Skip to main content

Advertisement

Log in

Different types of cell death in vascular diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In a mature organism, tissue homeostasis is regulated by cell division and cell demise as the two major physiological procedures. There is increasing evidence that deregulation of these processes is important in the pathogenicity of main diseases, including myocardial infarction, stroke, atherosclerosis, and inflammatory diseases. Therefore, there are ongoing efforts to discover modulating factors of the cell cycle and cell demise planners aiming at shaping innovative therapeutically modalities to the therapy of such diseases. Although the life of a cell is terminated by several modes of action, a few cell deaths exist—some of which resemble apoptosis and/or necrosis, and most of them are different from one another—that contribute to a wide range of functions to either support or disrupt the homoeostasis. Even in normal physiological conditions, cell life is severe within the cardiovascular system. Cells are persistently undergoing stretch, contraction, injurious metabolic byproducts, and hemodynamic forces, and a few of cells sustain decade-long lifetimes. The duration of vascular disease causes further exposure of vascular cells to a novel range of offences, most of which induce cell death. There is growing evidence on consequences of direct damage to a cell, as well as on responses of adjacent and infiltrating cells, which also have an effect on the pathology. In this study, by focusing on different pathways of cell death in different vascular diseases, an attempt is made to open a new perspective on the therapeutic goals associated with cell death in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Exist.

Abbreviations

NO:

Nitric Oxide

GMP:

Guanosine monophosphate

SMC:

Smooth muscle cells

TUNEL:

Transferase dUTP nick end labeling

ISEL:

In situ nick translation

Bcl‐2:

B-cell lymphoma 2

DAMPs:

Danger-associated molecular patterns

NETs:

Neutrophil extracellular traps

MPO:

Myeloperoxidase

RIPK1:

Receptor-interacting protein kinase-1

TRAFF2/5:

TNF receptor-associated factor 2/5

TRADD:

Type 1–associated death domain

PAH:

Pulmonary arterial hypertension

TLR:

Toll‐like receptor

NLR:

Nod‐like receptor

DAMPs:

Damage‐associated molecular patterns

RIPK3:

Receptor-interacting serine/threonine-protein kinase 3

IR:

Ischemia–reperfusion

PGAM5:

PGAM Family Member 5

NLRP3:

NLR family pyrin domain containing 3

HMGB1:

For high-mobility group box 1

PDGF:

Platelet-derived growth factor

TGF-β:

Transforming growth factor beta

VCAM-1:

Vascular cell adhesion protein 1

DAMP:

Damage-associated molecular patterns

CVD:

Cardiovascular disease

GPX4:

Glutathione peroxidase 4

VSMCs:

Vascular smooth muscle cells

VCI:

Vascular cognitive impairment

AD:

Alzheimer’s disease

LDCD:

Lysosome-dependent cell death

OxLDL:

Oxidized low-density lipoprotein (oxLDL)

ROS:

Oxygen species

LC3:

Protein 1A/1B-light chain 3

References

  1. Nirmala JG, Lopus M (2020) Cell death mechanisms in eukaryotes. Cell Biol Toxicol 36(2):145–164

    CAS  PubMed  Google Scholar 

  2. Hyman BT, Yuan J (2012) Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 13(6):395–406

    CAS  PubMed  Google Scholar 

  3. Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z (2011) Apoptosis and beyond: cytometry in studies of programmed cell death. Methods in cell biology: 103. Elsevier, London, pp 55–98

    Google Scholar 

  4. Zhu C, Wang X, Xu F, Bahr B, Shibata M, Uchiyama Y et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death Differ 12(2):162–176

    CAS  PubMed  Google Scholar 

  5. Berber P et al (2017) An eye on age-related macular degeneration: the role of microRNAs in disease pathology. Mol Diagn Ther 21(1):31–43

  6. MacMicking J, Xie Q-W, Nathan C (1997) Nitric oxide and macrophage function. Ann Rev Immunol 15(1):323–50

    CAS  Google Scholar 

  7. Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Iα attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281(50):38644–38652

    CAS  PubMed  Google Scholar 

  8. Beck K-F, Eberhardt W, Frank S, Huwiler A, Messmer U, Muhl H et al (1999) Inducible NO synthase: role in cellular signalling. J Exp Biol 202(6):645–653

    CAS  PubMed  Google Scholar 

  9. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang YQ et al (2016) The relationship of plasma miR-29a and oxidized low density lipoprotein with atherosclerosis. Cell Physiol and Biochem 40(6):1521–1528

  11. Burnstock G (2002) Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22(3):364–373

    PubMed  Google Scholar 

  12. Weber C, Schober A, Zernecke A (2004) Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 24(11):1997–2008

    CAS  PubMed  Google Scholar 

  13. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100(8):1128–1141

    CAS  PubMed  Google Scholar 

  14. Kim H, Blanco F (2007) Cell death and apoptosis in ostearthritic cartilage. Curr Drug Targets 8(2):333–345

    CAS  PubMed  Google Scholar 

  15. Mallat Z, Tedgui A (2000) Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 130(5):947–962

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamet P, deBlois D, Dam T-V, Richard L, Teiger E, Tea B-S et al (1996) Apoptosis and vascular wall remodeling in hypertension. Can J Physiol Pharmacol 74(7):850–861

    CAS  PubMed  Google Scholar 

  17. Wang K (2015) Autophagy and apoptosis in liver injury. Cell Cycle (Georgetown, Tex) 14(11):1631–1642

    CAS  Google Scholar 

  18. Kyrylkova K, Kyryachenko S, Leid M, Kioussi C (2012) Detection of apoptosis by TUNEL assay. Methods Mol Biol (Clifton, NJ) 887:41–47

    CAS  Google Scholar 

  19. Kockx MM (1998) Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 18(10):1519–1522

    CAS  PubMed  Google Scholar 

  20. Safar M, Blacher J, Mourad J, London G (2000) Stiffness of carotid artery wall material and blood pressure in humans: application to antihypertensive therapy and stroke prevention. Stroke 31(3):782–790

    CAS  PubMed  Google Scholar 

  21. Pleouras DS, Sakellarios AI, Tsompou P, Kigka V, Kyriakidis S, Rocchiccioli S et al (2020) Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data. Sci Rep 10(1):1–14

    Google Scholar 

  22. Mackie EJ, Scott-Burden T, Hahn A, Kern F, Bernhardt J, Regenass S et al (1992) Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am J Pathol 141(2):377

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi Y-X, Chen Y, Zhu Y-Z, Huang G-Y, Moore PK, Huang S-H et al (2007) Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293(4):H2093–H2100

    CAS  PubMed  Google Scholar 

  24. Yang HL, Korivi M, Chen CH, Peng WJ, Chen CS, Li ML et al (2017) A ntrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice. Environ Toxicol 32(8):2070–2084

    CAS  PubMed  Google Scholar 

  25. Fortuño MA, Ravassa S, Etayo JC, Díez J (1998) Overexpression of bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: effects of AT1 blockade with losartan. Hypertension 32(2):280–6

    PubMed  Google Scholar 

  26. Morales-Cano D, Calviño E, Rubio V, Herráez A, Sancho P, Tejedor MC et al (2013) Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition. Exp Toxicol Pathol 65(7–8):1101–1108

    CAS  PubMed  Google Scholar 

  27. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–2127

    CAS  PubMed  Google Scholar 

  28. Durand E, Mallat Z, Addad F, Vilde F, Desnos M, Guérot C et al (2002) Time courses of apoptosis and cell proliferation and their relationship to arterial remodeling and restenosis after angioplasty in an atherosclerotic rabbit model. J Am Coll Cardiol 39(10):1680–1685

    PubMed  Google Scholar 

  29. Perlman H, Maillard L, Krasinski K, Walsh K (1997) Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation 95(4):981–987

    CAS  PubMed  Google Scholar 

  30. Pollman MJ, Hall JL, Gibbons GH (1999) Determinants of vascular smooth muscle cell apoptosis after balloon angioplasty injury: influence of redox state and cell phenotype. Circ Res 84(1):113–121

    CAS  PubMed  Google Scholar 

  31. Majesky MW, Horita H, Ostriker A, Lu S, Regan JN, Bagchi A et al (2017) Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ Res 120(2):296–311

    CAS  PubMed  Google Scholar 

  32. Burtea C, Laurent S, Lancelot E, Ballet S, Murariu O, Rousseaux O et al (2009) Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm 6(6):1903–1919

    CAS  PubMed  Google Scholar 

  33. Henson PM, Hume DA (2006) Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27(5):244–250

    CAS  PubMed  Google Scholar 

  34. Thorp EB (2010) Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis 15(9):1124–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson JL, Newby AC (2009) Macrophage heterogeneity in atherosclerotic plaques. Curr Opin Lipidol 20(5):370

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GR et al (2018) Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 13(6):477–488

    CAS  PubMed  Google Scholar 

  37. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283(1):1–16

    CAS  PubMed  Google Scholar 

  38. Kim EH, Wong S-W, Martinez J (2019) Programmed necrosis and disease: we interrupt your regular programming to bring you necroinflammation. Cell Death Differ 26(1):25–40

    PubMed  Google Scholar 

  39. Kolb JP, Oguin TH III, Oberst A, Martinez J (2017) Programmed cell death and inflammation: winter is coming. Trends Immunol 38(10):705–718

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    CAS  PubMed  Google Scholar 

  41. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT et al (2017) Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358(6367):1202–1206

    PubMed  Google Scholar 

  43. Söderberg D, Segelmark M (2016) Neutrophil extracellular traps in ANCA-associated vasculitis. Front Immunol 7:256

    PubMed  PubMed Central  Google Scholar 

  44. Döring Y, Soehnlein O, Weber C (2014) Neutrophils cast NETs in atherosclerosis: employing peptidylarginine deiminase as a therapeutic target. Am Heart Assoc. https://doi.org/10.1161/CIRCRESAHA.114.303479

    Article  Google Scholar 

  45. Josefs T, Barrett TJ, Brown EJ, Quezada A, Wu X, Voisin M et al (2020) Neutrophil extracellular traps (NETs) promote macrophage inflammation and impair atherosclerosis resolution in mice with diabetes. JCI Insight. https://doi.org/10.1172/jci.insight.134796

    Article  PubMed  PubMed Central  Google Scholar 

  46. Megens RT, Vijayan S, Lievens D, Doering Y, van Zandvoort MA, Grommes J et al (2012) Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 107(03):597–598

    CAS  PubMed  Google Scholar 

  47. Knight JS, Luo W, O’Dell AA, Yalavarthi S, Zhao W, Subramanian V et al (2014) Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 114(6):947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Saha P, San Yeoh B, Xiao X, Golonka RM, Singh V, Wang Y et al (2019) PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol 12(3):761–771

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS et al (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33(8):2032–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kambas K, Mitroulis I, Ritis K (2012) The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol 3:385

    PubMed  PubMed Central  Google Scholar 

  51. Fuentes QE, Fuentes QF, Andrés V, Pello OM, de Mora JF, Palomo GI (2013) Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 24(4):255–262

    Google Scholar 

  52. Darbousset R, Thomas GM, Mezouar S, Frere C, Bonier R, Mackman N et al (2012) Tissue factor–positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120(10):2133–2143

    CAS  PubMed  Google Scholar 

  53. Jennette JC, Falk RJ, Hu P, Xiao H (2013) Pathogenesis of antineutrophil cytoplasmic autoantibody–associated small-vessel vasculitis. Annu Rev Pathol 8:139–160

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ni H-M, Chao X, Kaseff J, Deng F, Wang S, Shi Y-H et al (2019) Receptor-interacting serine/threonine-protein kinase 3 (RIPK3)–mixed lineage kinase domain-like protein (mlkl)–mediated necroptosis contributes to ischemia-reperfusion injury of steatotic livers. Am J Pathol 189(7):1363–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147(4):765-783.e4

    CAS  PubMed  Google Scholar 

  56. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiao G, Zhuang W, Wang T, Lian G, Luo L, Ye C et al (2020) Transcriptomic analysis identifies toll-like and nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med 24(19):11409–11421

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiao G, Zhuang W, Wang T, Luo L, Ye C, Wang H et al (2020) Transcriptomic analysis identifies necroptosis and toll-like receptor pathways in pulmonary arterial hypertension. SSRN. https://doi.org/10.2139/ssrn.3544807

    Article  Google Scholar 

  59. Li C, Ma Q, Toan S, Wang J, Zhou H, Liang J (2020) SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol 36:101659

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J et al (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia–reperfusion injury. J Pineal Res 65(3):e12503

    PubMed  Google Scholar 

  61. Leeper NJ (2016) The role of necroptosis in atherosclerotic disease. JACC 1(6):548–550

    PubMed  PubMed Central  Google Scholar 

  62. Khalili M, Radosevich JA (2018) Pyronecrosis. In: Radosevich J (ed) Apoptosis and beyond: the many ways cells die. Wiley, Hoboken, pp 225–236

    Google Scholar 

  63. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    CAS  PubMed  Google Scholar 

  64. Edwan J, Tran T, Abu-Asab M, Goldbach-Mansky R, Colbert R (2012) STAT3 plays a central role in NLRP3 inflammasome-mediated IL-1β production and pyronecrosis: 310. Arthr Rheum 64:S136

    Google Scholar 

  65. Xu Y-J, Zheng L, Hu Y-W, Wang Q (2018) Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 476:28–37

    CAS  PubMed  Google Scholar 

  66. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z et al (2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis 9(2):1–12

    Google Scholar 

  67. Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C et al (2019) Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol 67:311–318

    CAS  PubMed  Google Scholar 

  68. Yang J-R, Yao F-H, Zhang J-G, Ji Z-Y, Li K-L, Zhan J et al (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol 306(1):F75–F84

    CAS  PubMed  Google Scholar 

  69. Toldo S, Mauro AG, Cutter Z, Abbate A (2018) Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 315(6):H1553–H1568

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X et al (2020) Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol 235(4):3207–3221

    CAS  PubMed  Google Scholar 

  71. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Krishna S, Overholtzer M (2016) Mechanisms and consequences of entosis. Cell Mol Life Sci 73(11–12):2379–2386

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeng C, Zeng B, Dong C, Liu J, Xing F (2020) Rho-ROCK signaling mediates entotic cell death in tumor. Cell Death Discov 6:4

    PubMed  PubMed Central  Google Scholar 

  74. Florey O, Krajcovic M, Sun Q, Overholtzer M (2010) Entosis. Curr Biol 20(3):R88–R89

    CAS  PubMed  Google Scholar 

  75. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23(3):369–379

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F (2020) Ferroptosis and cancer: mitochondria meet the “iron maiden” cell death. Cells 9(6):1505

    CAS  PubMed Central  Google Scholar 

  77. Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (eds) (2019) Ferroptosis is a type of autophagy-dependent cell death, Seminars in cancer biology. Elsevier, London

    Google Scholar 

  78. Čepelak I, Dodig S, Čepelak DD (2020) Ferroptosis: regulated cell death. Arhiv za higijenu rada i toksikologiju 71(2):99–109

    PubMed  PubMed Central  Google Scholar 

  79. Hu Z, Zhang H, Yang SK, Wu X, He D, Cao K et al (2019) Emerging role of ferroptosis in acute kidney injury. Oxid Med Cell Longev 2019:8010614

    PubMed  PubMed Central  Google Scholar 

  80. Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biol Med 131:356–369

    CAS  Google Scholar 

  81. Sampilvanjil A, Karasawa T, Yamada N, Komada T, Higashi T, Baatarjav C et al (2020) Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 318(3):H508–H518

    CAS  PubMed  Google Scholar 

  82. Land WG (2020) Damage-associated molecular patterns in human diseases: danger signals as diagnostics, prognostics, and therapeutic targets, vol 2. Springer Nature, Switzerland

    Google Scholar 

  83. Wang Q (2015) The role of smooth muscle cell death in vascular inflammation and abdominal aortic aneurysm. The University of Wisconsin-Madison, Madison

    Google Scholar 

  84. Yan N, Zhang J-J (2019) The emerging roles of ferroptosis in vascular cognitive impairment. Front Neurosci 13:811

    PubMed  PubMed Central  Google Scholar 

  85. Bowler J, Hachinski V (1995) Vascular cognitive impairment: a new approach to vascular dementia. Bailliere’s Clin Neurol 4(2):357–376

    CAS  Google Scholar 

  86. Wang F, Salvati A, Boya P (2018) Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol 8(4):170271

    PubMed  PubMed Central  Google Scholar 

  87. Appelqvist H, Sandin L, Björnström K, Saftig P, Garner B, Öllinger K et al (2012) Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS ONE 7(11):e50262

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu F, Chen Z, Wang B, Jin Z, Hou Y, Ma S et al (2016) The role of lysosome in cell death regulation. Tumor Biol 37(2):1427–1436

    CAS  Google Scholar 

  89. Nussenzweig SC, Verma S, Finkel T (2015) The role of autophagy in vascular biology. Circ Res 116(3):480–488

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P et al (2011) Autophagy in term normal human placentas. Placenta 32(6):482–485

    CAS  PubMed  Google Scholar 

  91. De Munck DG, Leloup AJ, De Meyer GR, Martinet W, Fransen P (2020) Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall. Pflugers Archiv. https://doi.org/10.1007/s00424-020-02408-y

    Article  PubMed  Google Scholar 

  92. Osonoi Y, Mita T, Azuma K, Nakajima K, Masuyama A, Goto H et al (2018) Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis. Autophagy 14(11):1991–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martinet W, De Meyer GR (2009) Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 104(3):304–317

    CAS  PubMed  Google Scholar 

  94. Ni H, Xu S, Chen H, Dai Q (2020) Nicotine modulates CTSS (Cathepsin S) synthesis and secretion through regulating the autophagy-lysosomal machinery in atherosclerosis. Arterioscler Thromb Vasc Biol 40(9):2054–2069

    CAS  PubMed  Google Scholar 

  95. Li X, Zhou Y, Zhang X, Cao X, Wu C, Guo P (2017) Cordycepin stimulates autophagy in macrophages and prevents atherosclerotic plaque formation in ApoE-/-mice. Oncotarget 8(55):94726

    PubMed  PubMed Central  Google Scholar 

  96. Wu H, Ploeger JM, Kamarajugadda S, Mashek DG, Mashek MT, Manivel JC et al (2019) Evidence for a novel regulatory interaction involving cyclin D1, lipid droplets, lipolysis, and cell cycle progression in hepatocytes. Hepatol Commun 3(3):406–422

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chan LL-Y, Shen D, Wilkinson AR, Patton W, Lai N, Chan E et al (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy. 8(9):1371–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang L, Liu S, Pan B, Cai H, Zhou H, Yang P et al (2020) The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional. Cell Cycle. https://doi.org/10.1080/15384101.2020.1823731

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ramadan A, Al-Omran M, Verma S (2017) The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Atherosclerosis 257:288–296

    CAS  PubMed  Google Scholar 

  100. Salmon M, Spinosa M, Zehner ZE, Upchurch GR, Ailawadi G (2019) Klf4, Klf2, and Zfp148 activate autophagy-related genes in smooth muscle cells during aortic aneurysm formation. Physiol Rep 7(8):e14058

    PubMed  PubMed Central  Google Scholar 

  101. Wu Q-Y, Cheng Z, Zhou Y-Z, Zhao Y, Li J-M, Zhou X-M et al (2020) A novel STAT3 inhibitor attenuates angiotensin II-induced abdominal aortic aneurysm progression in mice through modulating vascular inflammation and autophagy. Cell Death Dis 11(2):1–16

    CAS  Google Scholar 

  102. LaRocca TJ, Gioscia-Ryan RA, Hearon CM Jr, Seals DR (2013) The autophagy enhancer spermidine reverses arterial aging. Mech Ageing Dev 134(7–8):314–320

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McCarthy CG, Wenceslau CF, Calmasini FB, Klee NS, Brands MW, Joe B et al (2019) Reconstitution of autophagy ameliorates vascular function and arterial stiffening in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 317(5):H1013–H1027

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li Z, Wang J, Yang X (2015) Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci 11(6):672

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10(3):431–441

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Odagiri S, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K (2012) Autophagic adapter protein NBR1 is localized in lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy. Acta Neuropathol 124(2):173–186

    CAS  PubMed  Google Scholar 

  107. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3):367–376

    CAS  PubMed  Google Scholar 

  108. Liu Y, Shoji-Kawata S, Sumpter RM, Wei Y, Ginet V, Zhang L et al (2013) Autosis is a Na+, K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc Natl Acad Sci USA 110(51):20364–20371

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L (2019) Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biol 26:101239

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Feldman CC, Zhou T, Phan N, Liu B (2017) Parthanatos is involved in hydrogen peroxide induced vascular smooth muscle cell death. Arterioscler Thromb Vasc Biol 37(suppl 1):A239

    Google Scholar 

  112. Xu S, Bai P, Little PJ, Liu P (2014) Poly (ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 34(3):644–675

    CAS  PubMed  Google Scholar 

  113. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessede G et al (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21(2):97–114

    CAS  PubMed  Google Scholar 

  114. Björkhem I, Diczfalusy U (2020) Side-chain oxidized oxysterols in health and disease. In: Rozman D, Gebhardt R (eds) Mammalian sterols. Springer, Cham, pp 41–79

    Google Scholar 

  115. Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F et al (2021) Attenuation of 7-ketocholesterol-and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: potential for the prevention of age-related diseases. Ageing Res Rev 68:101324

    CAS  PubMed  Google Scholar 

  116. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142(1):1–28

    CAS  PubMed  Google Scholar 

  117. Shibata N, Glass CK (2010) Macrophages, oxysterols and atherosclerosis. Circ J. https://doi.org/10.1253/circj.cj-10-0860

    Article  PubMed  Google Scholar 

  118. Brown RB (2019) Phospholipid packing defects and oxysterols in atherosclerosis: dietary prevention and the French paradox. Biochimie 167:145–151

    CAS  PubMed  Google Scholar 

  119. Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M, O’Brien N et al (2014) Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 18:148–162

    CAS  PubMed  Google Scholar 

  120. Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H (2016) Oxysterols and mechanisms of survival signaling. Mol Aspects Med 49:8–22

    CAS  PubMed  Google Scholar 

  121. De Saint-Hubert M, Prinsen K, Mortelmans L, Verbruggen A, Mottaghy FM (2009) Molecular imaging of cell death. Methods 48(2):178–187

    PubMed  Google Scholar 

  122. Loo DT (2011) In situ detection of apoptosis by the TUNEL assay: an overview of techniques. In: Didenko VV (ed) DNA damage detection in situ, ex vivo, and in vivo. Humana Press, Totowa, pp 3–13

    Google Scholar 

  123. Lee K, Cavanaugh L, Leung H, Yan F, Ahmadi Z, Chong B et al (2018) Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int J Lab Hematol 40(4):392–399

    CAS  PubMed  Google Scholar 

  124. Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65

    CAS  PubMed  Google Scholar 

  125. Bell CW, Jiang W, Reich CF III, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291(6):C1318–C1325

    CAS  PubMed  Google Scholar 

  126. Wu Y, Song X, Wang N, Cong S, Zhao X, Rai R et al (2020) Carbon dots from roasted chicken accumulate in lysosomes and induce lysosome-dependent cell death. Food Funct 11(11):10105–10113

    CAS  PubMed  Google Scholar 

  127. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E et al (2008) Methods for assessing autophagy and autophagic cell death. In: Deretic V (ed) Autophagosome and phagosome. Humana Press, Totowa, pp 29–76

    Google Scholar 

  128. Dong W, Yang B, Wang Y, Yuan J, Fan Y, Song E et al (2018) Polybrominated diphenyl ethers quinone induced parthanatos-like cell death through a reactive oxygen species-associated poly (ADP-ribose) polymerase 1 signaling. Chem Res Toxicol 31(11):1164–1171

    CAS  PubMed  Google Scholar 

  129. Nury T, Zarrouk A, Yammine A, Mackrill JJ, Vejux A, Lizard G (2020) Oxiapoptophagy: a type of cell death induced by some oxysterols. Br J Pharmacol. https://doi.org/10.1111/bph.15173

    Article  PubMed  Google Scholar 

  130. Gibbons GH, Dzau VJ (1996) Molecular therapies for vascular diseases. Science 272(5262):689–693

    CAS  PubMed  Google Scholar 

  131. Shroff R, Long DA, Shanahan C (2013) Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol 24(2):179–189

    CAS  PubMed  Google Scholar 

  132. Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH (1998) Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4(2):222–227

    CAS  PubMed  Google Scholar 

  133. Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of fas and fas ligand and in sensitivity to fas ligand–induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20(2):309–316

    CAS  PubMed  Google Scholar 

  134. Choy JC, Kerjner A, Wong BW, McManus BM, Granville DJ (2004) Perforin mediates endothelial cell death and resultant transplant vascular disease in cardiac allografts. Am J Pathol 165(1):127–133

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discovery 5(2):123–132

    CAS  PubMed  Google Scholar 

  136. Liu X, Cheng Y, Yang J, Krall TJ, Huo Y, Zhang C (2010) An essential role of PDCD4 in vascular smooth muscle cell apoptosis and proliferation: implications for vascular disease. Am J Physiol Cell Physiol 298(6):C1481–C1488

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pamukcu B, Lip GY, Shantsila E (2011) The nuclear factor–kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res 128(2):117–123

    CAS  PubMed  Google Scholar 

  138. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N et al (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126(11 suppl 1):S81–S90

    CAS  PubMed  Google Scholar 

  139. Kang DH, Kang SW (2013) Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther 21(2):89

    CAS  Google Scholar 

  140. Salabei JK, Cummins TD, Singh M, Jones SP, Bhatnagar A, Hill BG (2013) PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J 451(3):375–388

    CAS  PubMed  Google Scholar 

  141. Heath JM, Sun Y, Yuan K, Bradley WE, Litovsky S, Dell’Italia LJ et al (2014) Activation of AKT by O-linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circ Res 114(7):1094–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Phadwal K, Feng D, Zhu D, MacRae VE (2020) Autophagy as a novel therapeutic target in vascular calcification. Pharmacol Ther 206:107430

    CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SS: Data gathering, writing draft. Ak: Editing manuscript. MHSM: Scientific editor. MA: Design figures.

Corresponding author

Correspondence to Shirin Saberianpour.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest to disclose.

Consent to participate

All authors consent to patriciate.

Consent to publication

All authors consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberianpour, S., Karimi, A., Saeed modaghegh, M.H. et al. Different types of cell death in vascular diseases. Mol Biol Rep 48, 4687–4702 (2021). https://doi.org/10.1007/s11033-021-06402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06402-0

Keywords

Navigation