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Abstract
The expression of human and microbial genes serves as biomarkers for disease and health. Blood RNA is an important 
biological resource for precision medicine and translational medicine. However, few studies have assessed the human tran-
scriptome profiles and microbial communities composition and diversity of peripheral blood from different cell isolation 
methods, which could affect the reproducibility of researches. We collected peripheral blood from three healthy donors and 
processed it immediately. We used RNA sequencing to investigate the effect of three leukocyte isolation methods including 
buffy coat (BC) extraction, red blood cell (RBC) lysis and peripheral blood mononuclear cell (PBMC) isolation with the 
comparison with whole blood (WB), through analyzing the sensitivity of gene detection, the whole transcriptome profiling 
and microbial composition and diversity. Our data showed that BC extraction with high globin mRNA mapping rate had 
similar transcriptome profiles with WB, while RBC lysis and PBMC isolation depleted RBCs effectively. With the efficient 
depletion of RBC and distinct compositions of leukocyte subsets, RNA-seq of RBC lysis and PBMC isolation uniquely 
detected genes from specific cell types, like granulocytes and NK cells. In addition, we observed that the microbial compo-
sition and diversity were more affected by individuals than isolation methods. Our results showed that blood cell isolations 
could largely influence the sensitivity of detection of human genes and transcriptome profile.
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Introduction

Peripheral blood is a fluid connective tissue throughout 
the body connecting the entire biological system. Previous 
studies have shown that peripheral blood gene expression 
is an important source of information to profile individual 

uniqueness [1, 2]. Peripheral blood has distinct patterns of 
gene expression in different diseases including Parkinson’s 
disease [3], childhood asthma [4], rheumatoid arthritis [5, 
6], infectious diseases [7] and early preeclampsia [8, 9]. A 
unique pattern of immune dysregulation is found in COVID-
19 patients’ blood samples [10, 11]. In addition, studies 
have shown that composition and diversity of human blood 
microbial communities change with the onset of diseases 
including diabetes [12], cirrhotic [13], acute pancreatitis 
[14], cardiovascular diseases [15] schizophrenia [16], and 
cancer [17]. Peripheral blood is more available and less risky 
to collect than invasive organ biopsy, thus provides promis-
ing biomarkers for diseases in precision and translational 
medicine.

Peripheral whole blood (WB) contains white blood cells 
(WBCs), red blood cells (RBCs), platelets and plasma. 
WBCs include lymphocyte, granulocyte and monocyte 
and play critical roles in immunity, exhibiting the major 
complexity of blood. There are 3 popular methods to iso-
late WBCs from WB, including buffy coat (BC) extraction, 
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RBC lysis and peripheral blood mononuclear cell (PBMC) 
isolation. BC extraction is achieved by extracting the white 
membrane layer of blood after centrifugation, remaining 
most WBCs and platelets [18, 19]. RBC lysis removes eryth-
rocytes and leaves WBCs and platelets [20]. PBMC isolation 
uses density gradient centrifugation to separate mononuclear 
cells, such as lymphocytes and monocytes [21]. These cell 
isolation methods maintain different subpopulations of blood 
cells, leading to distinct expression patterns. Previous stud-
ies have observed a reduced number of detected genes, a 
high variability of gene expression profile and a low sig-
nal-to-noise ratio in WB compared with WBC, which was 
related to the RBC-derived globin transcripts [22, 23]. The 
gene expression pattern and cell subpopulations were also 
varied among WB and WBC isolations [22]. Most of these 
studies evaluated the difference on a group of selected genes 
by microarray. With the development of RNA sequencing 
(RNA-seq), it is possible to identify the changes of whole 
human transcriptome profile and microbial composition and 
diversity among WBC isolations, and the potential to affect 
biomarker discovery.

Here, we used RNA-seq to comprehensively investigate 
the influence of 3 popular WBC isolation methods on human 
transcriptome profile and microbial composition and diver-
sity, including BC extraction, RBC lysis and PBMC isola-
tion. With the assessment of the three cell isolation methods, 

we provide a reference to help researchers to choose suitable 
pretreatments for particular study purposes.

Materials and methods

Sample collection and leukocyte isolation

Three healthy volunteers (two males and one female) were 
enrolled, and 10 mL peripheral blood was collected each 
using EDTA anticoagulation tubes (BD, 0202992058) and 
processed immediately. Each tube of WB was divided into 
four parts, three of which underwent three different leuko-
cyte isolation methods, and one portion was mixed with 
TRIzol LS Reagent (Thermo Fisher, 10296028). The meth-
ods of BC extraction, RBC lysis and PBMC isolation are 
described in Fig. 1. The study protocol was approved by the 
BGI Institutional Review Board (NO. BGI-IRB 17034). All 
donors signed consent forms for non-therapeutic use of their 
donated blood samples.

RNA extraction, library preparation and sequencing

Twelve RNA samples were extracted by TRIzol Reagent 
(Thermo Fisher, 15596026) or TRIzol LS Reagent (Thermo 
Fisher, 10296028) according to the manufacturer’s manual. 
RNA concentration and integrity were measured by Agilent 

Peripheral blood samples collected from volunteers (n=3)

WB: 
Take 150 μL whole blood 
into a 1.5 mL EP tube. 

BC extraction: 
(1) Take 1 mL whole blood 
into a 2 mL EP tube, and 
centrifuge for 10 min at 
1,600g at 4 ℃. 
(2) Remove the plasma and 
take 100 μL buffy coat into a 
new 1.5 mL EP tube. 

RBC lysis: 
(1) Add 3 mL RBC lysis buffer into 
1 mL whole blood, mix gently and 
incubate at room temperature for 
10 min. 
(2) Centrifuge for 5 min at 1,600g 
at 4 ℃. 
(3) Remove the supernatant. Mix 
the sample with 100 μL PBS 
buffer gently. 
(4) Centrifuge at 1,600g for 1 min 
at 4 ℃. Discard the supernatant. 
(5) Resuspend the sample with 
100 μL PBS, and transfer the 
sample into a new 1.5 mL EP 
tube.

PBMC isolation: 
(1) Dilute 1.5 mL whole blood with 
1.5 mL PBS. 
(2) Add 1.5 mL lymphocyte 
separation solution ficoll and 
centrifuge at 400g for 30 minutes. 
(3) Collect mononuclear cells at 
the junction of the plasma layer 
and lymphocyte separation fluid, 
transfer the sample into a new 
centrifuge tube. 
(4) Mix with 3 mL sterile cold PBS, 
centrifuge at 200g for 10 mins and 
discard the supernatant. Repeat 
once if it is needed.
(5) Dissolve with 100 μL PBS, and 
transfer the sample into a new 1.5 
mL EP tube.

Mixed with 300 μL TRIzolMixed with 450 uL TRIzol LS

RNA isolation

Fig. 1   Schematic of sample processing. Whole blood was collected in EDTA anticoagulation tubes (n = 3). All samples were treated immedi-
ately after collection
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2100 bioanalyzer (Agilent Technologies, G2939A). Samples 
with total RNA amount ≥ 200 ng and RIN score ≥ 6 were 
qualified to construct sequencing library. RNase H method 
was applied to deplete rRNA [24]. Sequencing was per-
formed on BGISEQ-500RS (single-end 50 bp) developed 
by BGI.

Data filtering, alignment and expression 
quantification

Reads with adaptors and low quality were filtered by 
SOAPnuke [25], and rRNA was removed (hg19 rRNA 
ref) by SOAP2 [26] to obtain clean data. Metrics for clean 
data were calculated according to output files generated by 
SOAPnuke [25]. We used HISAT (version 2.1.0) [27] with 
default parameters to aligned all clean data on the human 
genome (hg19) and calculate metrics of alignment. We used 
RNA-SeQC (version 2.6.4) [28] to assessed the proportion 
of reads aligned to annotated CDS exons, 5′UTR exons. 
3′UTR exons, introns, TSS up/down 10 kb and other regions.

We aligned all clean data on human transcript reference 
by Bowtie2 [29], the refMrna.fa.gz file from the UCSC 
database [30] removed NR_RNA as the mRNA reference, 
and NONCODEv5_human.fa.gz file from the NONCODE 
database [31] as the non-coding RNA reference. Saturation 
curves display the number of detected genes according to 
BAM files generated by Bowtie2. All transcripts estimated 
counts and Transcripts Per Million mapped reads (TPM) 
were obtained using Kallisto [32]. We performed principal 
component analysis (PCA) and calculated the coefficient of 
variation according to all expressed genes among isolation 
methods.

Blood cell subsets analysis

We estimated the content of globin mRNA (Supplementary 
Table S1) reads in clean data to present the residue of eryth-
rocytes. CIBERSORT [33] was used to estimate the relative 
proportion of leukocyte subpopulations.

Identification of differentially expressed genes 
(DEGs) and co‑expression genes

We used edgeR [34] to identify DEGs between isolation 
methods. The Benjamini-Hochberg (BH) method [35] was 
employed to correct multiple comparisons. DEGs were 
considered significant if they exhibited a BH-adjusted 
p-value ≤ 0.01 and fold change ≥ 2.

Then we identified isolation-associated co-expression 
genes by WGCNA [36] according to all DEGs’ TPM. We 
chose β = 9 as the soft threshold [37]. The Pearson correla-
tion between module eigengenes (ME) [36] and isolation 
method was also calculated. Metascape [38] was used to 

analyze the disease enrichment according to DisGeNET 
database [39]. FunRich [40] was used to analyze the cell 
type enrichment of coding genes in different modules.

Human gene expression in different blood cell types

Gene expression levels summarized in 18 blood cell types 
is based on the Human Protein Atlas (version 20.0) [41] and 
Ensembl (version 92.38) [42]. TPM of uniquely detected 
genes in each group of cell was merged and observed in 
different cell types. Expression of coding genes of black 
and yellow modules in different blood cell types was also 
observed.

The blood microbiome analyses

Clean reads that failed to align to the human genome were 
further filtered with low-quality and low complexity reads, 
and the remaining reads were aligned to microbiome using 
Kraken (version 0.10.5) [43] with a database including 
viral, archaeal, bacterial, protozoa, fungi, and human. We 
excluded the human reads and calculated the microbiome 
reads in per million clean reads (microbiome-RPM) and the 
relative abundances of bacterial taxa at phylum level. The 
alpha diversity in each sample was determined using the 
Simpson index. To measure sample-to-sample dissimilari-
ties between microbial communities, we used Bray–Curtis 
beta diversity index. Principal coordinates analysis (PCoA) 
was performed based on unweighted Bray–Curtis distances.

Statistical analysis

The coefficients of variation (CV) of commonly detected 
genes expression under each pretreatment were calculated. 
Paired two-sided t-test was used to compare the differences 
in CV, proportions of globin mRNA and leukocyte subsets 
between cell groups in this study, and p < 0.05 was consid-
ered to be significant. The relative proportions of leukocyte 
subsets were presented as mean ± SD.

Results

Quality control of RNA and RNA‑seq

RNA was extracted from all processed samples with an 
average RIN value of 8.1 ± 1.0 (mean ± SD) and sequenc-
ing libraries were successfully constructed (Supplementary 
Table S2). For each sample of RNA-seq, about 100 M clean 
reads were obtained respectively (Supplementary Table S3). 
The proportion of rRNA reads and filtered reads in raw reads 
did not show significant difference among pretreatments 
(Supplementary Table S4). Q20 of all samples were larger 



3062	 Molecular Biology Reports (2021) 48:3059–3068

1 3

than 98.75%, which inferred that the sequencing accuracy 
of most bases was up to 99% (Fig. S1A). The GC content 
in WB and BC extraction was higher than RBC lysis and 
PBMC isolation (Fig. S1B). All pretreatments have similar 
total aligned percentages, while WB and BC extraction with 
a higher multi-aligned and lower uniquely aligned percent-
ages (Fig. S1C). We also observed that WB and BC extrac-
tion with higher proportion of CDS exons and lower propor-
tion of introns (Fig. S1D).

Blood cell subsets analysis

The proportion of globin mRNA showed WB > BC extrac-
tion > RBC lysis > PBMC isolation (Fig. 2a, Supplementary 
Table S4). The proportion of leukocyte subsets varied with 
subjects (Fig. S2, Supplementary Table S5). As expected, 
neutrophils were rare in PBMC, with increasing proportions 
of lymphocyte and monocyte (Fig. 2b).

Detection of human expressed genes

Saturation curves displayed that the number of detected 
genes performed PBMC isolation ≥ RBC lysis > BC extrac-
tion > WB at a random number of clean reads (Fig. 3a). The 
number of high abundance genes (TPM > 1) and uniquely 
detected genes (only detected in one cell group) (Fig. 3b, c) 
showed similar trends.

According to the commonly detected genes of the four 
cell groups, the PCA showed that the expression profil-
ing of WB and BC extraction were similar and the other 
two groups were distinct (Fig. 3d), and the CV performed 
PBMC isolation < RBC lysis < BC extraction < WB 
(Fig. 3e). Compared with the expression of commonly 
detected genes, that of uniquely detected genes was lower 
(Fig. 3f). We further found that the uniquely detected 
genes in RBC lysis were highly expressed in granulocytes 

(neutrophils, basophils and eosinophils), and those in 
PBMC isolation were highly expressed in basophils and 
NK cells (Fig. 3g). Enrichment analysis for DisGeNET did 
not identify significant terms.

Characterization of DEGs among isolation methods

The fold change distribution of DEGs in any two groups 
was shown in Fig. 4a. No DEG was identified between BC 
and WB. Through WGCNA, we successfully identified two 
integrative gene modules, and labeled by black and yellow 
(Fig. 4b). Furthermore, we found that the black module 
showed positive correlations with WB and BC extraction, 
while the yellow module showed a positive correlation 
with RBC lysis and a negative correlation with PBMC 
isolation (Fig. 4c). Heatmap showed that genes in black 
module had relatively high expression in WB and BC 
extraction, while those in the yellow module were highly 
expressed in RBC lysis (Fig. 4d).

The enrichment analysis of cell type showed coding 
gens in black module were significantly enriched in eryth-
rocytes and yellow module were enriched in neutrophils 
(Fig. S3A) which consistent with the principle of experi-
ments. We further found that the genes in black and yellow 
modules were also expressed in other leukocyte subsets 
(Fig. S3B). The gene expression distributions of black 
and yellow modules were shown in Fig. 4e. In DisGeNET 
enrichment analysis terms, the genes in black module were 
mostly enriched in erythrocytes related disease such as 
erythroleukemia, anemia, beta thalassemia intermedia, 
acute erythroblastic leukemia and hereditary spherocytosis 
(Fig. 4f). Genes in yellow module were mostly enriched 
in inflammation-related diseases, such as pneumonitis, 
inflammation, infection, Juvenile psoriatic arthritis and 
inflammatory dermatosis (Fig. 4f).
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The microbial composition and diversity 
among isolation methods

The microbiome-RPM was varied with subjects and did not 
show difference among isolation methods (Fig. 5a). We found 
that the microbial composition was stable for each individual 
in different pretreatments, and proteobacteria dominate all 
samples (Fig. 5b). PCoA demonstrated that the microbial com-
munities at the genus level was mainly affected by individuals 
(Fig. 5c). Alpha and beta diversities at the genus level were not 
different among groups (Fig. 5d, e).

Discussion

Peripheral blood is a valuable source for noninvasive diag-
nosis and prognosis of various diseases and biomarker 

discovery. Expression of genes and the microbial composi-
tion and diversity in the blood provide important information 
of diseases and health status. There are several methods to 
preprocess peripheral blood, and we comprehensively and 
systematically assessed the influence of three popular cell 
isolation methods on the performance of transcriptome and 
microbial composition and diversity profiling of peripheral 
blood.

RBCs make up around 45% of the WB volume, and the 
mapping rate of globin mRNA varies with the proportion of 
erythrocytes and affect the capability of RNA-seq [44, 45]. 
Among the three leukocyte isolation methods, BC extrac-
tion presented similar with WB in PCA analysis, the glo-
bin mRNA mapping rate and the composition of leukocyte 
subsets, which demonstrated that BC extraction could not 
deplete RBCs efficiently and had a comparable composition 
of blood cells with WB. BC layer probably contains some 
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RBCs, or BC extraction inevitably includes erythrocyte layer 
[18, 46]. With the comparable residue of erythrocytes as 
WB, the RNA-seq data of BC extraction showed a smaller 
number of detected genes, a higher GC content and a higher 
proportion of CDS exon than RBC lysis and PBMC separa-
tion. More genes with low abundance (TPM < 1) and less 
uniquely detected genes were also identified in WB and BC 
extraction. In addition, genes in the black module positively 
associated with WB and BC extraction, were observed with 
high abundance in these two groups and enriched in diseases 
such as anemia and beta thalassemia. As a result, BC extrac-
tion could not remove erythrocytes effectively and affected 
the capability of RNA-seq.

WBCs are important components of the peripheral 
immune system and play an essential role in protecting the 
body against infection, illness and disease. They include 
granulocytes, monocytes and lymphocytes. In healthy 
peripheral blood, neutrophil ranges from 50 to 75%, mono-
cytes range from 1 to 8%, and lymphocytes range from 20 

to 40% [47]. The relative proportions and expression of leu-
kocyte subsets change with diseases [48–50]. Neutrophil is 
usually maintained by RBC lysis but depleted by PBMC 
isolation. Though these two isolation methods removed 
most erythrocytes, they showed distinct transcriptome 
profiles due to maintaining neutrophils or not. Our results 
showed that the variability of gene expression was higher 
in RBC lysis compared with PBMC isolation, which might 
be caused by the variation of the proportion of neutrophils 
(51.19% ± 10.05%) in RBC lysis. Genes uniquely detected in 
RBC lysis showed low abundance (TPM < 1), and had rela-
tively high expression in granulocytes (including neutrophil, 
basophil and eosinophil). Genes uniquely detected in PBMC 
isolation also presented low abundance (TPM < 1), and had 
relatively high expression in basophils and NK cells. The 
neutrophil genes expressed more highly in RBC lysis than 
PBMC isolation as we observed in the yellow module [22, 
23], and these genes enriched in infection and inflammation. 
In conclusion, RBC lysis maintained most WBC subsets, 
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and PBMC isolation kept lymphocyte and monocyte but not 
neutrophil, leading to different transcriptome profiles.

There are increasing evidences to prove that the micro-
biome exists in healthy human blood [51]. In our data, we 
observed that there were differences of the microbiome con-
tent, the relative abundance at the phylum level, and the 
microbiome diversity at the genus level among the three 
individuals but not WBCs isolation methods. Though more 
subjects are needed to draw a conclusion, similar phenom-
ena were reported. A previous study set up a 16S rDNA 
quantitative polymerase chain reaction assay as well as a 
16S targeted metagenomics sequencing pipeline specifically 
designed to analyze the blood microbiome, and demon-
strated that it varied among healthy donors and blood frac-
tions (BC, RBCs and plasma) [52]. Moreover, we found that 
the proteobacteria dominated the composition of microor-
ganisms among different individuals and isolation methods, 
which was consistent with previous studies [14, 16, 52].

Different cell isolation methods obtained distinct blood 
cell subsets and affected transcriptome profiles. It is rec-
ommended to choose the cell isolation method according 
to the research purpose. WB has the complete information 
of blood cells including both WBCs and RBCs. Draw 
blood through PAXgene tubes and add the depletion of 
globin mRNA to RNA-seq could be an effective strategy. 
Due to the variable proportions of leukocyte subsets of 
individuals and distinct functions of these subsets, focus-
ing on the whole WBCs or specific subpopulations like 
PBMC is according to the disease or health status. If nec-
essary, commercial kits for isolating specific cell sub-
type could be used to enable a precise characterization. 
The cell isolation methods had less effects on microbial 
composition and diversity than human transcriptome pro-
files. Regarding to the relatively small number of subjects 
in this study, the findings need to be interpreted with 
caution.
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Conclusions

We systematically assessed the effect of BC extraction, 
RBC lysis and PBMC isolation on human transcriptome 
profiles and microbial transcripts, and found that the com-
position of blood cell subpopulations varied with these 
methods. We provide a reference for researchers to develop 
proper sample processing strategies for their own study 
purposes.
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