Skip to main content
Log in

Effect of prior exposure to enriched environment on cellular apoptosis after experimental stroke

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Growing evidence, including our previous studies, has demonstrated that an enriched environment (EE) after cerebral ischemia/reperfusion (I/R) injury improves neurofunctional recovery in rats. However, whether EE exposure prior to injury could play a neuroprotective role in stroke has seldom been investigated. In this study, we examined the neuroprotective effects of prior exposure to EE and investigated the potential anti-apoptotic effect in rats after cerebral I/R injury.

Methods and results

Rats were housed in EE or standard conditions (SC) for four weeks and then randomly assigned to receive 120 min of right middle cerebral occlusion (MCAO) or sham operation. Based on the housing environment and the procedure they underwent, the rats were divided into the following three groups: preischemic EE + MCAO (PIEE), preischemic SC + MCAO (PISC) and preischemic SC + sham-operated (sham). Forty-eight hours after the operation, the rats were subjected to a series of assessments. We found that prior exposure to EE improved functional outcomes, reduced infarct volume and attenuated histological damage. The apoptotic cell numbers in the ischemic penumbra cortex decreased in PIEE group, as did the p53, PUMA, Bax and AIF expression levels. The protein expression of Bcl-2 and HSP70 was increased in the PIEE group compared with the PISC group. PIEE treatment also significantly increased the BDNF level in the ischemic penumbra. In addition, inhibition of cell apoptosis and upregulation of BDNF expression levels were correlated with the improved functional recovery of MCAO rats.

Conclusions

These findings suggest that EE preconditioning inhibited cell apoptosis and upregulated BDNF expression in the penumbra of MCAO rats, which may contribute to neurofunctional recovery after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145:e153–e639. https://doi.org/10.1161/CIR.0000000000001052

    Article  PubMed  Google Scholar 

  2. Su Y, Chen X, Ye XF, Sun HY, Wu F, Dong Q, Cheng X, Wu D (2020) The value of ADAMTS13 in predicting clinical outcomes in patients with acute ischemic stroke receiving thrombolysis. Front Neurol 11:799. https://doi.org/10.3389/fneur.2020.00799

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kempermann G (2019) Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20:235–245. https://doi.org/10.1038/s41583-019-0120-x

    Article  CAS  PubMed  Google Scholar 

  4. White JH, Bartley E, Janssen H, Jordan LA, Spratt N (2015) Exploring stroke survivor experience of participation in an enriched environment: a qualitative study. Disabil Rehabil 37:593–600. https://doi.org/10.3109/09638288.2014.935876

    Article  PubMed  Google Scholar 

  5. Deng YH, Dong LL, Zhang YJ, Zhao XM, He HY (2021) Enriched environmentboosts the post-stroke recovery of neurological function by promoting autophagy. Neural Regen Res 16:813–819. https://doi.org/10.4103/1673-5374.297084

    Article  PubMed  Google Scholar 

  6. Chen X, Zhang X, Liao W, Wan Q (2017) Effect of physical and social components of enriched environment on astrocytes proliferation in rats after cerebral ischemia/reperfusion injury. Neurochem Res 42:1308–1316. https://doi.org/10.1007/s11064-016-2172-x

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q (2017) Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 1655:176–185. https://doi.org/10.1016/j.brainres.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Gonçalves LV, Herlinger AL, Ferreira TAA, Coitinho JB, Pires RGW, Martins-Silva C (2018) Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res 348:171–183. https://doi.org/10.1016/j.bbr.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  9. Geng J, Zhang Y, Li S, Li S, Wang J, Wang H, Aa J, Wang G (2019) Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J Proteome Res 18:57–68. https://doi.org/10.1021/acs.jproteome.8b00339

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Zhang W, Ma B, Zhang H, Fan Z, Li M, Li X (2021) A novel biscoumarin derivative dephosphorylates ERK and alleviates apoptosis induced by mitochondrial oxidative damage in ischemic stroke mice. Life Sci 264:118499. https://doi.org/10.1016/j.lfs.2020.118499

    Article  CAS  PubMed  Google Scholar 

  11. Mitsios N, Gaffney J, Krupinski J, Mathias R, Wang Q, Hayward S, Rubio F, Kumar P, Kumar S, Slevin M (2007) Expression of signaling molecules associated with apoptosis in human ischemic stroke tissue. Cell Biochem Biophys 47:73–86. https://doi.org/10.1385/cbb:47:1:73

    Article  CAS  PubMed  Google Scholar 

  12. Yi X, Zhou Q, Sui G, Ren G, Tan L, Li J, Bao S (2021) Interactions among variants in P53 apoptotic pathway genes are associated with neurologic deterioration and functional outcome after acute ischemic stroke. Brain Behav 11:e01492. https://doi.org/10.1002/brb3.1492

    Article  PubMed  Google Scholar 

  13. Modi J, Menzie-Suderam J, Xu H, Trujillo P, Medley K, Marshall ML, Tao R, Prentice H, Wu JY (2020) Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci 27:19. https://doi.org/10.1186/s12929-019-0597-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han J, Goldstein LA, Hou W, Gastman BR, Rabinowich H (2010) Regulation of mitochondrial apoptotic events by p53-mediated disruption of complexes between antiapoptotic Bcl-2 members and Bim. J Biol Chem 285:22473–22483. https://doi.org/10.1074/jbc.M109.081042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hong LZ, Zhao XY, Zhang HL (2010) p53-mediated neuronal cell death in ischemic brain injury. Neurosci Bull 26:232–240. https://doi.org/10.1007/s12264-010-1111-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC (2019) Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci 20:257. https://doi.org/10.3390/ijms20020257

    Article  CAS  PubMed Central  Google Scholar 

  17. Otsuka S, Sakakima H, Sumizono M, Takada S, Terashi T, Yoshida Y (2016) The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats. Behav Brain Res 303:9–18. https://doi.org/10.1016/j.bbr.2016.01.049

    Article  CAS  PubMed  Google Scholar 

  18. Almeida S, Laço M, Cunha-Oliveira T, Oliveira CR, Rego AC (2009) BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons. Neurobiol Dis 35:448–456. https://doi.org/10.1016/j.nbd.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Grisotto C, Taïlé J, Planesse C, Diotel N, Gonthier MP, Meilhac O, Couret D (2021) High-fat diet aggravates cerebral infarct, hemorrhagic transformation and neuroinflammation in a mouse stroke model. Int J Mol Sci 22:4571. https://doi.org/10.3390/ijms22094571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu SP, Wang N, Zhao L (2021) Network pharmacology reveals the mechanism of activity of Tongqiao Huoxue Decoction extract against middle cerebral artery occlusion-induced cerebral ischemia-reperfusion injury. Front Pharmacol 11:572624. https://doi.org/10.3389/fphar.2020.572624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He WM, Ying-Fu L, Wang H, Peng YP (2019) Delayed treatment of α5 GABAA receptor inverse agonist improves functional recovery by enhancing neurogenesis after cerebral ischemia-reperfusion injury in rat MCAO model. Sci Rep 9:2287. https://doi.org/10.1038/s41598-019-38750-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao S, Wu JN, Liu RM et al (2020) A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt (Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol 36:101644. https://doi.org/10.1016/j.redox.2020.101644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu D, Ho ES, Mai H, Zang J, Liu Y, Li Y, Yang B, Ding Y, Tsang CK, Xu A (2020) Identification of blood circular rnas as potential biomarkers for acute ischemic stroke. Front Neurosci 14:81. https://doi.org/10.3389/fnins.2020.00081

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao H, Wang D, Wang YL, Mao JP, Jiang S, Yang XL (2021) Pramipexole attenuates 6-OHDA-induced Parkinson’s disease by mediating the Nurr1/NF-κB pathway. Mol Biol Rep 48:3079–3087. https://doi.org/10.1007/s11033-021-06343-8

    Article  CAS  PubMed  Google Scholar 

  25. Xian Y, Federspiel JJ, Grau-Sepulveda M, Hernandez AF, Schwamm LH, Bhatt DL, Smith EE, Reeves MJ, Thomas L, Webb L, Bettger JP, Laskowitz DT, Fonarow GC, Peterson ED (2016) Risks and benefits associated with prestroke antiplatelet therapy among patients with acute ischemic stroke treated with intravenous tissue plasminogen activator. JAMA Neurol 73:50–59. https://doi.org/10.1001/jamaneurol.2015.3106

    Article  PubMed  Google Scholar 

  26. Zhang X, Liu JY, Liao WJ, Chen XP (2021) Differential effects of physical and social enriched environment on angiogenesis in male rats after cerebral ischemia/reperfusion injury. Front Hum Neurosci 15:622911. https://doi.org/10.3389/fnhum.2021.622911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Xu D, Qi H, Yuan Y, Liu H, Yao S, Yuan S, Zhang J (2018) Enriched environment promotes post-stroke neurogenesis through NF-κB-mediated secretion of IL-17A from astrocytes. Brain Res 1687:20–31. https://doi.org/10.1016/j.brainres.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  28. Tang Y, Li MY, Zhang X, Jin X, Liu J, Wei PH (2019) Delayed exposure to environmental enrichment improves functional outcome after stroke. J Pharmacol Sci 140:137–143. https://doi.org/10.1016/j.jphs.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Wen L, Liu L, Li J, Tong L, Zhang K, Zhang Q, Li C (2019) NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res Bull 146:104–111. https://doi.org/10.1016/j.brainresbull.2018.12.010

    Article  PubMed  Google Scholar 

  30. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330:1390–1393. https://doi.org/10.1126/science.1190217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao X, Fan Y, Hou J, Chen X, Xu X, Yang Y, Shen J, Mi P, Huang X, Zhang W, Cao H, Hong X, Hu T, Zhan YY (2019) Identification of chaetocin as a potent non-ROS-mediated anticancer drug candidate for gastric cancer. J Cancer 10:3678–3690. https://doi.org/10.7150/jca.32803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cho BB, Toledo-Pereyra LH (2008) Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 21:141–147. https://doi.org/10.1080/08941930802029945

    Article  PubMed  Google Scholar 

  33. Shin BN, Kim DW, Kim IH, Park JH, Ahn JH, Kang IJ, Lee YL, Lee CH, Hwang IK, Kim YM, Ryoo S, Lee TK, Won MH, Lee JC (2019) Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 9:13032. https://doi.org/10.1038/s41598-019-49623-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi H, Huang G, Zhang K, Liu S, Liu S, Xu W (2018) HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-κB activation. Exp Biol Med (Maywood) 243:770–779. https://doi.org/10.1177/1535370218773982

    Article  CAS  Google Scholar 

  35. Zhao Z, Sabirzhanov B, Wu J, Faden AI, Stoica BA (2015) Voluntary exercise preconditioning activates multiple antiapoptotic mechanisms and improves neurological recovery after experimental traumatic brain injury. J Neurotrauma 32:1347–1360. https://doi.org/10.1089/neu.2014.3739

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI (2012) Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 123:542–554. https://doi.org/10.1111/j.1471-4159.2012.07927.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 22:191–199. https://doi.org/10.1080/14728222.2018.1439477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Xue Z, Zhu S, Guo Y, Zhang Y, Dou J, Zhang J, Ito Y, Guo Z (2022) Diosgenin revealed potential effect against cerebral ischemia reperfusion through HIKESHI/HSP70/NF-κB anti-inflammatory axis. Phytomedicine 99:153991. https://doi.org/10.1016/j.phymed.2022.153991

    Article  CAS  PubMed  Google Scholar 

  39. Seo JH, Park HS, Park SS, Kim CJ, Kim DH, Kim TW (2019) Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Exp Neurol 322:113043. https://doi.org/10.1016/j.expneurol.2019.113043

    Article  CAS  PubMed  Google Scholar 

  40. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Grãos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343. https://doi.org/10.1038/sj.cdd.4401662

    Article  CAS  PubMed  Google Scholar 

  41. Glab JA, Mbogo GW, Puthalakath H (2017) BH3-only proteins in health and disease. Int Rev Cell Mol Biol 328:163–196. https://doi.org/10.1016/bs.ircmb.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  42. Chen MR, Dai P, Wang SF, Song SH, Wang HP, Zhao Y, Wang TH, Liu J (2016) BDNF overexpression exhibited bilateral effect on neural behavior in SCT mice associated with AKT signal pathway. Neurochem Res 41:2585–2597. https://doi.org/10.1007/s11064-016-1970-5

    Article  CAS  PubMed  Google Scholar 

  43. Cheng CY, Kao ST, Lee YC (2020) Angelica sinensis extract protects against ischemia-reperfusion injury in the hippocampus by activating p38 MAPK-mediated p90RSK/p-bad and p90RSK/CREB/BDNF signaling after transient global cerebral ischemia in rats. J Ethnopharmacol 252:112612. https://doi.org/10.1016/j.jep.2020.112612

    Article  CAS  PubMed  Google Scholar 

  44. Cirulli F, Berry A, Chiarotti F, Alleva E (2004) Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus 14:802–807. https://doi.org/10.1002/hipo.10220

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by Jiangxi Provincial Natural Science Foundation (20202BABL216034) and National Natural Science Foundation of China (No.82002401, No.81902304).

Author information

Authors and Affiliations

Authors

Contributions

Xiuping Chen designed and conducted the experiments and wrote the original draft. Xin Zhang analyzed the data and revised the original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interests.

Ethical approval

The protocol was approved by the Animal Experimental Committee of Wuhan University at Wuhan, China (No. WP2020-08059).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, X. Effect of prior exposure to enriched environment on cellular apoptosis after experimental stroke. Mol Biol Rep 49, 6541–6551 (2022). https://doi.org/10.1007/s11033-022-07494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07494-y

Keywords

Navigation