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Abstract
The omicron variant (B.529) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 
2021, caused panic worldwide due to its contagiousness and multiple mutations in the spike protein compared to the Delta 
variant (B.617.2). There is currently no specific antiviral available to treat Coronavirus disease 2019 (COVID-19). However, 
studies on neutralizing monoclonal antibodies (mAb) developed to fight COVID-19 are growing and gaining traction. REGN-
COV2 (Regeneron or imdevimab-casirivimab combination), which has been shown in recent studies to be less affected by 
Omicron's RBD (receptor binding domain) mutations among other mAb cocktails, plays an important role in adjuvant therapy 
against COVID-19. On the other hand, it is known that melatonin, which has antioxidant and immunomodulatory effects, 
can prevent a possible cytokine storm, and other severe symptoms that may develop in the event of viral invasion. Along 
with all these findings, we believe it is crucial to evaluate the use of melatonin with REGN-COV2, a cocktail of mAbs, as an 
adjuvant in the treatment and prevention of COVID-19, particularly in immunocompromised and elderly patients.
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Background

Since the World Health Organization (WHO) reported the 
first case of COVID-19 on March 11, 2020 [1], previously 
identified dominant variants of SARS-CoV-2 virus were 
alpha (B.7), beta (B.351), gamma (P.1) and delta (B.617.2) 
[2]. The Omicron SARS-CoV-2 variant, first identified 
in South Africa in November 2021, is said to be more 
contagious than previous variants [3]. Omicron is known 
to have a much higher number of mutations compared to 
another previously dominant variant, Delta [4]. Fifteen 
of the mutations detected in the omicron variant are in 
the receptor-binding domain associated with increased 
viral binding affinity and antibody escape [5]. Therefore, 
understanding the mutational hotspots of the virus plays 
an important role in designing effective therapeutic and 
preventive strategies against the new variant. Variations in 
spike glycoprotein sequences and their implications sug-
gest that vaccines and coronavirus-specific binding inhibi-
tors and adjuvant treatment options may be required for the 
omicron variant of SARS-CoV-2 [3–5]. Vaccine-induced 
immunity aims to neutralize the SARS-CoV-2 spike pro-
tein and the receptor-interacting angiotensin converting 
enzyme 2 (ACE2) [6]. Since the spike protein in Omicron's 
version contains more modifications than other variants, it 
could be viewed as a potential anti-vaccine immune escape 
option. However, immunological escape from memory T 
cells is unlikely to occur for non-surface proteins, after 
infection or vaccine-induced immunity [7, 8].

On the other hand, recent data obtained during the 
pandemic period suggests that complications and deaths 
from COVID-19 disease caused by the SARS-CoV-2 virus 
might be related to the high viral load that infected people 
are exposed to [9]. However, clinical and experimental 
studies continue to develop new agents against COVID-19 
from a prophylactic and therapeutic point of view. Mono-
clonal antibodies (mAb), which can bind to and neutralize 
the SARS-CoV-2 virus in infected patients, are one of the 
new classes of treatment being studied against COVID-19 
[10, 11]. REGN-COV2 (imdevimab-casirivimab combina-
tion) is one of the neutralizing mAb treatments approved 
by the Food and Drug Administration (FDA) for emer-
gency use in patients with mild to moderate complications 
of COVID-19.[12].

One of the most important conditions that characterizes 
a severe SARS-CoV-2 infection is the event known as a 
"cytokine storm" [13]. It is an aggressive inflammatory 
response with the release of large amounts of pro-inflam-
matory cytokines accompanied by COVID-19 infection 
[13]. This hyperinflammatory state is often character-
ized by pulmonary infiltration [13, 14]. With the entry 
of the SARS-CoV-2 virus into alveolar epithelial cells, 

the immune system stimulates CD14 + and CD16 + mono-
cytes, alveolar macrophages and Th17 lymphocytes to 
release large amounts of pro-inflammatory cytokines and 
chemokines, including interleukins (IL) such as IL-1β, 
IL-6 and IL-8, tumor necrosis factor-α (TNF-α) and 
interferon-γ-inducible protein 10 (IP10) [13, 14]. The 
resulting cytokine/chemokine storm causes severe dam-
age to the lungs, endothelial and epithelial cells. Conse-
quently, alveolar edema may develop with a breakdown 
in the integrity of the blood/air barrier [14]. Additionally, 
fibrinogen factors such as transforming growth factor beta 
(TGF-β) in the presence of a cytokine storm can signifi-
cantly inhibit gas exchange in the lungs due to pulmonary 
fibrosis [14].

Despite all these treatment strategies, due to a severe 
cytokine storm, COVID-19 can have fatal outcomes such as 
tissue damage, lung failure and multi-organ failure [13, 14]. 
Complementary adjunctive and immunomodulatory thera-
pies are required to reverse immune system dysfunction and 
cytokine dysregulation. Melatonin is also known to have 
anti-inflammatory [15], antioxidant [16], immunomodu-
latory [17] and antiviral [18] infectious activities. It may 
be useful to use melatonin together with REGN-COV2 in 
elderly and other high-risk patients as an adjuvant to vac-
cines against the Omicron variant of SARS-CoV-2infection.

REGN‑COV2 therapy and omicron variant

Corona viruses are known as RNA viruses that cause enzo-
otic infections; they are particularly common in birds and 
mammals [19]. It is known that coronaviruses act by bind-
ing to the serine protease receptors TMPRSS2 and ACE2 
on cells of the respiratory system due to the spike (S) pro-
teins they carry [20]. Neutralizing monoclonal antibodies 
(mAb) used to fight the SARS-CoV-2 virus is produced by 
them against the receptor-binding domain of the virus spike 
(S) protein. Anti-RBD mAbs act by targeting the recep-
tor-binding domain of protein S, preventing its binding to 
ACE2 on host cells and neutralizing its ability to fuse with 
the receptor [21], as shown in Fig. 1. Humanized mouse 
model technology or using sera from patients recovering 
from COVID-19 are known as preferred sources for obtain-
ing neutralizing mAbs [22]. Concurrent studies continue to 
investigate the efficacy of neutralizing antibodies in hospi-
talized COVID-19 patients with severe symptoms [23, 24]. 
The REGN-COV2 antibody cocktail consists of a combina-
tion of casirivimab and indevimab, two potent neutralizing 
IgG1 mAbs that bind to different sites of the spike protein 
receptor-binding domain [25]. The main reason for using 
neutralizing antibodies in combination rather than alone is 
to avoid simultaneous inactivation of both antibodies due 
to mutations in SARS-CoV-2 protein S. Furthermore, the 
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combination of casirivimab and indevimab was tested on 
SARS-CoV-2-infected rhesus monkeys and golden hamsters, 
which served as models for SARS-CoV-2 disease, resulting 
in antibody-mediated cytotoxicity and cellular phagocyto-
sis in infected cells [26]. In both models tested, there was 
evidence that prophylactic and therapeutic treatment with 
REGN-COV2 reduced viral load and lung disease severity 
compared to the placebo group [26].

In a recent study, it was found that the effect on 
REGN-COV2, also known as Regeneron mAb cocktail, 
is milder compared to other monoclonal antibodies [27]. 
In the same study, an artificial intelligence (AI) model 
was trained using tens of thousands of experimental data 
points. Based on the different three-dimensional structures 
of RBD-antibody complexes, we investigated how RBD 
mutations in the omicron variant might affect the activ-
ity of existing antibody drugs [27]. Looking at 15 known 

RBD mutations (S371L, S373P, S375F, K417N, N440K, 
G446S, S477N, T478K, E484A, Q493R, G496S, N501Y, 
Y505H) in Omicron [4, 27] were the RBDACE2 complex 
and various RBD-antibody complexes also examined. 
The results showed that the Celltrion antibody regdan-
vimab could be significantly inactivated by Omicron RBD 
mutations E484A, Q493R and Q498R [27]. It has been 
shown that the E484A mutation can also greatly reduce 
the potency of Rockefeller University mAbs [27]. In con-
trast to Eli Lilly's mAb cocktail, it was clear that the anti-
body REGN10 (Indevimab) did not compete directly with 
ACE2 and it was found that the Regeneron mAbs did not 
overlap with each other [27]. This appears to be crucial 
for REGN10933 (casirivimab) as it can directly neutralize 
the virus. Based on these results, omicron mutations may 
have a much milder effect on the REGN-COV2 cocktail 
compared to other mAb cocktails tested [27].These results 

Fig.1   REGN-COV2 (Casiriv-
imab/imdevimab) antibody 
cocktail binds to the receptor 
binding domain (RBD) of 
SARS-CoV-2 virus and by 
neutralizing the RBD, the bind-
ing ability of the virusto ACE2 
receptor is inhibited

SARS-CoV-2

REGN-COV2
‘antibody cocktail’

Casirivimab/imdevimab

ACE2 receptor

RBD- Antibody 
complex

Antibodies block the RBD 
of spike protein,
«neutralizing» its ability to 
bind ACE2
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support that REGN-COV2 can be used as a first option in 
monoclonal antibody-assisted therapies.

Melatonin and importance of circadian 
rhythm in COVID‑19

Chronotherapy could play an important role in the treatment 
of COVID-19 patients, a new concept in medicine that is 
gaining popularity today [28]. According to this concept, 
patients receive medication according to their circadian 
rhythm. In this way, as well as being able to achieve the same 
effectiveness at a lower dose, the medication administered 
can also reduce the side effects of other medications used at 
the same time. All these factors could optimize the therapeu-
tic effect of the chronotherapy method. The SARS-CoV-2 
virus uses endogenous cholesterol, for invasion of lung epi-
thelial cells [29]. It is known that cholesterol production 
in the body peaks at night [30]. A recent study reported 
that statin drugs that decrease cholesterol biosynthesis by 
inhibiting HMGCoA reductase minimize the severe side 
effects of COVID-19 [31]. As a result of this study, it was 
observed that nighttime administration of the same dose of 
statins significantly reduced cholesterol levels in COVID-
19 patients compared to the morning test group. Combined 
with all these findings, the same method could be applied 
to other drug groups that can be used in the treatment of 
SARS-CoV-2 infection and maximize the therapeutic effect.

The SARS-CoV-2 virus disrupts the function of circadian 
clock genes known as brain and muscle ARNT-like protein 
1 (BMAL1) [32]. The decrease in the level of the BMAL1 
gene, which is a regulator of the circadian rhythm, triggers 
the events leading to the cytokine storm by NFĸB and causes 
the activation of pro-inflammatory cytokines [33]. Zhuang 
et al. demonstrated the relationship and role of circadian 
rhythms in altering the susceptibility of lung epithelial cells 
to SARS-CoV-2 infection [34]. According to this study, 
deletion of the essential circadian transcription activator 
BMAL1 resulted in lower expression of the primary viral 
receptor ACE2 and viral entry into lung epithelial cells.

Decreased BMAL1 levels lead to disruption of the 
renin–angiotensin–aldosterone system (RAAS) pathway 
and tissue damage [35]. BMAL1 deficiency also triggers 
increased production of pro-inflammatory cytokines such as 
TNFα [36]. Since elevated cytokine levels are important bio-
markers that indicate the severity of coronavirus infection, 
it is important to develop a treatment strategy that takes into 
account BMAL1 and NFĸB signaling in the management 
of COVID-19 disease [33, 36]. For the management of the 
NFĸB signaling pathway, melatonin acts as a key molecule 
to antagonize the reduction in the levels of the Bmal1 gene, 
which induces a series of events leading to the cytokine 
storm [33]. The protective and anti-inflammatory effects of 

melatonin make it a notable therapeutic option to enhance 
host defense response against viral invasive conditions in 
COVID-19.

Melatonin is a hormone produced by the pineal gland at 
night and plays an important role in the circadian rhythm 
[37]. It is known that melatonin reduces the hyperinflamma-
tory response by inhibiting not only NFκB activity but also 
the interferon gamma response [38]. The fact that melatonin 
is readily available, inexpensive, and has a high safety profile 
makes it a suitable drug of choice for use against infections.

In addition to its anti-inflammatory effect, melatonin is 
known for its antidepressant, anxiolytic, immunomodula-
tory and antioxidant effects [39]. Another important role of 
melatonin is that it has a potent hydroxyl radical scaveng-
ing effect, particularly by increasing the activity of antioxi-
dant enzymes such as glutathione in the antioxidant system 
[40]. In addition, various immune functions are modulated 
by melatonin. Exogenous administration of melatonin has 
been shown to increase antibody production [41]. Melatonin 
has stimulatory and suppressive effects on the immune sys-
tem [42]. Specifically, it stimulates the immune system by 
increasing T cell activation and humoral response. In addi-
tion, it shows an immunosuppressive effect by reducing 
the activities of inducible nitric oxide synthase (iNOS) and 
cyclooxygenase-2 (COX-2) enzymes, which play an impor-
tant role in inflammation [43].

The effects of melatonin in viral infections

Melatonin has indirect antiviral effects due to its anti-inflam-
matory, antioxidant, and immune-boosting properties [15]. 
Recent studies have shown that melatonin regulates levels 
of cytokines that play important roles in the immune system, 
such as interleukin 2 and IFNγ, in mice during Venezuelan 
equine encephalomyelitis (VEE) virus infection [44]. As a 
result of the studies, it was found that melatonin reduces 
viral potency and also reduces acute lung damage in respira-
tory syncytial virus models by inhibiting oxidative damage. 
A recent study showed that interleukin 2 (IL2) and IFNγ are 
specific biomarkers of the cellular response to SARS-CoV-2 
[45]. Related to these findings, melatonin may reduce the 
effectiveness of the virus by showing similar activity in the 
SARS-CoV-2 virus.

SARS-CoV-2 has been reported to use the Cluster of dif-
ferentiation 147 (CD147) S protein pathway to enter host 
cells [46]. CD147 is a glycoprotein that causes a cytokine 
storm and tissue damage in the lungs upon viral invasion. 
CD147 plays an important role in inflammation mediated 
by pro-inflammatory cytokines. In patients with COVID-
19 infection, these cytokines are released uncontrollably, 
causing a cytokine storm [47]. Cytokine storm syndrome is 
caused by a variety of inflammatory conditions, including 
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severe systemic inflammation, hemodynamic instability, 
and multiple organ failure. With an age-related weakened 
immune system and declining melatonin levels, middle-aged 
and elderly patients with chronic diseases are much more 
susceptible to respiratory arrest from SARS-CoV-2 infec-
tion. In some clinical studies, melatonin has been shown to 
stimulate a large decrease in the levels of cytokines, IL-6, 
IFN-γ and C-reactive protein, which have important effects 
on the CD147-mediated inflammatory pathway [48].

Antioxidant and anti‑inflammatory effects 
of melatonin in cytokine storm

As the SARS-CoV-2 virus develops cytokine storm and 
acute respiratory distress syndrome by binding to ACE2 
receptors, the oxidative reactions that occur in cytokine 
storm syndrome cause reactive oxygen species (ROS)-medi-
ated lung damage [49]. The immune system can become 
more susceptible to SARS-CoV-2 infection as it becomes 
compromised with age and major comorbidities such as 
diabetes, cancer, heart problems [50]. Factors implicated 
in the onset of COVID-19 infection include a particularly 
compromised immune response, pathogenicity of new viral 
variants, and uncontrolled production of ROS associated 
with a cytokine storm [49]. By using melatonin, reactive 

oxygen species and the production of free metal ions can be 
significantly reduced. Therefore, harmful conditions such 
as DNA damage, protein oxidation and lipid peroxidation 
can also be prevented. Reactive oxygen species cause an 
increase in the expression of matrix metalloproteinases 
(MMPs) [51]. ROS removed by melatonin supplementation 
may reduce the deleterious effects of MMP overexpression. 
In addition, melatonin can protect against inflammation in 
the lungs resulting from COVID-19 by suppressing oxida-
tive stress and cell apoptosis [52]. In previous studies it was 
reported that the antioxidant capacity of melatonin is higher 
compared to other known ROS scavengers such as lycopene, 
methionine, taurine and uric acid [49, 53]. In addition, the 
severity of the effects caused by the pro-inflammatory 
cytokines released in the cytokine storm following SARS-
CoV-2 infection is related to the degree of inflammation. 
Myeloperoxidase (MPO) activity and ROS production have 
important effects that enhance the inflammatory immune 
response [54]. Inhibition of MPO and removal of unwanted 
ROS are important therapeutic targets against SARS-CoV-2 
infection, as shown in Fig. 2.

Melatonin acts by inhibiting allosteric binding and chlo-
rination activity at the entrance of the myeloperoxidase 
heme pocket [55]. The cytokine storm that develops due to 
COVID-19 causes the MPO enzyme to work overactive. MPO 
hyperactivity is one of the main sources of HOCl, one of the 

Fig.2   Melatonin prevents the 
cytokine storm and inflamma-
tion by inhibiting ROS produc-
tion, overactivity of myelop-
eroxidase and excess cytokine 
release

Cytokine Release

Cytokine Storm

ROS,
MPO Overactivity

INFLAMMATION
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important reactive oxygen species [56]. Therefore, melatonin 
plays a beneficial role in disease treatment by scavenging 
released HOCl or reducing ROS-induced metal release [49, 
57]. In addition, melatonin, which plays an important role in 
ROS detoxification, can be considered a powerful adjuvant to 
combat COVID-19 infection.

In addition, when melatonin is used with other drugs in the 
treatment of COVID-19, it enhances the effects of other drugs 
and reduces the potential for their side effects [58]. Melatonin 
has been shown to be safe for short-term use, even at high 
doses [59]. Therefore, the use of melatonin can be suggested 
as a safe treatment modality along with other drugs against 
SARS-CoV-2 infection. the treatment of COVID-19 as an 
adjuvant therapy.

Conclusion

While vaccines are the best strategy to prevent COVID-19, 
combination therapy of melatonin and REGN-CoV2 before 
or after exposure to the Omicron variant may offer significant 
benefits for elderly and chronically ill patients. Nursing ward 
admissions have increased due to the greater contagion of the 
Omicron variant. Therefore, infections caused by Omicron 
should not be underestimated and the importance of vacci-
nation especially in high-risk patients should be emphasized. 
Additionally, when we consider the cost and time involved 
in developing a vaccine that targets new variants, identifying 
and expanding treatment options is extremely important. In 
conclusion, combined therapy of melatonin and REGN-CoV2 
is an attractive approach with potential benefits in both pro-
phylactic and therapeutic strategies as an adjuvant to vaccines 
for immune boosting and circadian rhythm regulation against 
the Omicron variant.
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