/2. Data represent the mean ± SD of 3 independent experiments. *P < 0.05 
compared with Normal group
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good pharmacokinetic properties is a long and challenging 
process. Interestingly, we observed that MSC-CM contrib-
utes to the suppression of TRPM2 activation, indicating that 
MSCs secrete endogenous TRPM2 inhibitors. To identify 
such a component in the complex MSC-CM, we analyzed 
secreted protein expression and detected high levels many 
cytokines that may modulate the function of TRPM2 and 
warrant further investigation.

In eukaryotic cells, the MAPK signaling pathway regu-
lates gene expression and processes such as cell prolif-
eration, differentiation, apoptosis and stress response, and 
components of the pathway, including ERK, JNK, and p38, 
have been identified as therapeutic targets for many dis-
eases[26–28]. Accumulating evidence supports a role for 
the MAPK signaling pathway in the pathogenesis and devel-
opment of ischemic stroke[29, 30]. However, the upstream 
and downstream kinases of the MAPK signaling pathway 
are complex and have many influencing factors. Many stud-
ies have shown that the MAPK signaling pathway is the 
key modulator of ROS-related apoptosis[31, 32]. There-
fore, we investigated the potential of MSC-CM to modu-
late the MAPK signaling pathway. Following treatment of 
HT22 cells with H2O2, expression levels of both p-ERK and 
p-JNK were decreased. Although the protein expression of 
p-P38 has not been detected in each group, we speculate 
that H2O2 may also induce the phosphorylated level of P38 
decrease, but we could not observe the decreased p-P38 
due to its low level in normal culture HT22 cells. These 
data indicated that H2O2 treatment could suppress the acti-
vation of MAPKs. Previous studies proved that ERK and 
JNK possess their upstream activators respectively[29, 30]. 
We showed that MSC-CM treatment effectively prevented 
the H2O2-induced decrease in p-JNK expression, but had 
no effect on p-ERK expression, our results suggested the 
component of MSC-CM might activate JNK, but not ERK. 
Furthermore, the protective effect of MSC-CM treatment 
against the H2O2-induced decrease in JNKs expression was 
accompanied by a decrease in neuronal cell apoptosis. These 
findings are consistent with previous reports that JNKs play 
roles in neuronal development and neurite growth[33, 34]. 
Interestingly, we have found SP600125 + MSC-CM group 
showed significant elevation of pJNK expression compared 
to MSC-CM group. Although SP600125 could block the 
activation of JNK, it also could increase the ROS level [35]. 
When the HT22 cells were treated with H2O2, a stronger 
oxidative stress was generated, cell physiology changes 
significantly once excessive amount of ROS accumulated. 
HT22 might become more susceptible to MSC-CM treat-
ment, so the significant elevation of pJNK expression was 
observed. The detail mechanism still needs us to do further 
study.

TRPM2-like current in HT22 cells was attenuated by treat-
ment with UC-MSC-CM (Fig. 3B)

The neuroprotective effects of UC-MSC-CM are 
mediated via the JNK signaling pathway

To explore the role of the H2O2 -related MAPKs signaling 
pathway in the mechanism by which UC-MSC-CM protects 
HT22 cells against H2O2-induced injury, we analyzed the 
expression of p-JNK, p-P38 and p-ERK proteins. Western 
blot analysis showed that the expression level of p-JNK pro-
tein was significantly decreased after treatment with H2O2 
and that this trend was reversed by subsequent treatment 
with UC-MSC-CM (P < 0.05, Fig. 4A and B) accompanied 
by a decreased in the expression level of cleaved-Caspase 
9 protein (P < 0.05, Fig. 4C and D). The expression level 
of p-ERK protein was also decreased after treatment with 
H2O2, and the levels were unchanged by subsequent treat-
ment with UC-MSC-CM (Fig. 4D and E). The protein 
expression of p-P38 has not been detected in each group 
(data not shown).

Discussion

Under conditions of cerebral ischemia, the excitotoxicity 
and subsequent ROS overproduction can damage neuronal 
structures, leading to cell death. Many studies have indi-
cated that MSC transplantation is a promising therapy for 
cerebral ischemia. To date, several studies have evaluated 
the neuroprotective effects of MSC-CM in various diseases 
and many showed positive results[18]. Pre-clinically, MSC-
CM has been shown to exert cellular protective and regen-
erative effects[19]. Recently, MSC-CM has been identified 
as one of the key components of the neuroprotective mech-
anisms of MSCs and can effectively ameliorate ischemia/
reperfusion-induced brain injury by promoting angiogen-
esis, regulating immune responses, and inhibiting neuro-
nal apoptosis [20, 21]. In accordance with other reports, 
we provided further evidence for MSC-CM treatment as a 
potential approach to the preservation of neuronal integrity 
and function. Our study showed that the MSC-CM treat-
ment protected HT22 cells from H2O2-induced oxidative 
injury by decreasing apoptosis and increasing the cellular 
anti-oxidative ability.

Cerebral ischemia-induced TRPM2 activation triggers 
abnormal intracellular Ca2+ accumulation and cell death, 
which in turn causes irreversible brain damage[22]. Thus, 
TRPM2 has emerged as a new therapeutic target for isch-
emic stroke. TRPM2 inhibitors have been in preclinical 
development to prevent pathological Ca2+ overload[23–25]; 
however, successful development of specific inhibitors with 
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In this study, we evaluated the effects of UC-MSCs-CM 
on neuronal oxidative damage. We showed that UC-MSCs-
CM protects neurons against oxidative injury, possibly 
by inhibiting activation of the TRPM2 and JNK signaling 
pathway.
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