Skip to main content

Advertisement

Log in

High glucose mediates apoptosis and osteogenesis of MSCs via downregulation of AKT-Sirt1-TWIST

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Mesenchymal stem cells have been widely used in the treatment of diabetes mellitus. However, hyperglycemia associated with DM promotes cell apoptosis and affects osteogenic differentiation of MSCs in varying degrees, leading to osteoporosis in DM patients. Therefore, in this paper, the effect of high glucose on apoptosis and osteogenesis of MSCs was investigated and underlying mechanism was further determined.

Methods and results

Intracellular ROS levels were determined using probe DCFH-DA. MMP was detected using JC-1 staining. Cell apoptosis was detected using Annexin V-FITC/PI and Flow Cytometer. The expression of genes and protein was detected by qRT-PCR and Western blot respectively. The results showed high glucose induced MSC apoptosis but promoted its osteogenesis. Western blot analysis revealed that high glucose downregulated AKT-Sirt1-TWIST pathway. Activation of Sirt1 via SRT1720 increased TWIST expression, alleviated MSC apoptosis and promoted osteogenesis of MSCs. TWIST knockdown studies demonstrated that inhibition of TWIST intensified high glucose-induced apoptosis but promoted osteogenesis differentiation of MSCs. TWIST is likely to be a new regulator for cross talk between Sirt1 and its downstream targets.

Conclusion

Our data demonstrates that high glucose induces MSC apoptosis and enhances osteogenesis differentiation via downregulation of AKT-Sirt1-TWIST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

Code availability

Not applicable.

References

  1. Mahmoud M, Abu-Shahba N, Azmy O et al (2019) Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: implications for autologous transplantation. Stem Cell Rev Rep 15(2):194–217. https://doi.org/10.1007/s12015-018-9869-y

    Article  PubMed  Google Scholar 

  2. Sávio-Silva C, Beyerstedt S, Soinski-Sousa PE et al (2020) Mesenchymal stem cell therapy for diabetic kidney disease: a review of the studies using syngeneic, autologous, allogeneic, and xenogeneic cells. Stem Cells Int 2020:8833725. https://doi.org/10.1155/2020/8833725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown C, McKee C, Bakshi S et al (2019) Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regener Med 13(9):1738–1755. https://doi.org/10.1002/term.2914

    Article  CAS  Google Scholar 

  4. Ksiazek K, Passos JF, Olijslagers S, von Zglinicki T (2008) Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochem Biophys Res Commun 366(3):793–799. https://doi.org/10.1016/j.bbrc.2007.12.021

    Article  CAS  PubMed  Google Scholar 

  5. Bammert TD, Hijmans JG, Reiakvam WR et al (2017) High glucose derived endothelial microparticles increase active caspase-3 and reduce microRNA-Let-7a expression in endothelial cells. Biochem Biophys Res Commun 493(2):1026–1029. https://doi.org/10.1016/j.bbrc.2017.09.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang YP, Wang YQ, Lu Y et al (2019) High glucose enhances the odonto/osteogenic differentiation of stem cells from apical papilla via NF-KappaB signaling pathway. Biomed Res Int 2019:5068258. https://doi.org/10.1155/2019/5068258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong K, Hao P, Xu S et al (2017) Alpha-Lipoic acid alleviates high-glucose suppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K/Akt signaling pathway. Cell Physiol Biochem 42(5):1897–1906. https://doi.org/10.1159/000479605

    Article  CAS  PubMed  Google Scholar 

  8. Yun UJ, Lee IH, Lee JS et al (2020) Ginsenoside Rp1, a ginsenoside derivative, augments anti-cancer effects of actinomycin D via downregulation of an AKT-SIRT1 pathway. Cancers (Basel) 12(3):605. https://doi.org/10.3390/cancers12030605

    Article  CAS  Google Scholar 

  9. Farghali H, Kemelo MK, Canová NK (2019) SIRT1 modulators in experimentally induced liver injury. Oxid Med Cell Longev 2019:8765954. https://doi.org/10.1155/2019/8765954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilkinson FL, Schiro A, Inglott FS et al (2019) Suppression of SIRT1 in diabetic conditions induces osteogenic differentiation of human vascular smooth muscle cells via RUNX2 signalling. Sci Rep 9(1):878. https://doi.org/10.1038/s41598-018-37027-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng H, Wang J, Xu J et al (2017) The expression of SIRT1 regulates the metastaticplasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition. Sci Rep 7:41203. https://doi.org/10.1038/s41598-018-37027-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bialek P, Kern B, Yang X et al (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6(3):423–435. https://doi.org/10.1016/S1534-5807(04)00058-9

    Article  CAS  PubMed  Google Scholar 

  13. Lee JH, Yun CW, Hur J et al (2018) Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 16(4):121. https://doi.org/10.3390/md16040121

    Article  CAS  PubMed Central  Google Scholar 

  14. Lee SH, Lee JH, Yoo SY et al (2013) Hypoxia inhibits cellular senescence to restore the therapeutic potential of old human endothelial progenitor cells via the hypoxia-inducible factor-1α-TWIST-p21 Axis. Arterioscle Thromb Vasc Biol 33(10):2407–2414. https://doi.org/10.1161/ATVBAHA.113.301931

    Article  CAS  Google Scholar 

  15. Shan L, Yang D, Zhu D et al (2019) High glucose promotes annulus fibrosus cell apoptosis through activating the JNK and p38 MAPK pathways. Biosci Rep 39(7):20190853

    Article  Google Scholar 

  16. Raaz U, Schellinger IN, Chernogubova E et al (2015) Transcription factor Runx2 promotes aortic fibrosis and stiffness in type 2 diabetes mellitus. Circ Res 117:513–524. https://doi.org/10.1161/CIRCRESAHA.115.306341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamawaki I, Taguchi Y, Komasa S et al (2017) Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium. J Periodontal Res 52(4):761–771. https://doi.org/10.1111/jre.12446

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Zhang X, Zheng J (2010) High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol Cell Biochem 338(1–2):115–122. https://doi.org/10.1007/s11010-009-0344-6

    Article  CAS  PubMed  Google Scholar 

  19. Zhai Z, Chen W, Hu Q et al (2020) High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem 167(6):613–621. https://doi.org/10.1093/jb/mvaa011

    Article  CAS  PubMed  Google Scholar 

  20. Wang RZ, Zhang YX, Jin FJ et al (2019) High-glucose-induced miR-214-3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus. Cell Death Discov 5:143. https://doi.org/10.1038/s41420-019-0223-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Chen L, Huang R et al (2021) Investigation for GSK3β expression in diabetic osteoporosis and negative osteogenic effects of GSK3β on bone marrow mesenchymal stem cells under a high glucose microenvironment. Biochem Biophys Res Commun 534:727–733. https://doi.org/10.1016/j.bbrc.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Nuschke A, Rodrigues M, Wells AW et al (2016) Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Stem Cell Res Ther 7(1):1–9. https://doi.org/10.1186/s13287-016-0436-7

    Article  CAS  Google Scholar 

  23. Wei J, Shimazu J, Makinistoglu MP et al (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161(7):1576–1591. https://doi.org/10.1016/j.cell.2015.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang J, Huh YJ, Cho HJ et al (2017) SIRT1 enhances the survival of human embryonic stem cells by promoting DNA repair. Stem Cell Rep 9(2):629–641. https://doi.org/10.1016/j.stemcr.2017.06.001

    Article  CAS  Google Scholar 

  25. Ding M, Feng N, Tang D et al (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res 65(2):e12491. https://doi.org/10.1111/jpi.12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma S, Feng J, Zhang R et al (2017) SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longev 2017:4602715. https://doi.org/10.1155/2017/4602715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang G, Jin L, Zheng D et al (2019) Fucoxanthin alleviates oxidative stress through Akt/SIRT1/FoxO3α signaling to inhibit Hg-induced renal fibrosis in GMCs. Mar Drugs 17(2):702. https://doi.org/10.3390/md17120702

    Article  CAS  PubMed Central  Google Scholar 

  28. Nayak D, Kumar A, Chakraborty S et al (2017) Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells. Cell Death Differ 24(7):1275–1287. https://doi.org/10.1038/cdd.2017.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Zhang L, Ren J et al (2020) Intermedin1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin1. Aging (Albany NY) 12(7):5651–5674. https://doi.org/10.18632/aging.102934

    Article  CAS  Google Scholar 

  30. Feng G, Zheng K, Song D et al (2016) SIRT1 was involved in TNF-α-promoted osteogenic differentiation of human DPSCs through Wnt/β-catenin signal. In Vitro Cell Dev Biol Anim 52(10):1001–1011. https://doi.org/10.1007/s11626-016-0070-9

    Article  CAS  PubMed  Google Scholar 

  31. Yang DC, Yang MH, Tsai CC et al (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS ONE 6(9):e23965. https://doi.org/10.1371/journal.pone.0023965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Camp E, Anderson PJ, Zannettino ACW et al (2017) Tyrosine kinase receptor c-ros-oncogene 1 mediates TWIST-1 regulation of human mesenchymal stem cell lineage commitment. Bone 94:98–107. https://doi.org/10.1016/j.bone.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  33. Pribadi C, Camp E, Cakouros D et al (2020) Pharmacological targeting of KDM6A and KDM6B, as a novel therapeutic strategy for treating craniosynostosis in Saethre-Chotzen syndrome. Stem Cell Res Ther 11(1):529. https://doi.org/10.1186/s13287-020-02051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rathinavelu S, Guidry-elizondo C, Banu J (2018) Molecular modulation of osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018:6354787. https://doi.org/10.1155/2018/6354787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key Research and Development Program of China (Grant No. 2018YFC1105800), the National Natural Science Foundation of China (Grant No. 81671841), and the Fundamental Research Funds for the Central Universities (Grant No. 22221818014).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WR; Data curation: WR; Methodology: WR; Writing-Original draft preparation: WR; Writing-Reviewing and Editing: WR, MC, MJ, YZ; Supervision; YZ,WT. The manuscript is approved by all authors. The order of authors listed in the manuscript has been approved by all authors.

Corresponding author

Correspondence to Yan Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not Applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Chai, M., Jiang, M. et al. High glucose mediates apoptosis and osteogenesis of MSCs via downregulation of AKT-Sirt1-TWIST. Mol Biol Rep 49, 2723–2733 (2022). https://doi.org/10.1007/s11033-021-07082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07082-6

Keywords

Navigation