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Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, informa-
tion processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol 
and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential 
neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported 
the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand  [11C]MPC-6827 and demonstrated its 
in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of  [11C]MPC-6827, we 
need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma 
cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine 
treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that 
 [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed 
lower  [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are 
currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of 
AUD and SUDs and Alzheimer’s disease.
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Introduction

Cytoskeletal defects, including alterations in microtubule 
stability, axonal transport and actin dynamics, have been 
characterized in several psychiatric and neurodegenerative 
disorders, including alcohol and substance use disorders 

(AUD/SUDs) and Alzheimer’s disease, suggesting they are 
a common feature contributing to neurodegeneration. An 
organized neuronal cytoskeleton is required for nervous sys-
tem development, maintenance, and regenerative processes 
after injury. Its three components intermediate filaments, 
actin filaments, and microtubules (MTs) or tubulins, all 
play a vital role in neurological processes. MTs are criti-
cal to cellular structure; as neuronal backbones they facili-
tate cell division, axonal transport, and neurotransmission. 
MTs are hetero-dimer units formed from α- and β-tubulin 
monomers [1]. Essential biophysical functions, including 
cellular signaling and axoplasmic transport, depend on the 
structural integrity of MTs i.e., polymerization with bound 
and free tubulin units and MT integrity is heavily dysregu-
lated in AUD and SUDs [2–5]. Addictive behaviors lead 
to many adaptations in postsynaptic spine structure that 
result in profound alterations in synaptic transmission [6]. 
At the molecular level, synaptic activity triggers diverse 
signaling pathways, which, in turn regulate and reorganize 
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cytoskeleton-associated proteins. For example, repeated 
cocaine administration has been shown to change stathmin, 
a regulatory protein crucial to MT dynamics [6, 7], causing 
morphologic changes [8].

Neuronal structural changes may contribute to the pro-
gression of AUD and SUDs [9]. Repeated doses of 5–20 mM 
or 0.08 g/dL of alcohol and 0.3–0.5 mg/kg of cocaine in 
humans and non-human primates respectively were consid-
ered to be interfering with normal brain functions [10–13]. 
Chronic ethanol (EtOH) exposure significantly stabilizes 
neuronal and acetylated MTs in hepatic PC12 cells [14], 
increases dendrite lengths and neurite outgrowth and causes 
aberrant sprouting of hippocampal neuritis [15]. Loss of α 
and β free tubulin units in the caudate nucleus, cortex, and 
cerebellum was noted in post-mortem brain samples from 
individuals diagnosed with AUD. Repeated exposure to 
drugs of abuse like EtOH and cocaine induces structural 
plasticity [14, 16] in many brain circuits and changes in 
the density and morphology of dendritic spines [5, 17, 18]. 
These alterations have significant consequences including 
cognitive deficits and neurodegeneration [19, 20]. Prolonged 
SUD is also associated with brain injury characterized by 
impaired synaptogenesis, cellular migration, and neurogen-
esis—all of which require proper MT functioning [3, 21]. 
MT agents (MTAs), believed to work primarily by alter-
ing MT network integrity, are widely being investigated as 
drug candidates to treat cancer, brain disorders, and car-
diovascular diseases. Thus, MT integrity is important to 
many neurochemical pathways commonly associated with 
AUD and SUD. However, studies of cytoskeleton-dependent 
structural plasticity resulting from EtOH and cocaine use 
have focused predominantly on actin and filament dynam-
ics; molecular level MT impairments remains largely unex-
plored. Positron emission tomography (PET) imaging is 
a sensitive modality to examine and quantify in vivo MT-
based changes in the neurochemical cascades of SUD.

MPC-6827 is a small molecule MTA that causes mitotic 
arrest and cell death. It exerts antitumor (glioblastoma) 
properties by binding to β-tubulin sites. We reported the 

automated radiochemical synthesis of  [11C]MPC-6827 as the 
first brain-penetrating, MT-tracking PET ligand and imaged 
it in vivo in normal rodents and non-human primates [22, 
23]. To establish the potential of  [11C]MPC-6827 as a PET 
imaging ligand for various neurological disorders, we need 
to investigate its mechanism of action. Here, we report our 
preliminary in vitro evaluations of  [11C]MPC-6827 in SH-
SY5Y neuroblastoma cells [24–26] with (a) two different 
abused drugs (EtOH and cocaine), and (b) various MT sta-
bilizing and destabilizing agents.

Methods

To investigate the effects of EtOH and cocaine on tubulin 
dynamics, we performed a MT-based assay (Cytoskeleton, 
Inc., Denver, CO, USA) [27–29] in SH-SY5Y neuroblastoma 
cells treated with 100 mM EtOH [14] and 1 mM cocaine [8] 
(n = 6/group) respectively for 3 days. We chose this concen-
tration as it does not affect cell viability and neurites growth. 
This commercially available kit separates large complexes 
of polymerized tubulins/MTs attached to nuclei and Golgi 
bodies into bound and non-polymerized free tubulins. After 
ultra-centrifugation, supernatant and pellet portions with 
high free- and bound-tubulins respectively, were loaded on 
SDS-PAGE for western blot analyses. An enhanced chemi-
luminescence kit was used to visualize the tubulin bands 
[14, 15], (Figs. 1a and 2a). Bound/stabilized tubulin con-
tent was significantly higher and unbound/free α/β tubulins 
lower in EtOH-treated cells than control cells treated with 
PBS. Cells treated with cocaine showed no significant dif-
ference in bound tubulins and slightly fewer free α/β tubulins 
than untreated cells possibly due to the accrued rate of MT 
polymerization with substances. Therefore, both EtOH and 
cocaine compromise MT integrity i.e., increase in bound and 
decrease in free tubulin units. Having demonstrated these 
drug-induced changes in MT integrity in SH-SY5Y cells, 
we next aimed to determine whether  [11C]MPC-6827 could 
also detect similar MT alterations in the same cells. 

Fig. 1  Representative bound 
and free tubulins, a western 
blots and b  [11C]MPC-6827 
uptake in vitro at 5, 30, 60 
and 90 min incubation times 
in SH-SY5Y cells with EtOH 
(100 mM/3 days) and with-
out EtOH treatment (n = 6/
group); *p ≤ 0.05, **p ≤ 0.021, 
***p ≤ 0.0016, and ns: non-
significant

a b
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We performed cell binding assays in vitro in SH-SY5Y 
cells with  [11C]MPC-6827 following our previously pub-
lished protocols.[30–32] The cells (0.25–5.0 ×  106 cells/
well) were treated with 100 mM EtOH or 1 mM cocaine [8] 
(n = 6/group) for 3 days. We then measured radiotracer bind-
ing by adding  [11C]MPC-6827 (1–2 µCi/0.12–0.24 nM/well) 
and incubating the cells for 5, 30, 60, and 90 min at room 
temperature (n = 6/time point). To demonstrate tracer speci-
ficity, a subgroup of cells (n = 3) was pre-treated with non-
radioactive MPC-6827 (1.0 µM), adding radiotracer 60 min 
later and incubating for 30 min. To demonstrate tracer sen-
sitivity to length of drug exposure, cells were treated with 
100 mM EtOH or 1 mM cocaine for 1 h, 1 day, or 3 days and 
incubated with  [11C]MPC-6827 for 30 min at room tempera-
ture All the cells were then washed with PBS and lysed with 
1 N NaOH. Finally, the lysate from each well was γ-counted 
(PerkinElmer, Waltham, MA, USA) and counts-per-minute 
(cpm) values were normalized to the amount of radioactiv-
ity added to each well. The uptake data in each sample from 
each well and the standard counts for each condition were 
expressed as cpm of activity and were decay corrected for 
elapsed time. Using the CPM values, the protein concentra-
tion in the well was calculated as percent uptake relative 
to the control condition i.e., expressed as % injected dose 
(ID)/mg of protein present in each well, with p values ≤ 0.05 
considered statistically significant.

Results and discussion

EtOH- (Fig. 1b) and cocaine-treated (Fig. 2b) cells demon-
strated an ~ 30(± 2) and ~ 24(± 6) percent decrease respec-
tively in radioactive uptake versus non-treated controls over 
the 30–90 min incubation times. Additionally, uptake in 
EtOH-treated and cocaine-treated cells increased ~ 13(± 3) 
and ~ 12(± 2) percent from 5 to 30 min of incubation times 
respectively and decreased ~ 53(± 2) and ~ 19(± 3) percent by 
90 min in EtOH- and cocaine-treated cells; thus demonstrat-
ing favorable pharmacokinetics. For the self-blocking assays 

(Fig. 1b), uptake was ~ 78(± 1) percent lower after addition 
of nonradioactive MPC-6827, demonstrating high specific-
ity. Some nonspecific binding was always associated with 
radiotracer evaluations in PET imaging [33, 34] and likely 
due to in vitro artifacts and/or not completely saturating the 
target site. These assays were primarily used to demonstrate 
a proof-of-principle for in vitro specificity. Baseline uptake 
with ethanol and cocaine was slightly different probably due 
to varied amount of cells in each well and/or specific activity 
of  [11C]MPC-6827 on the day of experiment. Radioactive 
uptake was decreased ~ 21(± 1) and 28(± 1) percent from 
1 h to 3 days EtOH and cocaine exposures (Fig. 3) respec-
tively. Therefore,  [11C]MPC-6827 uptake decreased with 
increased exposure to EtOH or cocaine. Moreover, since 
no significant decrease in radioactivity was observed after 
3 days of drug exposure we used the same 3 days exposure 
in all our assays. MPC-6827 primarily targets the β tubulin 
site at pharmacological doses [35–37]. The lowered radio-
active uptake in EtOH- and cocaine-treated SH-SY5Y cells 
indicates that  [11C]MPC-6827 uptake correlate well with 
observed bound/free tubulin changes and may be tracking 
free β tubulin units, as both substance treatments decreased 
free tubulin content in the same cells.

Fig. 2  Representative bound 
and free tubulins, a western 
blots and b  [11C]MPC-6827 
uptake in vitro at 5, 30, 60 and 
90 min incubation times in 
SH-SY5Y cells with cocaine 
(1 mM/3 days) and without 
cocaine treatment (n = 6); 
*p < 0.05 and ns: non-signifi-
cant

a b

Fig. 3  [11C]MPC-6827 uptake in  vitro with EtOH (100  mM) and 
cocaine (1 mM) for 1 h, 1 day and 3 day exposures in SH-SY5Y cells 
(n = 6); *p ≤ 0.05, **p ≤ 0.019, and ns: non-significant
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MTAs are categorized as either stabilizing agents (pacli-
taxel, laulimalide, and EpoD) [38–40], which favor polym-
erization of tubulin units and inhibit cell proliferation, or 
destabilizing agents (vinblastine and mertasine) [41–44], 
which increase free/unbound tubulins and promote apop-
totic cell death. To distinguish their effect on MT integrity 
in SH-SY5Y cells, we performed the same tubulin-based 
western blot assays on paclitaxel- and vinblastine-treated 
cells [45]. The paclitaxel-treated cells had more bound/
stabilized tubulins, and vinblastine-treated cells had more 
unbound/free tubulins than the untreated cells (Fig. 4a). To 
confirm the free tubulin-based binding mechanism of  [11C]
MPC-6827, SH-SY5Y cells were pretreated with different 
MTAs at 1.0 µM concentration, 3.0 h prior to addition of 
 [11C]MPC-6827. Paclitaxel, laulimalide and EpoD decreased 
radioactive uptake by ~ 58(± 3), ~ 40(± 4), and ~ 66(± 7) per-
cent respectively, while vinblastine, and mertasine increased 
it by ~ 77(± 6), and 64(± 5) percent respectively (Fig. 4b), 
confirming that  [11C]MPC-6827 may primarily target free 
tubulin units.

Conclusions

Results of the preliminary  [11C]MPC-6827 in vitro assays 
with EtOH and cocaine treatments at different incubation 
times in SH-SY5Y cells indicate that radioactive uptake 
decreases with increased drug exposure. Tests with various 
MTAs demonstrate that  [11C]MPC-6827 may preferentially 
bind to free/unbound tubulin units with high selectivity. 
The radioactive uptake results were well-corroborated with 
observed changes in bound and free tubulin expressions in 
SH-SY5Y cells with EtOH and cocaine treatments. Taken 
together, these studies confirm that  [11C]MPC-6827 has 
great potential as an MT imaging agent for defining MT-
based mechanisms that underlie the development of alcohol 

and cocaine addiction. We are currently characterizing its 
complete in vivo and ex vivo imaging properties in both 
rodent and nonhuman primate models of AUD/SUDs and 
Alzheimer’s disease.
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