Skip to main content

Advertisement

Log in

Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Among breast cancer subtypes, the triple negative breast cancer (TNBC) has the worst prognosis. In absence of any permitted targeted therapy, standard chemotherapy is the mainstay for TNBC treatment. Hence, there is a crucial need to identify potential druggable targets in TNBCs for its effective treatment. In recent times, metabolic reprogramming has emerged as cancer cells hallmark, wherein cancer cells display discrete metabolic phenotypes to fuel cell progression and metastasis. Altered glycolysis is one such phenotype, in which even in oxygen abundance majority of cancer cells harvest considerable amount of energy through elevated glycolytic-flux. In the present review, we attempt to summarize the role of key glycolytic enzymes i.e. HK, Hexokinase; PFK, Phosphofructokinase; PKM2, Pyruvate kinase isozyme type 2; and LDH, Lactate dehydrogenase in TNBCs, and possible therapeutic options presently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lebert JM, Lester R, Powell E, Seal M, McCarthy J (2018) Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 25(Suppl 1):S142–S150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer–current status and future directions. Ann Oncol 20(12):1913–1927

    Article  CAS  PubMed  Google Scholar 

  4. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281

    Article  PubMed  Google Scholar 

  5. Collignon J, Lousberg L, Schroeder H, Jerusalem G (2016) Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med Press) 8:93–107

    CAS  Google Scholar 

  6. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  7. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  CAS  PubMed  Google Scholar 

  8. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C et al (2020) Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 11(3):377–398

    Article  PubMed  PubMed Central  Google Scholar 

  10. Annibaldi A, Widmann C (2010) Glucose metabolism in cancer cells. Curr Opin Clin NutrMetab Care 13(4):466–470

    Article  CAS  Google Scholar 

  11. Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020

    Article  CAS  PubMed  Google Scholar 

  12. Badowska-Kozakiewicz AM, Budzik MP, Przybylski J (2015) Hypoxia in breast cancer. Pol J Pathol 66(4):337–346

    Article  PubMed  Google Scholar 

  13. Ponente M, Campanini L, Cuttano R, Piunti A, Delledonne GA, Coltella N et al (2017) PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes. JCI Insight. 2(4):e87380

    Article  PubMed  PubMed Central  Google Scholar 

  14. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7(4):324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu S, Gu X, Hoestje S, Epner DE (2002) Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. BiochimBiophys Acta 1574(2):152–156

    CAS  Google Scholar 

  16. Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ et al (2014) Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics 11(6):279–294

    PubMed  Google Scholar 

  17. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830

    Article  CAS  PubMed  Google Scholar 

  19. Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276(46):43407–43412

    Article  CAS  PubMed  Google Scholar 

  20. Wu Z, Wu J, Zhao Q, Fu S, Jin J (2020) Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 22(5):631–646

    Article  CAS  PubMed  Google Scholar 

  21. Hennipman A, Smits J, van Oirschot B, van Houwelingen JC, Rijksen G, Neyt JP et al (1987) Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue. Tumour Biol 8(5):251–263

    Article  CAS  PubMed  Google Scholar 

  22. Hennipman A, van Oirschot BA, Smits J, Rijksen G, Staal GE (1988) Heterogeneity of glycolytic enzyme activity and isozyme composition of pyruvate kinase in breast cancer. Tumour Biol 9(4):178–189

    Article  CAS  PubMed  Google Scholar 

  23. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29(4):443–453

    Article  CAS  PubMed  Google Scholar 

  24. Guha M, Srinivasan S, Raman P, Jiang Y, Kaufman BA, Taylor D et al (2018) Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim Biophys Acta Mol Basis Dis. 64(4 Pt A):1060–1071

    Article  Google Scholar 

  25. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25(34):4683–4696

    Article  CAS  PubMed  Google Scholar 

  26. Coelho RG, Calaça IC, Celestrini DM, Correia-Carneiro AH, Costa MM et al (2015) Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget 6(30):29375–29387

    Article  PubMed  PubMed Central  Google Scholar 

  27. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ et al (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7(9):1438–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato-Tadano A, Suzuki T, Amari M, Takagi K, Miki Y, Tamaki K et al (2013) Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci 104(10):1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplan O, Jaroszewski JW, Faustino PJ, Zugmaier G, Ennis BW, Lippman M et al (1990) Toxicity and effects of epidermal growth factor on glucose metabolism of MDA-468 human breast cancer cells. J Biol Chem 265(23):13641–13649

    Article  CAS  PubMed  Google Scholar 

  30. Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7(12):683–692

    Article  PubMed  Google Scholar 

  31. Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J et al (2016) EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res 76(5):1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang D, Wang H, Yu W, Qiao F, Su X, Xu H et al (2019) Downregulation of hexokinase 2 improves radiosensitivity of breast cancer. Trans Cancer Res 8:290–297

    Article  CAS  Google Scholar 

  33. Liu X, Miao W, Huang M, Li L, Dai X, Wang Y (2019) Elevated hexokinase II expression confers acquired resistance to 4-hydroxytamoxifen in breast cancer cells. Mol Cell Proteomics 18(11):2273–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al Hasawi N, Alkandari MF, Luqmani YA (2014) Phosphofructokinase: a mediator of glycolytic flux in cancer progression. Crit Rev Oncol Hematol 92(3):312–321

    Article  PubMed  Google Scholar 

  35. Jenkins CM, Yang J, Sims HF, Gross RW (2011) Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 286(14):11937–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zancan P, Rosas AO, Marcondes MC, Marinho-Carvalho MM, Sola-Penna M (2007) Clotrimazole inhibits and modulates heterologous association of the key glycolytic enzyme 6-phosphofructo-1-kinase. BiochemPharmacol 73(10):1520–1527

    CAS  Google Scholar 

  37. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418

    Article  PubMed  Google Scholar 

  38. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34(10):1349–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zancan P, Sola-Penna M, Furtado CM, Da Silva D (2010) Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab 100(4):372–378

    Article  CAS  PubMed  Google Scholar 

  40. Wang G, Xu Z, Wang C, Yao F, Li J, Chen C et al (2013) Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett 6(6):1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prasad CP, Södergren K, Andersson T (2017) Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget 8(42):71471–71488

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moon JS, Kim HE, Koh E, Park SH, Jin WJ, Park BW et al (2011) Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem 286(27):23808–23816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng M, Yang D, Hou Y, Liu S, Zhao M, Qin Y et al (2019) Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis 10(3):228

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yeerken D, Hong R, Wang Y, Gong Y, Liu R, Yang D et al (2020) PFKP is transcriptionally repressed by BRCA1/ZBRK1 and predicts prognosis in breast cancer. PLoS One. 15(5):e00233750

    Article  Google Scholar 

  45. Going CC, Tailor D, Kumar V, Birk AM, Pandrala M, Rice MA et al (2018) Quantitative proteomic profiling reveals key pathways in the anticancer action of methoxychalcone derivatives in triple negative breast cancer. J Proteome Res 17(10):3574–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barupal DK, Gao B, Budczies J, Phinney BS, Perroud B, Denkert C et al (2019) Prioritization of metabolic genes as novel therapeutic targets in estrogen-receptor negative breast tumors using multi-omics data and text mining. Oncotarget 10(39):3894–3909

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(7):969–980

    Article  CAS  PubMed  Google Scholar 

  48. Wong N, De Melo J, Tang D (2013) PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol. 23:242513

    Google Scholar 

  49. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15(4):300–308

    Article  CAS  PubMed  Google Scholar 

  50. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233

    Article  CAS  PubMed  Google Scholar 

  51. Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M et al (2019) The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 18(6):5663–5672

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Benesch C, Schneider C, Voelker HU, Kapp M, Caffier H, Krockenberger M et al (2010) The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer. Anticancer Res 30(5):1689–1694

    PubMed  Google Scholar 

  53. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F et al (2017) O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci U S A 114(52):13732–13737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F et al (2015) High Expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer 6(11):1130–1139

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang L, Bailleul J, Yazal T, Dong K, Sung D, Dao A et al (2019) PK-M2-mediated metabolic changes in breast cancer cells induced by ionizing radiation. Breast Cancer Res Treat 178(1):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dong G, Mao Q, Xia W, Dong K, Sung D, Dao A et al (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11(3):1980–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen J, Liu H, Mu C, Wolfram J, Zhang W, Kim HC et al (2017) Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale 9(16):5329–5341

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J et al (2018) Oncogenic kinase-induced PKM2 tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor promoter and induces cancer stem-like cells. Cancer Res 78(9):2248–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma C, Zu X, Liu K, Bode AM, Dong Z, Liu Z et al (2019) Knockdown of pyruvate kinase M inhibits cell growth and migration by reducing NF-kB activity in triple-negative breast cancer cells. Mol Cells 42(9):628–636

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17

    Article  CAS  PubMed  Google Scholar 

  61. Markert CL, Shaklee JB, Whitt GS (1975) Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 189(4197):102–114

    Article  CAS  PubMed  Google Scholar 

  62. Fiume L, Manerba M, Vettraino M, Di Stefano G (2014) Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem 6(4):429–445

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Su D, Zhao L, Zhang D, Xu J, Wan J et al (2014) Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget 5(23):11886–11896

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N, Boutet-Bouzamondo N et al (2013) Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS One. 8(3):e58683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P et al (2013) Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 23(4):464–476

    Article  CAS  PubMed  Google Scholar 

  66. Sun W, Zhang X, Ding X, Li H, Geng M, Xie Z et al (2015) Lactate dehydrogenase B is associated with the response to neoadjuvant chemotherapy in oral squamous cell carcinoma. PLoS One. 10(5):e0125976

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li C, Chen Y, Bai P, Wang J, Liu Z, Wang T et al (2016) LDHB may be a significant predictor of poor prognosis in osteosarcoma. Am J Transl Res 8(11):4831–4843

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kurpińska A, Suraj J, Bonar E, Zakrzewska A, Stojak M, Sternak M et al (2019) Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol 107:129–140

    Article  PubMed  Google Scholar 

  69. Xiao X, Huang X, Ye F, Chen B, Song C, Wen J et al (2016) The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep 6:21735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manerba M, Di Ianni L, Govoni M, Comparone A, Di Stefano G (2018) The activation of lactate dehydrogenase induced by mTOR drives neoplastic change in breast epithelial cells. PLoS One. 13(8):e0202588

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR et al (2017) Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene 36(27):3797–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang ZY, Loo TY, Shen JG, Wang N, Wang DM, Yang DP et al (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res Treat 131(3):791–800

    Article  CAS  PubMed  Google Scholar 

  73. Huang X, Li X, Xie X, Ye F, Chen B, Song C et al (2016) High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast 30:39–46

    Article  PubMed  Google Scholar 

  74. Dong T, Liu Z, Xuan Q, Wang Z, Ma W, Zhang Q (2017) Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Sci Rep 7(1):6069

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T et al (2017) miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett 400:89–98

    Article  CAS  PubMed  Google Scholar 

  76. McCleland ML, Adler AS, Shang Y, Hunsaker T, Truong T, Peterson D et al (2012) An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res 72(22):5812–5823

    Article  CAS  PubMed  Google Scholar 

  77. Mack N, Mazzio EA, Bauer D, Flores-Rozas H, Soliman KF (2017) Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in human MDA-MB-231 breast cancer cells fails to alter lactic acid production, glycolytic activity. ATP or Survival Anticancer Res 37(3):1205–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44(1):127–139

    Article  CAS  PubMed  Google Scholar 

  79. Asada K, Miyamoto K, Fukutomi T, Tsuda H, Yagi Y, Wakazono K et al (2003) Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 64(4):380–388

    Article  CAS  PubMed  Google Scholar 

  80. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F (2010) Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010:427694

    Article  PubMed  PubMed Central  Google Scholar 

  81. Johnson JM, Cotzia P, Fratamico R, Mikkilineni L, Chen J, Colombo D et al (2017) MCT1 in invasive ductal carcinoma: monocarboxylate metabolism and aggressive breast cancer. Front Cell Dev Biol 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y et al (2009) miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 40(9):1234–1243

    Article  CAS  PubMed  Google Scholar 

  83. Shi P, Chen C, Li X, Wei Z, Liu Z, Liu Y (2019) MicroRNA-124 suppresses cell proliferation and invasion of triple negative breast cancer cells by targeting STAT3. Mol Med Rep 19(5):3667–3675

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D’Ippolito E, Cosentino G et al (2018) Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep 8(1):12252

    Article  PubMed  PubMed Central  Google Scholar 

  85. Doyen J, Trastour C, Ettore F et al (2014) Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun 451(1):54–61

    Article  CAS  PubMed  Google Scholar 

  86. Umar SM, Kashyap A, Kahol S, Mathur S, Gogia A, Deo SVS et al (2020) Prognostic and therapeutic relevance of phosphofructokinase platelet-type (PFKP) in breast cancer. Exp Cell Res 10:112282

    Article  Google Scholar 

  87. Kwiatkowska E, Wojtala M, Gajewska A, Soszyński M, Bartosz G, Sadowska-Bartosz I (2016) Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. J Bioenerg Biomembr 48(1):23–32

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Q, Zhang Y, Zhang P, Chao Z, Xia F, Jiang C et al (2014) Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 5(3–4):100–112

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hou F, Wang H, Zhang Y, Zhu N, Liu H, Li J (2020) Construction and evaluation of folic acid-modified 3-bromopyruvate cubosomes. Med Sci Monit 26:e924620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yousefi S, Darvishi P, Yousefi Z, Pourfathollah AA (2020) Effect of methyl jasmonate and 3-bromopyruvate combination therapy on mice bearing the 4 T1 breast cancer cell line. J Bioenerg Biomembr 52(2):103–111

    Article  CAS  PubMed  Google Scholar 

  91. Feng X, Wang P, Liu Q, Zhang T, Mai B, Wang X (2015) Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 47(3):189–197

    Article  CAS  PubMed  Google Scholar 

  92. Wokoun U, Hellriegel M, Emons G, Gründker C (2017) Co-treatment of breast cancer cells with pharmacologic doses of 2-deoxy-D-glucose and metformin: starving tumors. Oncol Rep 37(4):2418–2424

    Article  CAS  PubMed  Google Scholar 

  93. Lucantoni F, Dussmann H, Prehn JHM (2018) Metabolic targeting of breast cancer cells with the 2-Deoxy-D-Glucose and the mitochondrial bioenergetics inhibitor MDIVI-1. Front Cell Dev Biol 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  94. O'Neill S, Porter RK, McNamee N, Martinez VG, O'Driscoll L (2019) 2-Deoxy-D-Glucose inhibits aggressive triple-negative breast cancer cells by targeting glycolysis and the cancer stem cell phenotype. Sci Rep 9(1):3788

    Article  PubMed  PubMed Central  Google Scholar 

  95. Alli E, Solow-Cordero D, Casey SC, Ford JM (2014) Therapeutic targeting of BRCA1-mutated breast cancers with agents that activate DNA repair. Cancer Res 74(21):6205–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nath K, Nelson DS, Heitjan DF, Leeper DB, Zhou R, Glickson JD (2015) Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin. NMR Biomed 28(3):281–290

    Article  CAS  PubMed  Google Scholar 

  97. Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J et al (2019) Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal 12(595):eaas8779

    Article  PubMed  PubMed Central  Google Scholar 

  98. Muhammad N, Tan CP, Nawaz U, Wang J, Wang FX, Nasreen S et al (2020) Multiaction platinum(IV) prodrug containing thymidylate synthase inhibitor and metabolic modifier against triple-negative breast cancer. Inorg Chem 59(17):12632–12642

    Article  CAS  PubMed  Google Scholar 

  99. Coelho RG, Calaça Ide C, CelestriniDde M, Correia AH, Costa MA, Sola-Penna M (2011) Clotrimazole disrupts glycolysis in human breast cancer without affecting non-tumoral tissues. Mol Genet Metab 103(4):394-398

    Article  CAS  PubMed  Google Scholar 

  100. Furtado CM, Marcondes MC, Sola-Penna M, de Souza ML, Zancan P (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS One 7(2):e30462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marcondes MC, Fernandes AC, Itabaiana I Jr, de Souza RO, Sola-Penna M, Zancan P (2015) Nanomicellar formulation of clotrimazole improves its antitumor action toward human breast cancer cells. PLoS One 10(6):e0130555

    Article  PubMed  PubMed Central  Google Scholar 

  102. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7(1):110–120

    Article  CAS  PubMed  Google Scholar 

  103. Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP (2015) A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6(28):25677–25695

    Article  PubMed  PubMed Central  Google Scholar 

  104. Imbert-Fernandez Y, Clem BF, O'Neal J, Kerr DA, Spaulding R, Lanceta L et al (2014) Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). J Biol Chem 289(13):9440–9448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gomez LS, Zancan P, Marcondes MC, Ramos-Santos L, Meyer-Fernandes JR, Sola-Penna M et al (2013) Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie 95(6):1336–1343

    Article  CAS  PubMed  Google Scholar 

  106. Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, et al (2018) Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep 8(1):8323

    Article  PubMed  PubMed Central  Google Scholar 

  107. Silvestri A, Palumbo F, Rasi I, Posca D, Pavlidou T, Paoluzi S, et al (2015) Metformin induces apoptosis and downregulates pyruvate kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS One 10(8):e0136250

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wahdan-Alaswad RS, Edgerton SM, Salem HS, Thor AD (2018) Metformin targets glucose metabolism in triple negative breast cancer. J Oncol Transl Res 4(1):129

    PubMed  PubMed Central  Google Scholar 

  109. Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R et al (2018) Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol Cancer Res Treat 17:1533034617749418

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X (2011) Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30(42):4297–4306

    Article  CAS  PubMed  Google Scholar 

  111. Kéri G, Erchegyi J, Horváth A, Mezõ I, Idei M, Vántus T et al (1996) A tumor-selective somatostatin analog (TT-232) with strong in vitro and in vivo antitumor activity. Proc Natl Acad Sci USA 93(22):12513–12518

    Article  PubMed  PubMed Central  Google Scholar 

  112. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farabegoli F, Vettraino M, Manerba M, Fiume L, Roberti M, Di Stefano G (2012) Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci 47(4):729–738

    Article  CAS  PubMed  Google Scholar 

  114. Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K et al (2001) Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat 66(3):239–248

    Article  PubMed  Google Scholar 

  115. Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A et al (2008) Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10(5):R84

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y et al (2019) Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J Clin Invest 129(3):1030–1046

    Article  PubMed  PubMed Central  Google Scholar 

  118. Guan X, Bryniarski MA, Morris ME (2018) In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J 21(1):3

    Article  PubMed  Google Scholar 

  119. Andersen AP, Flinck M, Oernbo EK, Pedersen NB, Viuff BM, Pedersen SF (2016) Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer 15(1):45

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jonnalagadda S, Jonnalagadda SK, Ronayne CT, Nelson GL, Solano LN, Rumbley J et al (2019) Novel N,N-dialkylcyanocinnamic acids as monocarboxylate transporter 1 and 4 inhibitors. Oncotarget 10(24):2355–2368

    Article  PubMed  PubMed Central  Google Scholar 

  121. Morais-Santos F, Miranda-Gonçalves V, Pinheiro S, Vieira AF, Paredes J, Schmitt FC et al (2013) Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocr Relat Cancer 21(1):27–38

    Article  PubMed  Google Scholar 

  122. Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F (2015) The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer 67(3):504–513

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the DST SERB ECR grant (No.2017/001836), and AIIMS Intramural grants (No. A-515).

Author information

Authors and Affiliations

Authors

Contributions

CPP proposed the initial idea. ADJR & CPP analyzed the literature, designed and formatted the review. SRM, AG, SVSD & PM provided inputs and involved in critical revision.

Corresponding author

Correspondence to Chandra Prakash Prasad.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arundhathi, J.R.D., Mathur, S., Gogia, A. et al. Metabolic changes in triple negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep 48, 4733–4745 (2021). https://doi.org/10.1007/s11033-021-06414-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06414-w

Keywords

Navigation