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Abstract
Energy metabolism maintains the activation of intracellular and intercellular signal transduction, and plays a crucial role in 
immune response. Under environmental stimulation, immune cells change from resting to activation and trigger metabolic 
reprogramming. The immune system cells exhibit different metabolic characteristics when performing functions. The study 
of immune metabolism provides new insights into the function of immune cells, including how they differentiate, migrate and 
exert immune responses. Studies of immune cell energy metabolism are beginning to shed light on the metabolic mechanism 
of disease progression and reveal new ways to target inflammatory diseases such as autoimmune diseases, chronic viral infec-
tions, and cancer. Here, we discussed the relationship between immune cells and metabolism, and proposed the possibility 
of targeted metabolic process for disease treatment.
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Abbreviations
1,3-DPG  1,3-Diphosphoglyceric acid
3-PG  3-Phosphoglycerate
α-KG  α-Ketoglutarate
Acetyl-CoA  Acetyl-coenzyme A
ACLY  ATP-citrate lyase
ADP  Adenosine diphosphate
AMPK  AMP-activated protein kinase
ATP  Adenosine-triphosphate
BCR  B cell antigen receptor
BMDCs  Bone marrow-derived dendritic cells
CCR7  C–C motif chemokine receptor 7
CD  Cluster of differentiation
CoQ  Coenzyme Q
Cyt c  Cytochrome c

EIF2AK2  Eukaryotic translation initiation factor 
2-alpha kinase 2

ETC  Electron transport chain
F-1,6-BP  Fructose 1,6-bisphosphate
F-6-P  Fructose-6-phosphate
FAD  Flavin adenine dinucleotide
FAO  Fatty acid oxidation
FAS  Fatty acid synthesis
FOXP3  Forkhead box P3
GCs  Germinal centers
GLS  Glutaminase
Glut-1  Glucose transportase-1
GSK3  Glycogen synthase kinase 3
G-3-P  Glyceraldehyde-3-phosphate
G-6-P  Glucose-6-phosphate
HIF1α  Hypoxia-inducible factor 1α
HK  Hexokinase
IFN  Interferon
IL  Interleukin
LDHA  Lactate dehydrogenase A
LPS  Lipopolysaccharide
M-CSF  Macrophage colony-stimulating factor
MDSCs  Myeloid-derived suppressor cells
MHC  Major histocompatibility complex
mTOR  Mammalian targets of the rapamycin
NAD  Nicotinamide adenine dinucleotide
NADH  Nicotinamide adenine dinucleotide
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NADPH  Nicotinamide adenine dinucleotide 
phosphate

NF-κB  Nuclear factor-k-gene binding
OAA  Oxaloacetate
OXPHOS  Oxidative phosphorylation
PAMPs  Pathogen-associated molecules
PBMC  Peripheral blood mononuclear cells
PEP  Phosphoenolpyruvate
PFKFB3  Phosphofructokinase-2/

fructose-2,6-bisphosphatase
PGC  Peroxisome-proliferator-activated 

receptorγcoactivator
PI3K  Phosphoinositol 3-kinase
PKM  Pyruvate kinase
PPARγ  Receptor peroxisome proliferator-activated 

receptor γ
PPP  Pentose phosphate pathway
PRRs  Pattern-recognition receptors
ROS  Reactive oxygen species
SLOs  Secondary lymphoid organs
STAT   Signal transducers and activators of 

transcription
T1D  Type I diabetes
T-ALL  T cell acute lymphoblastic leukemia
TAPP  Tandem PH domain containing protein
TCA cycle  Tricarboxylic acid cycle
TCR   T cell receptor
TLR  Toll-like receptor
TME  Tumor microenvironment
TRAF3  TNF receptor-associated factor 3

Introduction

Immune cells refer to all the cells and their precursors 
related to the immune response, which can be divided 
into innate immune cells and adaptive immune cells. The 
former include dendritic cells (DCs), macrophages, and 
natural killer (NK) cells; the latter refer to T lymphocytes 
and B lymphocytes that play a major role in the immune 
response. In most normal cases, immune cells are in a rel-
atively static state [1]. When the body is confronted with 
abnormal interference such as infection, trauma and inflam-
mation, it will rapidly activate to exert immune function, 
eliminate target substances, and maintain homeostasis [2]. 
In immune cells, metabolic changes may occur in response 
to indicative signals received from other cells or from envi-
ronmental changes, such as the presence of danger signals 
or antigens [3]. The transformation of cells from resting to 
excited state involves a series of metabolic changes, espe-
cially the transformation of intracellular energy materials 
and metabolic pathways [4]. Previous studies have shown 
that the participation of immune receptors such as TLR and 

IL-2 receptors, metabolic transformation and immune cell 
function are highly correlated [5]. For example, the activa-
tion of immune receptors promotes glycolysis, which is the 
energy source of regulatory T cells (Tregs) migration and 
determines the polarization direction of macrophages [6].

With the development of immunology and metabo-
lism, more and more studies have found that metabolism 
can affect the differentiation and function of immune cells 
[7]. Immune metabolism refers to the interaction between 
metabolism and immune response, which has been proved 
to be related to immune activation in many diseases [8]. The 
activation, differentiation and function of immune cells are 
dependent on energy supply and metabolic transformation 
(Fig. 1A). Assessing the response of immune cells to meta-
bolic processes in health and disease states, may provide 
new therapeutic approaches for clinic.

In this review, we summarize several common metabolic 
reprogramming of immune cells, focusing on the metabolic 
pathways (Figure S1 and reviewed in [9, 10]) of cell resting 
and activation. In addition, we will discuss metabolism in 
health and disease, as well as current treatment strategies for 
targeted metabolism, and aim to apply metabolic reprogram-
ming to disease treatment.

Innate immune cells

Dendritic cells

Dendritic cells (DCs), as the most functional professional 
antigen-presenting cells, are the bridge between innate 
immunity and adaptive immunity [11]. DCs can produce 
antigen-carrying MHC molecules and rapidly deploy them 
to the cell surface, which is crucial for their ability to initiate 
naive T (Tn) cells [12].

DCs undergo metabolic reprogramming during activa-
tion, which is driven by PI3K/Akt pathway and antagonized 
by the AMPK pathway, similar to the Warburg effect in 
tumor cells [13]. This metabolic transformation is marked 
by the transition of mitochondrial OXPHOS from lipid oxi-
dation to aerobic glycolysis [11] (Fig. 1B). Recent evidence 
suggests that the early glycolytic burst in BMDCs can partly 
bypass the requirement for glucose during activation [14]. 
The development of DCs from progenitor cells is associated 
with mitochondrial biogenesis, which is driven by PGC-1α 
and promoted by PPARγ, mTOR and MYC [15] (Table S1). 
Activated DCs provide energy through glycolysis and lac-
tic acid fermentation and convert glycolysis intermediates 
into the PPP [16]. TLR signal is the main pathway for DCs 
activation. It leads to increased glycolysis metabolism and 
triggers the necessary metabolic reprogramming for DCs 
maturation [7, 11]. CCR7 stimulates the activation of 
HIF1α transcription factor pathway in DCs, leading to the 
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Fig. 1  Simplified representation of glucose metabolic pathways. A 
Glycolysis occurs in the cytoplasm, converting glucose into pyruvate 
and then into lactic acid in the mitochondria. Under aerobic condi-
tions, pyruvic acid is oxidized and decarboxylated to form acetyl 
CoA, which can be completely oxidized into TCA. Intermediates in 

glucose metabolism can flow to other metabolic pathways, such as 
PPP and FAS. B ETC refers to the structure of NADH or FADH2 
transferring electrons to oxygen. OXPHOS causes the gain and loss 
of electrons on the electron carrier, which is transferred between 
redox substrates to form ETC
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conversion of metabolic reprogramming to glycolysis for 
DCs migration [17]. Regardless of the stimulation and acti-
vation phenotypes of PRRs, inducing the glycolysis of DCs 
in vivo is necessary for supporting the movement of DCs 
and CCR7 oligomerization [18].

In addition, it has recently been found that fatty acid 
metabolism is related to different functions of DCs [19]. 
When the synthesis of fatty acids was blocked, the number 
of DCs from PBMC precursors decreased [20]. Blocking of 
FAS also inhibits the DCs development of human PBMC 
and induces the apoptosis of DCs precursors [19].

Delivery antigen DCs play a pro-inflammatory role, 
enhance and prolong T cell response [21]. Thus, DCs vac-
cine work better than other anticancer vaccines because they 
integrate other immune-related signals to effectively induce 
antigen-directed T cell responses on a cellular platform [22]. 
The “second generation” DCs vaccine strategy is more effec-
tive in clinical practice, so it becomes the preferred choice 
of cancer immunologists [23].

Macrophage

Macrophages exist in all mammalian tissues. They can not 
only resist infection, but also are key members of homeosta-
sis and tissue repair. Macrophages are considered to be the 
most plastic cells in innate immune system and the first line 
of defense against external infection [24].

In resting state, macrophages use TCA cycle to breathe 
normally. The expression of PRRs on cell surface allows 
resting macrophages to quickly recognize PAMPs, thereby 
inducing inflammation [25]. Macrophages activated by 
the bacterial product LPS are known as M1 or classically 
activated macrophages, and have very different metabolic 
characteristics compared with IL-4 activated macrophages, 
namely M2 or alternately activated macrophages [26]. The 
former has pro-inflammatory properties, while the latter has 
anti-inflammatory and parasitic effects [27]. In LPS-induced 
macrophages, TCA cycle is broken and results in elevated 
levels of intermediates such as succinate and malate [26, 
28]. Glycolysis can play a role in M1 and M2, but the way 
is different. In the former, glycolysis is associated with the 
activation of the PPP for biosynthesis of biomolecules and 
ATP production, while in the latter, glycolysis is used to sup-
port OXPHOS [29, 30]. In M1, glucose uptake is enhanced 
and switches to glycolysis, while in M2, the main metabolic 
feature is enhanced FAO and OXPHOS [31].

Changes in metabolic processes are inseparable from 
enzymes involved in glycolysis. PKM is a rate-limiting 
enzyme in glycolysis, converting PEP to pyruvate. PKM2 
exists in the proliferation of a few normal cells, while it 
is present at high levels in activated immune cells [32]. 
Palsson-McDermott indicated that PKM2 is a key deter-
minant of macrophage glycolytic reprogramming, and that 

PKM2 is activated in macrophages to inhibit lipopolysac-
charide-induced glycolysis and HIF1α expression related 
genes [33]. A previous study showed that PKM2 selectively 
promotes the activation of macrophages inflammasome by 
activating EIF2AK2 phosphorylation [32]. Glycolytic acti-
vator PFKFB3 promotes macrophages to clear infected cells 
and enhance their antiviral ability [34]. A recent study shows 
that macrophages mobilize glycogen metabolism, which 
governs macrophage-mediated inflammatory response [35].

The nuclear receptor PPARγ is known to regulate lipid 
metabolism in many tissues, including macrophages. 
PPARγ controls macrophage glutamine metabolism, pro-
viding a link between transcription and metabolism [36]. 
As reports, endogenous oxidized lipids promote simultane-
ous OXPHOS, aerobic glycolysis, and the hyperproduction 
of IL-1β in LPS-stimulated macrophages [37]. Fatty acid 
metabolism pathways can be categorized into FAS and FAO, 
which are highly activated in M1 and M2 [38]. It has been 
suggested that the activation of inflammatory macrophages 
is dependent on glycolysis, while IL-4-induced macrophages 
are driven by FAO [27]. Citrate will be withdrawn for fatty 
acid biosynthesis, one hallmark of the M1 [39]. However, 
M2 has a fully functional respiratory redox chain that allows 
FAO without producing ROS [29] (Fig. 2).

Van den Bossche et al. show that the activation of inflam-
matory M1 inhibited mitochondrial function, thereby pre-
venting the repolarization of anti-inflammatory M2 pheno-
type [26]. Blocking oxidative metabolism not only blocks 
M2 phenotype, but also makes macrophages enter M1 state 
[27]. Therefore, intervening in the metabolic pathway of 
macrophages and regulating the phenotypic transformation 
of M1/M2 may help to resist autoimmune diseases, tumors 
and other immune-related diseases [40].

Natural killer cell

Human NK cells are lymphocytes that connect innate immu-
nity and adaptive immunity. They have excellent antiviral 
and anti-tumor properties, produce cytokines IFN, and 
directly kill target cells through cytotoxic mechanisms [41].

Glucose is the key fuel of NK cells, which directly affects 
the rate of glycolysis and OXPHOS [42]. At rest, NK cells 
preferentially use OXPHOS [43]. The levels of glycolysis 
and OXPHOS in stationary NK cells of mice were low but 
sufficient to sustain a rapid initial immune response [42]. 
Using cytokines to stimulate NK cells to activate, the inci-
dence of glycolysis and OXPHOS is greatly increased. 
OXPHOS is required for the secretion of IFN-γ by receptor-
stimulated NK cells [43]. 13C-glucose-tracing metabolomics 
have shown that NK cells use glucose to promote the bio-
synthesis of amino acids and fatty acids 18 h after cytokine 
stimulation [44]. Activating mouse NK cells with IL-2 and 
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IL-12 breaks down glucose into pyruvate, which then pro-
duces lactic acid through aerobic glycolysis [42].

Transcription factors play an important role in the activa-
tion and metabolism of NK cells. The activity of transcrip-
tion factor SREBP is necessary for the increase of glycolysis 
and OXPHOS. The glycolysis is increased by regulating the 
expression of citric acid and malic acid reverse transporter 
SLC25A1 and ACLY15 [44]. MYC controls the activation of 
metabolic pathways in NK cells, supporting glycolysis and 
mitosis by increasing the expression of glucose transporters 
and glycolytic enzymes to improve mitochondrial quality to 
support high levels of OXPHOS [45]. In NK cells stimulated 
by cytokines, elevated glycolysis requires mTORC1 signal 
transduction [46, 47].

In recent years, the research on the metabolic character-
istics of NK cells in tumor microenvironment has become 

a new direction for cancer treatment. NK cell activity is 
negatively correlated with the incidence of cancer. New 
evidence suggests that NK cell infiltration into squamous 
cell lung is associated with better prognosis [48]. Brand 
et al. found that LDHA increased the production of lac-
tic acid in cancer cells. The accumulation of lactic acid 
will destroy the production of IFN-γ in tumor-infiltrating 
T cells and NK cells, thereby inhibiting tumor immune 
surveillance and promoting tumor growth [49]. A high 
concentration of lactic acid in tumor microenvironment 
can damage the function of NK cells [48, 50]. Changes 
in NK cell metabolism may be an important factor in NK 
cell dysfunction (Table 1). Therefore, if we want to further 
explore the anti-tumor effect of NK cells, it will be a good 
choice from the perspective of metabolism.

Fig. 2  Major metabolic patterns in macrophages. The metabolic 
modes of M1 and M2 are different. In M1, the increase of glucose 
uptake is used for glycolysis and PPP. While in M2, the main meta-
bolic characteristics are the increase of FAO and OXPHOS. M1 
induced by LPS/INF-γ are regulated by HIF1α. In LPS (+ IFN-γ)-
activated inflammatory macrophages, HIF1α not only promotes gly-
colysis, but also induces the expression of genes encoding inflam-
matory cytokines, especially IL-1β and IL-6. In IL-4-induced 

macrophages, PPARγ as the main regulator can use the transported 
glucose for TCA cycle. FAO can promote the development and activ-
ity of anti-inflammatory macrophages. Moreover, FAO has been 
proved to support mitochondrial oxidation and metabolism of M2, 
and ATP is continuously through OXPHOS. In M2, the anti-inflam-
matory effect was exerted by activating the expression of anti-inflam-
matory genes such as CD36 and Argl
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Adaptive immune cells

T lymphocytes

T lymphocytes are a highly heterogeneous group, containing 
a large number of subsets, which play a central role in the 
immune response of foreign antigens [51, 52]. The latest 
research progress shows that metabolic changes have taken 
place in various biological processes of T cells, such as 
TCR-mediated activation and auxiliary T cell differentiation 
[53], suggesting that metabolic pathways can seriously affect 
T cell function. In the activation process of TCR-dependent 
T cells, glucose, glutamine, and other biological molecules 
as nutrients determine whether T cells can be activated and 
play a role [52]. T cell subsets perform different functions in 
the immune response and have different metabolic patterns.

NAIVE T cell

T lymphocytes develop and mature in the thymus, named Tn 
cells, which are recirculated through the paracortical regions 
of SLOs to recognize antigens [51].

The function of Tn cells maintained by TCR engagement 
by self-peptide-MHC molecules and the cytokine IL-7. Tn 
cells are mostly in static state, lack of mTOR expression, 
priority use OXPHOS as fuel [53, 54]. The absence of nega-
tive regulatory factors activated by TCR or the uninhibi-
tion of AKT activity will lead to the loss of resting state of 
Tn cells and increase the proliferation of homeostasis [55]. 
After T cells were activated, mTORC1 up-regulated C-MYC 
expression, indirectly accelerating glycolysis and glutamine 
metabolism [54, 55].

Memory T cell

Memory T(Tm) cells are named for making the immune 
system remember. Tm cells can persist in the body for dec-
ades. Tm cells circulate in the blood and exist in lymphatic 
organs, which is an important part of long-standing T cell 

immunity. When the antigen first stimulates the human body, 
it forms a Tm cells subset that enhances human immunity 
[56]. As the most important T cell subsets, memory CD8 + T 
cells and memory CD4 + T cells have attracted the attention 
of many studies.

Like Tn cells, memory CD8 + T cells are metabolically 
quiescent cells that use OXPHOS for energy conversion 
[54]. After infection, memory CD8 + T cells can remain 
in the tissue, rather than through the blood circulation of 
Tm cells in the tissue [56]. Owning to they are stationary in 
tissues, their glycolysis is at a low level, mainly using exog-
enous fatty acids as fuel. In the study of memory CD8 + T 
cells in the skin, it is found that the oxidation of fatty acids 
is necessary for cell growth. When the oxidation of free 
fatty acids in mitochondria is inhibited, memory persistence 
is reduced [57, 58]. CD4 + memory T cells preferentially 
adhere to mucosal tissues, and the number of CD4 + T cells 
is more than that of CD8 + T cells [59]. At present, there 
are few studies on CD4 + memory T cells, and no special 
metabolic pathways have been found.

Regulatory T cell

Tregs are a kind of T cell subsets that control the autoim-
munity in the body. They inhibit the activation and prolif-
eration of potential autoreactive T cells in the normal body 
through active regulation, thereby regulating the immunity 
of the body [60].

Tregs are more likely to use FAO and OXPHOS for 
energy, suggesting that T cells can function through lipid 
oxidation without glucose [61]. Valerie A et al. reported 
that Tregs not only oxidize lipids at high rates but also pro-
duce pyruvate by glycolysis [62]. The expression of Foxp3 
leads to the up-regulation of mitochondrial protein-coding 
genes, thereby promoting the respiratory capacity of Tregs 
and enhancing their ability to utilize fatty acids to provide 
energy for OXPHOS. Foxp3 maintains regulatory function 
by inhibiting the expression of MYC and the glycolysis of 
Tregs, thereby giving Tregs metabolic advantages in low 

Table 1  Major metabolic pathways in innate cells

Cell type Energy sources in quiescent state Energy sources in activition state Related pathway changes References

DCs TCA cycle, OXPHOS Glycolysis,
lactic fermentation

TBK1-IKKε/AKT/HK-II 
pathway,PI3K/AKT/mTOR 
pathway,mTOR/HIF1α/iNOS 
pathway

[13, 15, 17, 18]

Macrophage TCA cycle, OXPHOS M1: aerobic glycolysis, FAO
M2: FAO, gluconeogenesis

HIF-1a/PDK1 pathway, Akt/mTORC1 
pathway, JAK/STAT6 Pathway, 
PPARγ/LXR/ABCA1 pathway

[32, 33, 36, 38]

NK cells TCA cycle, OXPHOS, glutaminolysis OXPHOS,
aerobic glycolysis

PI3K/Akt/mTORC1 pathway, JAK/
STAT pathways,NF-kB

pathways

[44, 46–48]
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lactate environments [63, 64]. After inhibition of mTORC1 
in mice, Tregs could not effectively synthesize lipids from 
glucose, and the cholesterol content was also reduced [65]. 
Deborah Cluxton et al. showed that Tregs oxidizes exog-
enous fatty acids as metabolic fuel instead of glucose [66].

Effector T cells

During the transition from Tn cells to effector T 
cells(Teffs), glucose uptake is upregulated and most glu-
cose-derived pyruvate is excreted to lactic acid, which is 
similar to tumor cells’ Warburg physiology [53]. CD4 + T 
cells proliferate and differentiate into Teffs or Tregs that 
mediate or regulate immunity after activation [67]. Teffs 
use large amounts of glucose and high-speed glycolysis to 
meet energy needs [62]. mTOR signaling pathway has a 
profound impact on the fate of CD4 + T cells by regulat-
ing metabolic reprogramming [56]. A recent study showed 
that inhibition of mTORC1 activity attenuates glycolysis 

and reduces effector function, while absence of mTORC2 
enhances glycolysis and increases effector function [68]. 
In addition, mTOR activation induced the expression of 
glucose transporter Glut1, which enhanced the prolifera-
tion of T cells and the production of cytokines [69]. Glut1 
is the main transporter in glucose uptake and maintains a 
high level of expression in effector T cells. Glut1 mediates 
a sharp increase in glucose intake, which is necessary to 
promote cell growth, effector function and Teffs prolif-
eration [70] (Fig. 3). In the absence of Glut1, CD4 + and 
CD8 + effector T cells can only maintain limited prolifera-
tion [67].

T lymphocytes, as the effector cells of cellular immu-
nity, maintain homeostasis and play an immunoregulatory 
role. T cells use different metabolic energy at different 
stages. Since metabolism controls the function and fate of 
T cells, it is necessary to study the changes made by dif-
ferent types of T cells in the state of disease.

Fig. 3  The metabolic differences of Teffs, Tm, Tregs. When Tn cells 
were stimulated to recognize antigens, the resting state of energy 
supply by OHPHOS was broken. With the assistance of HIF1α and 
C-Myc, glutamine decomposition was enhanced, and a large amount 
of energy was provided by glycolysis. It will undergo a development 
process characterized by rapid growth, proliferation and acquisition 
of special effects, and then differentiate into Teffs, Tregs and Tm 
cells. FAO plays an important role in regulating T cell response. So 
far, FAO has been observed to regulate the balance between inflam-

matory Teffs and inhibitory Tregs, and maintain the function of long-
lived Tm cells. Compared with Teffs, Tregs and Tm cells showed 
more FAO and OXPHOS, and FAO promoted the generation of 
Tregs. Interestingly, the down-regulation of FAO by Teffs depends 
more on glycolysis and TCA cycle energy supply. FOXP3 and AMPK 
promote the OXPHOS and increase ATP production to meet the 
energy supply in Tm cells and Tregs. mTOR increases glucose uptake 
by targeting Glut1, making Teffs play an effective role in the body
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B lymphocytes

B lymphocytes perform a variety of functions in adaptive 
immunity, the most critical of which are the secretion of 
disease-specific antibodies, antibody class switching, and 
affinity maturation [71]. During the immune response, B 
cells diversify their immunoglobulin genes in GCs, thus 
producing high-affinity, transformation-like antibodies that 
mediate humoral immunity [72].

Similar to other cells in the body, B cells mainly source of 
energy and carbon from glucose. Recently, it has been found 
that constitutively active GSK3 is a metabolic checkpoint 
regulator of resting B cells. Without antigen or growth factor 
stimulation, it assists cell survival by limiting protein syn-
thesis and mitochondrial function [73]. Compared with the 
naïve B cells, the activated B cells absorb glucose, consume 
oxygen and secrete lactic acid more [74], suggesting that 
OXPHOS and glycolysis play a role simultaneously. Glucose 
is necessary to support cell activation, and to a certain extent 
supports the generation of new fats through ACLY activ-
ity, providing sufficient phospholipids for activated B cells 
to maintain morphological changes [75, 76]. Amino acids 
also contribute significantly to their metabolism. Amino acid 
consumption, alanine and glutamate production increased 
during B cell activation [76]. The increased absorption of 
amino acids such as leucine and lysine help to make the sig-
nal flow through in the downstream pathway of PI3K, and 
enhance the ability of solute transporters to absorb amino 
acid synthesis [77].

The metabolic process of B cells changes from static state 
to active state, and the role of molecular signals cannot be 
underestimated. Molecules such as TAPP [78], mTORC1 
[79] and c-MYC [80] can control the activation of B cells. 
When TAPP expression is decreased, OXPHOS and glycoly-
sis are increased, and the proliferation and autoimmunity of 
B cells in the germ center also increased [78]. Transcription 
factors c-MYC, HIF1α and STAT6 promote glycolysis gene 
expression, while Bcl6 inhibits transcription of certain target 
genes and glycolytic pathway [77].

GC B cells that react in GC will differentiate into long-
lived memory B cells or plasma cells that produce antibod-
ies [74]. GC B cells showed that mTORC1 activation and 
c-MYC accumulation were increased, and genes related to 
glycolysis were also up-regulated [81]. Due to the increased 
protein expression of glycolysis, TCA cycle and ETC in 
these cells, the number of mitochondria and the expression 
of HIF1α also increased [82]. Compared with the naive 
B cells, plasma cells have a higher protein synthesis rate, 
absorb more amino acids and glucose, and produce a large 
number of ROS [83]. In activated B cells, the decrease of 
oxygen concentration reduces mTORC1 signal transduction 
and inhibits the conversion of immunoglobulins isoforms 
[77]. However, hypoxia promotes plasma cell survival and 
supports regulatory B cell function. Hypoxia promotes the 
expression of HIF1α [77, 83], triggers steady transcription 
and regulates the expression of glucose transporters and 
glycolytic enzymes when oxygen concentration is limited 
[77]. With the participation of BCR or IL-4 stimulation, 
activated B cells became larger, total protein and CD138 
expression increased [84]. In addition, BCR signaling path-
way increases Glut1 expression and glucose uptake in PI3K-
dependent mechanisms [85] (Table 2).

B cells transit from static state and recycling to activation, 
proliferate rapidly, and produce a large number of antibod-
ies. Only when metabolism, extracellular stimulation and 
intracellular signal transduction work together, the humoral 
response dominated by B cells can be successfully carried 
out. Breaking this balance will lead to malignant transfor-
mation of B cells. Therefore, the discovery of metabolic dif-
ferences between B cell activation and malignant tumors is 
very important for the treatment and prevention of B cell 
lymphoma.

Table 2  Major metabolic pathways in adopted cells

Cell type Energy sources in quiescent state Energy sources in activition state Related molecular changes References

Tn cells OXPHOS Glycolysis IL-7, mTORC1,MYC [53, 54, 63]
Tm cell FAO, mitochondrial metabolism OXPHOS, TCA cycle Akt, mTORC2,

aquaporin 9
[54, 56]

Tregs FAO,
OXPHOS

Glycolysis AMPK, HIF1α Foxp3 [62, 65, 98]

Teffs FAO Glycolysis, glutaminolysis,
TCA cycle

mTOR, HIF1α [68, 69]

B lymphocytes OXPHOS Glycolysis, glutaminolysis,
TCA cycle

TAPP, mTORC1, C-MYC [78–80]
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Conclusion

Nowadays, studies on immune cells and metabolism have 
received extensive attention. Immune cells are involved in 
the progression of many human diseases, such as cancer 
[86–88], autoimmune diseases [89], and heart disease [90].

The metabolic pathways of sugar, fat and amino acids 
interact with each other, which are closely related to the 
survival and activation of immune cells. Studies have 
shown that immune cell subsets in disease state show dif-
ferent metabolic pathways to promote cell survival, line-
age generation and function. Enhanced glycolysis enables 
immune cells to produce sufficient ATP and biosynthetic 
intermediates to perform their specific effector functions 
[89]. In acute lymphoblastic leukemia, carcinogenic sign-
aling induces metabolic stress, increases glucose uptake 
and aerobic glycolysis of activated T cells [91]. After 
COVID-19 infection, monocytes and macrophages trigger 
mitochondrial ROS production, stabilize HIF1α expres-
sion, and promote glycolysis to maintain high viral replica-
tion level [92]. T cells in rheumatoid arthritis divert intra-
cellular glucose to PPP and produce NADPH, which uses 
lactic acid from the external environment to meet their 
energy needs [93]. In normal kidney, the level of OXPHOS 
of Tregs and DCs was higher than that of glycolysis, and 
the two metabolic patterns were exchanged during acute 
kidney injury [94]. In addition, the accumulation of lac-
tic acid in tumor promotes DCs OXPHOS and induces 
Tregs response [95]. Therefore, glycolysis enhancement is 
considered to be a marker metabolic change for the rapid 
activation of most immune cells.

It has therapeutic potential to change the state or func-
tion of immune cells by regulating immune cell metabo-
lism in diseases. For example, In multiple sclerosis, tar-
geted glycolysis enhances the inhibitory ability of Tregs 
and affects the differentiation of proinflammatory cells 
[96]. Glycolysis and TCA cycle have significant changes 
in autoimmune diseases (such as systemic lupus erythe-
matosus). And there have been studies in animal models 
and preliminary human trials confirmed the efficacy of 
intervention in metabolic pathways. Besides, studies have 
shown that targeting key processes to reduce gluconeogen-
esis or increase glucose excretion can improve the progno-
sis of patients with type 1 diabetes [97].

In this review, we discuss the metabolic patterns of 
immune cells in different states. With the development 
of metabolomics, research in this field advances rapidly. 
However, due to the dynamic changes of the body and the 
complex and diverse metabolic pathways, there are still 
many problems to be solved in the treatment of diseases 
by reprogramming immune cell metabolism. Further eluci-
dating the mechanism of metabolism mediated by immune 

cells, especially in the state of disease, is expected to real-
ize the prospect of immunotherapy in this field.
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