Skip to main content

Advertisement

Log in

New update on molecular diversity of clinical Staphylococcus aureus isolates in Iran: antimicrobial resistance, adhesion and virulence factors, biofilm formation and SCCmec typing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Staphylococcus aureus is often considered as a potential pathogen and resistant to a wide range of antibiotics. The pathogenicity of this bacterium is due to the presence of multiple virulence factors and the ability to form biofilm. SCCmec types I, II and III are mainly attributed to HA-MRSA, while SCCmec types IV and V have usually been reported in CA-MRSA infections.

Methods and results

In this study, we performed a cross-sectional study to determine the antimicrobial resistance, adhesion and virulence factors, biofilm formation and SCCmec typing of clinical S. aureus isolates in Iran. S. aureus isolates were identified using microbiological standard methods and antibiotic susceptibility tests were performed as described by the Clinical and Laboratory Standards Institute (CLSI) guidelines. Inducible resistance phenotype and biofilm formation were determined using D-test and tissue culture plate methods, respectively. Multiplex-PCRs were performed to detect adhesion and virulence factors, antibiotic resistance genes, biofilm formation and SCCmec typing by specific primers. Among 143 clinical samples, 67.8% were identified as MRSA. All isolates were susceptible to vancomycin. The prevalence of cMLSB, iMLSB and MS phenotypes were 61.1%, 22.2% and 14.8%, respectively. The TCP method revealed that 71.3% of isolates were able to form biofilm. The predominant virulence and inducible resistance genes in both MRSA and MSSA isolates were related to sea and ermC respectively. SCCmec type III was the predominant type.

Conclusions

Data show the high prevalence rates of virulence elements among S. aureus isolates, especially MRSA strains. This result might be attributed to antibiotic pressure, facilitating clonal selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All original data and materials are available upon request from the corresponding author.

References

  1. Khandan Del A, Kaboosi H, Jamalli A, Peyravii Ghadikolaii F (2019) Prevalence and expression of psmA gene in biofilm-producing Staphylococcus aureus clinical isolates. Jundishapur J Microbiol 12(8):e89610. https://doi.org/10.5812/jjm.89610

    Article  CAS  Google Scholar 

  2. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VGJr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antunes AL, Bonfanti JW, Perez LR, Pinto CC, Freitas AL, Macedo AJ, Barth AL (2011) High vancomycin resistance among biofilms produced by Staphylococcus species isolated from central venous catheters. Mem Inst Oswaldo Cruz 106(1):51–55. https://doi.org/10.1590/s0074-02762011000100008

    Article  PubMed  Google Scholar 

  4. Lade H, Park JH, Chung SH, Kim IH, Kim JM, Joo HS, Kim JS (2019) Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J Clin Med 8(11):1853. https://doi.org/10.3390/jcm8111853

    Article  CAS  PubMed Central  Google Scholar 

  5. Gurung RR, Maharjan P, Chhetri GG (2020) Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Sci OA 6(4):FSO464. https://doi.org/10.2144/fsoa-2019-0122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. IWG-SCC (2009) International working group on the classification of staphylococcal cassette chromosome elements, classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53(12):4961–4967. https://doi.org/10.1128/AAC.00579-09

    Article  CAS  Google Scholar 

  7. Huang YH, Tseng SP, Hu JM, Tsai JC, Hsueh PR, Teng LJ (2007) Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital. Clin Microbiol Infect 13(7):717–724. https://doi.org/10.1111/j.1469-0691.2007.01718.x

    Article  CAS  PubMed  Google Scholar 

  8. Desroches M, Potier J, Laurent F, Bourrel AS, Doucet-Populaire F, Decousser JW (2013) Prevalence of mupirocin resistance among invasive coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus (MRSA) in France: emergence of a mupirocin-resistant MRSA clone harbouring mupA. J Antimicrob Chemother 68(8):1714–1717. https://doi.org/10.1093/jac/dkt085

    Article  CAS  PubMed  Google Scholar 

  9. Sabzehali F, Goudarzi M, Goudarzi H, Azimi H (2017) Distribution of aminoglycoside resistance genes in coagulase-negative staphylococci isolated from hospitalized patients. Arch Pediatr Infect Dis 5(3):e57297. https://doi.org/10.5812/pedinfect.57297

    Article  Google Scholar 

  10. Deotale V, Mendiratta DK, Raut U, Narang P (2010) Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med Microbiol 28(2):124–126. https://doi.org/10.4103/0255-0857.62488

    Article  CAS  PubMed  Google Scholar 

  11. Adhikari RP, Shrestha S, Barakoti A, Amatya R (2017) Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis 17(1):483. https://doi.org/10.1186/s12879-017-2584-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baron EG, Finegold SM (1999) Diagnostic Microbiology, 8th edn. The CV Mosby Company, St. Louis

    Google Scholar 

  13. Patra KP, Vanchiere JA, Bocchini JA Jr (2011) Adherence to CLSI recommendations for testing of Staphylococcus aureus isolates in Louisiana hospitals: report of a clinical failure and results of a questionnaire study. J Clin Microbiol 49(8):3019–3020. https://doi.org/10.1128/JCM.00944-11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, Pournajaf A, Kafshgari R, Rajabnia R (2019) Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Public Health Res Perspect 10(1):25–31. https://doi.org/10.24171/j.phrp.2019.10.1.06

    Article  PubMed  PubMed Central  Google Scholar 

  15. Avila-Novoa MG, Iñíguez-Moreno M, Solís-Velázquez OA, González-Gómez JP, Guerrero-Medina PJ, Gutiérrez-Lomelí M (2018) Biofilm formation by Staphylococcus aureus isolated from food contact surfaces in the dairy industry of Jalisco, Mexico. J Food Quality 2018:1–8. https://doi.org/10.1155/2018/1746139

    Article  CAS  Google Scholar 

  16. Mir Z, Nodeh Farahani N, Abbasian S, Alinejad F, Sattarzadeh M, Pouriran R, Dahmardehei M, Mirzaii M, Khoramrooz S, Darban-Sarokhalil D (2019) The prevalence of exotoxins, adhesion, and biofilm-related genes in Staphylococcus aureus isolates from the main burn center of Tehran, Iran. Iran J Basic Med Sci 22(11):1267–1274. https://doi.org/10.22038/ijbms.2019.34908.8291

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G (2003) Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol 41(9):4465–4467. https://doi.org/10.1128/jcm.41.9.4465-4467.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoseini Alfatemi SM, Motamedifar M, Hadi N, Sedigh Ebrahim Saraie H (2014) Analysis of virulence genes among methicillin resistant Staphylococcus aureus (MRSA) strains. Jundishapur J Microbiol 7(6):e10741. https://doi.org/10.5812/jjm.10741

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nashev D, Toshkova K, Salasia SI, Hassan AA, Lämmler C, Zschöck M (2004) Distribution of virulence genes of Staphylococcus aureus isolated from stable nasal carriers. FEMS Microbiol Lett 233(1):45–52. https://doi.org/10.1016/j.femsle.2004.01.032

    Article  CAS  PubMed  Google Scholar 

  20. Yaghoubzadeh Z, Kaboosi H, Peyravii Ghadikolaii F, Safari R, Fattahi E (2020) The half maximal inhibitory concentration (IC50) effect of protein hydrolysates from rainbow trout (Oncorhynchus mykiss) skin on enterotoxin a gene expression in Staphylococcus aureus. Int J Pept Res Ther 26:2411–2418. https://doi.org/10.1007/s10989-020-10036-4

    Article  CAS  Google Scholar 

  21. Mahfoozi A, Shirzad-Aski H, Kaboosi H, Ghaemi EA (2019) Identification of the classical enterotoxin genes of Staphylococcus aureus in various foods by multiplex PCR assay. Iran J Vet Res 20(3):209–212

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehrotra M, Wang G, Johnson WM (2000) Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 38(3):1032–1035. https://doi.org/10.1128/JCM.38.3.1032-1035.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pournajaf A, Ardebili A, Goudarzi L, Khodabandeh M, Narimani T, Abbaszadeh H (2014) PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac J Trop Biomed 4(Suppl 1):S293–S297. https://doi.org/10.12980/APJTB.4.2014C423

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gholami M, Haghshenas M, Moshiri M, Razavi S, Pournajaf A, Irajian G, Heidary M (2017) Frequency of 16S rRNA methylase and aminoglycoside-modifying enzyme genes among clinical isolates of Acinetobacter baumannii in Iran. Iran J Pathol 12(4):329–338

    Article  Google Scholar 

  25. Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, Kang JH, Shin WS, Kang MW (2003) Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci 18(5):631–636. https://doi.org/10.3346/jkms.2003.18.5.631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shekarabi M, Hajikhani B, Salimi Chirani A, Fazeli M, Goudarzi M (2017) Molecular characterization of vancomycin-resistant Staphylococcus aureus strains isolated from clinical samples: a three year study in Tehran, Iran. PLoS ONE 12(8):e0183607. https://doi.org/10.1371/journal.pone.0183607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghasemian A, Najar-Peerayeh S, Bakhshi B, Mirzaee M (2015) High prevalence of icaABCD genes responsible for biofilm formation in clinical isolates of Staphylococcus aureus from hospitalized children. Arch Pediatr Infect Dis 3(3):e20703. https://doi.org/10.5812/pedinfect.20703v2

    Article  Google Scholar 

  28. Gowrishankar S, Kamaladevi A, Balamurugan K, Pandian SK (2016) In vitro and in vivo biofilm characterization of methicillin-resistant Staphylococcus aureus from patients associated with pharyngitis infection. Biomed Res Int 2016:1–14. https://doi.org/10.1155/2016/1289157

    Article  CAS  Google Scholar 

  29. Boye K, Bartels MD, Andersen IS, Møller JA, Westh H (2007) A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect 13(7):725–727. https://doi.org/10.1111/j.1469-0691.2007.01720.x

    Article  CAS  PubMed  Google Scholar 

  30. Darban-Sarokhalil D, Khoramrooz SS, Marashifard M, Malek Hosseini SA, Parhizgari N, Yazdanpanah M, Gharibpour F, Mirzaii M, Sharifi B, Haeili M (2016) Molecular characterization of Staphylococcus aureus isolates from Southwest of Iran using spa and SCCmec typing methods. Microb Pathog 98:88–92. https://doi.org/10.1016/j.micpath.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Kateete DP, Namazzi S, Okee M, Okeng A, Baluku H, Musisi NL, Katabazi FA, Joloba ML, Ssentongo R, Najjuka FC (2011) High prevalence of methicillin resistant Staphylococcus aureus in the surgical units of Mulago hospital in Kampala, Uganda. BMC Res Notes 4:326. https://doi.org/10.1186/1756-0500-4-326

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guardabassi L, Stegger M, Skov R (2007) Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs. Vet Microbiol 122(3–4):384–386. https://doi.org/10.1016/j.vetmic.2007.03.021

    Article  CAS  PubMed  Google Scholar 

  33. Solgi S, Razavi S, Nateghian A, Irajian G, Pournajaf A, Hasannejad-Bibalan M, Rahmani S (2019) Resistance-related determinants in clinically relevant Staphylococcus aureus isolated from teaching therapeutic centers, Tehran, Iran. Rev Med Microbiol 30(3):142–147. https://doi.org/10.1097/MRM.0000000000000173

    Article  Google Scholar 

  34. Chaturvedi P, Singh AK, Singh AK, Shukla S, Agarwal L (2014) Prevalence of mupirocin resistant Staphylococcus aureus isolates among patients admitted to a tertiary care hospital. N Am J Med Sci 6(8):403–407. https://doi.org/10.4103/1947-2714.139293

    Article  PubMed  PubMed Central  Google Scholar 

  35. Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT (2015) High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother 59(6):3350–3356. https://doi.org/10.1128/AAC.00079-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McNeil JC, Hulten KG, Kaplan SL, Mason EO (2011) Mupirocin resistance in Staphylococcus aureus causing recurrent skin and soft tissue infections in children. Antimicrob Agents Chemother 55(5):2431–2433. https://doi.org/10.1128/AAC.01587-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen X, Yang HH, Huangfu YC, Wang WK, Liu Y, Ni YX, Han LZ (2012) Molecular epidemiologic analysis of Staphylococcus aureus isolated from four burn centers. Burns 38(5):738–742. https://doi.org/10.1016/j.burns.2011.12.023

    Article  PubMed  Google Scholar 

  38. Gupta V, Datta P, Rani H, Chander J (2009) Inducible clindamycin resistance in Staphylococcus aureus: a study from North India. J Postgrad Med 55(3):176–179. https://doi.org/10.4103/0022-3859.57393

    Article  CAS  PubMed  Google Scholar 

  39. Seifi N, Kahani N, Askari E, Mahdipour S, Naderi NM (2012) Inducible clindamycin resistance in Staphylococcus aureus isolates recovered from Mashhad, Iran. Iran J Microbiol 4(2):82–86

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Ripa L, Alcalá L, Simón C, Gómez P, Mama OM, Rezusta A, Zarazaga M, Torres C (2019) Diversity of Staphylococcus aureus clones in wild mammals in Aragon, Spain, with detection of MRSA ST130-mecC in wild rabbits. J Appl Microbiol 127(1):284–291. https://doi.org/10.1111/jam.14301

    Article  CAS  PubMed  Google Scholar 

  41. Ghanbari F, Ghajavand H, Havaei R, Jami MS, Khademi F, Heydari L, Shahin M, Havaei SA (2016) Distribution of erm genes among Staphylococcus aureus isolates with inducible resistance to clindamycin in Isfahan. Iran Adv Biomed Res. https://doi.org/10.4103/2277-9175.179184

    Article  PubMed  Google Scholar 

  42. Saribas Z, Tunckanat F, Pinar A (2006) Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clin Microbiol Infect 12(8):797–799. https://doi.org/10.1111/j.1469-0691.2006.01486.x

    Article  CAS  PubMed  Google Scholar 

  43. Khosravi AD, Jenabi A, Montazeri EA (2017) Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains. Kaohsiung J Med Sci 33(12):587–593. https://doi.org/10.1016/j.kjms.2017.08.001

    Article  PubMed  Google Scholar 

  44. Goudarzi M, Tayebi Z, Dadashi M, Miri M, Amirpour A, Fazeli M (2020) Characteristics of community-acquired methicillin-resistant Staphylococcus aureus associated with wound infections in Tehran, Iran: high prevalence of PVL+ t008 and the emergence of new spa types t657, t5348, and t437 in Iran. Gene Rep 19:100603. https://doi.org/10.1016/j.genrep.2020.100603

    Article  Google Scholar 

  45. Yadegar A, Sattari M, Mozafari NA, Goudarzi GR (2009) Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of Staphylococcus aureus in Tehran, Iran. Microb Drug Resist 15(2):109–113. https://doi.org/10.1089/mdr.2009.0897

    Article  CAS  PubMed  Google Scholar 

  46. Kord M, Ardebili A, Jamalan M, Jahanbakhsh R, Behnampour N, Ghaemi EA (2018) Evaluation of biofilm formation and presence of ica genes in Staphylococcus epidermidis clinical isolates. Osong Public Health Res Perspect 9(4):160–166. https://doi.org/10.24171/j.phrp.2018.9.4.04

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sabouni F, Mahmoudi S, Bahador A, Pourakbari B, Sadeghi RH, Ashtiani MT, Nikmanesh B, Mamishi S (2014) Virulence factors of Staphylococcus aureus isolates in an Iranian referral children’s hospital. Osong Public Health Res Perspect 5(2):96–100. https://doi.org/10.1016/j.phrp.2014.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sila J, Sauer P, Kolar M (2009) Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, panton-valentine leukocidin and tsst-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus at the university hospital in Olomouc. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153(3):215–218. https://doi.org/10.5507/bp.2009.036

    Article  CAS  PubMed  Google Scholar 

  49. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5):445–459. https://doi.org/10.4161/viru.2.5.17724

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mkrtchyan HV, Xu Z, Yacoub M, Ter-Stepanyan MM, Karapetyan HD, Kearns AM, Cutler RR, Pichon B, Hambardzumyan AD (2017) Detection of diverse genotypes of methicillin-resistant Staphylococcus aureus from hospital personnel and the environment in Armenia. Antimicrob Resist Infect Control. https://doi.org/10.1186/s13756-017-0169-0

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rodrigues MV, Fortaleza CM, Riboli DF, Rocha RS, Rocha C, da Cunha MdeL (2013) Molecular epidemiology of methicillin-resistant Staphylococcus aureus in a burn unit from Brazil. Burns 39(6):1242–1249. https://doi.org/10.1016/j.burns.2013.02.006

    Article  PubMed  Google Scholar 

  52. Teare L, Shelley OP, Millership S, Kearns A (2010) Outbreak of panton-valentine leucocidin-positive meticillin-resistant Staphylococcus aureus in a regional burns unit. J Hosp Infect 76(3):220–224. https://doi.org/10.1016/j.jhin.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  53. Mariem BJ, Ito T, Zhang M, Jin J, Li S, Ilhem BB, Adnan H, Han X, Hiramatsu K (2013) Molecular characterization of methicillin-resistant panton-valentine leukocidin positive staphylococcus aureus clones disseminating in Tunisian hospitals and in the community. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taherirad A, Jahanbakhsh R, Shakeri F, Anvary S, Ghaemi EA (2016) Staphylococcal cassette chromosome mec types among methicillin-resistant Staphylococcus aureus in northern Iran. Jundishapur J Microbiol 9(8):e33933. https://doi.org/10.5812/jjm.33933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moosavian M, Shahin M, Navidifar T, Torabipour M (2017) Typing of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates in Ahvaz. Iran New Microbes New Infect 21:90–94. https://doi.org/10.1016/j.nmni.2017.11.006

    Article  PubMed  Google Scholar 

  56. Jamshidi Y, Pourmand MR, Pakbaz Z, Pourmand A, Rahimi Foroushani A, Sahraian MA (2019) SCCmec genotypes of methicillin-resistant Staphylococcus aureus in nasal carriage of multiple sclerosis patients in Iran. Iran J Public Health 48(12):2270–2276

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the sincere collaboration of the Microbiology Department, Ayatollah Amoli branch of Islamic Azad University and Department of Microbiology, School of Medicine, Babol University of Medical Sciences for assistance in the conduct of the study.

Funding

This study was supported by the Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran province, Iran. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HK and MTA conceived and designed the experiment; AP and MT conducted the study and collected the samples. AP, MT and FPG performed the experiments and analyzed the data. All authors contributed to paper writing. The authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hami Kaboosi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to this study.

Ethical approval

This study was approved by the Research Ethics Committee of Babol Branch, Islamic Azad University (approved ID: IR.IAU.BABOL.REC.1399.035) and performed in accordance with the Declaration of Helsinki. The participants signed the informed consent forms from each patient, and the Research Ethics Committee of Babol Branch, Islamic Azad University approved the study protocol.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabandeh, M., Kaboosi, H., Taghizadeh Armaki, M. et al. New update on molecular diversity of clinical Staphylococcus aureus isolates in Iran: antimicrobial resistance, adhesion and virulence factors, biofilm formation and SCCmec typing. Mol Biol Rep 49, 3099–3111 (2022). https://doi.org/10.1007/s11033-022-07140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07140-7

Keywords

Navigation