Skip to main content

Advertisement

Log in

Understanding the molecular mechanisms and role of autophagy in obesity

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vital for growth, proliferation, subsistence, and thermogenesis, autophagy is the biological cascade, which confers defence against aging and various pathologies. Current research has demonstrated de novo activity of autophagy in stimulation of biological events. There exists a significant association between autophagy activation and obesity, encompassing expansion of adipocytes which facilitates β cell activity. The main objective of the manuscript is to enumerate intrinsic role of autophagy in obesity and associated complications. The peer review articles published till date were searched using medical databases like PubMed and MEDLINE for research, primarily in English language. Obesity is characterized by adipocytic hypertrophy and hyperplasia, which leads to imbalance of lipid absorption, free fatty acid release, and mitochondrial activity. Detailed evaluation of obesity progression is necessary for its treatment and related comorbidities. Data collected in regard to etiological sustaining of obesity, has revealed hypothesized energy misbalance and neuro-humoral dysfunction, which is stimulated by autophagy. Autophagy regulates chief salvaging events for protein clustering, excessive triglycerides, and impaired mitochondria which is accompanied by oxidative and genotoxic stress in mammals. Autophagy is a homeostatic event, which regulates biological process by eliminating lethal cells and reprocessing physiological constituents, comprising of proteins and fat. Unquestionably, autophagy impairment is involved in metabolic syndromes, like obesity. According to an individual’s metabolic outline, autophagy activation is essential for metabolism and activity of the adipose tissue and to retard metabolic syndrome i.e. obesity. The manuscript summarizes the perception of current knowledge on autophagy stimulation and its effect on the obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

AF:

Atrial fibrillation

AgRP:

agouti-related protein

AMPK:

5' AMP-activated protein kinase

AT1:

Angiotensin 1

Atg1:

Autophagy associated protein 1

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

CMA:

Chaperone-mediated autophagy

DAPK:

Death-associated protein kinase

DM:

Diabetes mellitus

ER:

Endoplasmic reticulu

ERK:

Extracellular signal-regulated kinases

FFAs:

Free fatty acids

GAIP:

G α interacting protein

GTP:

Guanosine-5'-triphosphate

HFD:

High-fat diet

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

IRSs:

Insulin receptor substrates

JNK:

c-Jun N-terminal kinase

LAP:

LC3-associated phagocytosis

LC3:

Light chain 3

LDL:

Low-density lipoprotein

mTOR:

Mammalian target of rapamycin

NAD+:

Nicotinamide adenine dinucleotide

NF-κb:

Nuclear factor-kappa B

NO:

Nitric oxide

OS:

Oxidative stress

p38 MAPK:

P38 mitogen-activated protein kinases

PDK1:

Phosphoinositide-dependent kinase-1

Pdx1:

Pancreatic and duodenal homeobox 1

PIP3:

Phosphatidylinositol 3,4,5-triphosphate

PI3K:

Phosphoinositide 3-kinase

POMC:

Proopiomelanocortin;

PTEN:

Phosphatase and tensin homolog

RAS:

Renin-angiotensin system

ROS:

Reactive oxygen species

SIRT:

Sirtuin

STAT-1:

Signal transducer and activator of transcription 1

TNFα:

Tumour necrosis factor-α

TORC:

Target of rapamycin complex

TSC2:

Tuberous sclerosis complex 2

UCP1:

Uncoupling protein 1

ULK1:

Unc-51 Like Autophagy Activating Kinase 1

References

  1. Moore JX, Chaudhary N, Akinyemiju T (2017) Metabolic syndrome prevalence by race/ethnicity and sex in the United States National Health and Nutrition Examination Survey 1988–2012. Prev Chronic Dis. 14:E24

    PubMed  PubMed Central  Google Scholar 

  2. Maiano C, Hue O, Morin AJ, Moullec G (2016) Prevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta-analysis. Obes Rev 17:599–611

    CAS  PubMed  Google Scholar 

  3. Prieur X (2011) Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes. 60:797–809

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grundy SM (2016) Metabolic syndrome update. Trends Cardiovasc Med 26:364–373

    PubMed  Google Scholar 

  5. Menikdiwela KR, Ramalingam L, Rasha F, Rasha F, Wang S, Dufour JM, Kalupahana NS et al (2020) Autophagy in metabolic syndrome: breaking the wheel by targeting renin –angiotensin system. Cell Death Dis 11:1–17

    Google Scholar 

  6. World Health Organization. Obesity and overweight. https://www.who.int/news-room/ fact-sheets/detail/obesity-and-overweight. Accessed16 Feb 2018.

  7. Mozaffarian D, Benjamin EJ, Go AS (2015) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e48

    PubMed  Google Scholar 

  8. Rabar S, Harker M, O’Flynn N, Wierzbicki AS (2014) Guideline Development Group. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. BMJ 349

  9. Pietrocola F, Pedro S, Manuel J (2021) Targeting autophagy to counteract obesity-associated oxidative stress. Antioxidants 10(1):102

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdellatif M, Ljubojevic-Holzer S, Madeo F, Sedej S (2020) Autophagy in cardiovascular health and disease. Prog Mol Biol Transl Sci. 172:87–106

    PubMed  Google Scholar 

  11. Castañeda D, Gabani M, Choi SK, Nguyen QM, Chen C, Mapara A (2019) Targeting autophagy in obesity-associated heart disease. Obesity. 27:1050–1058

    PubMed  Google Scholar 

  12. Salman LA, Shulman R, Cohen JB (2020) Obstructive sleep apnea, hypertension, and cardiovascular risk: epidemiology, pathophysiology, and management. Curr Cardiol Rep 22(2):1–9

    Google Scholar 

  13. Maiano C, Hue O, Morin AJ, Moullec G (2016) Prevalence of overweight and obesity among children and adolescents with intellectual disabilities: a systematic review and meta- analysis. Obes Rev. 17:599–611

    CAS  PubMed  Google Scholar 

  14. Schroeder K, Schuler BR, Kobulsky JM, Sarwer DB (2021) The association between adverse childhood experiences and childhood obesity: a systematic review. Obesity Rev

  15. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27

    PubMed  Google Scholar 

  16. Sekizkardes H, Chung ST, Chacko S, Haymond MW, Startzell M, Walter M, Walter PJ, Lightbourne M, Brown RJ (2020) Free fatty acid processing diverges in human pathologic insulin resistance conditions. J Clin Investigat 130(7)

  17. Hubler MJ, Kennedy AJ (2016) Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 34:1–7

    CAS  PubMed  Google Scholar 

  18. Formica V, Morelli C, Riondino S, Renzi N, Nitti D, Di Daniele N, Roselli M, Tesauro M (2020) Obesity and common pathways of cancer and cardiovascular disease. Endocrine Metabolic Sci 100065

  19. Zhang YP, Zhang YY, Duan DD (2016) From genome- wide association study to phenome- wide association study: new paradigms in obesity research. Prog Mol Biol Transl Sci 140:185–231

    CAS  PubMed  Google Scholar 

  20. Levine B, Packer M, Codogno P (2015) Development of autophagy inducers in clinical medicine. J Clin Invest 125:14–24

    PubMed  PubMed Central  Google Scholar 

  21. Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159:1263–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, Klionsky DJ (2020) Autophagy and disease: unanswered questions. Cell Death Different 27(3):858–71

    Google Scholar 

  23. Jaishy B, Zhang Q, Chung HS, Riehle C, Soto J, Jenkins S, Abel P et al (2015) Lipid- induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res 56:546–561

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Meng Q, Cai D (2011) Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkB kinase β (IKKβ)/NF- kB pathway. J Biol Chem 28:32324–32332

    Google Scholar 

  25. Tao T, Xu H (2020) Autophagy and obesity and diabetes. InAutophagy: Bio Dis. pp 445-461. Springer, Singapore.

  26. Clemente-Postigo M, Tinahones A, Bekay RE, Malagón MM, Tinahones FJ (2020) The Role of autophagy in white adipose tissue function: implications for metabolic health. Metabolites 10(5):179

    CAS  PubMed Central  Google Scholar 

  27. Soussi H, Clement K, Dugail I (2016) Adipose tissue autophagy status in obesity: expression and flux — two faces of the picture. Autophagy 12:588–589

    CAS  PubMed  Google Scholar 

  28. Lee HY (2016) Autophagy deficiency in myeloid cells increases susceptibility to obesity- induced diabetes and experimental colitis. Autophagy 12:1390–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD (2016) mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351:728–733

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chesmore K, Bartlett J, Williams SM (2018) The ubiquity of pleiotropy in human disease. Hum Genet 137:39–44

    CAS  PubMed  Google Scholar 

  31. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Bio 21(4):183–203

    CAS  Google Scholar 

  32. Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA et al (2017) SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358:813–818

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Thapalia BA, Zhou Z, Lin X (2016) Sauchinone augments cardiomyocyte viability by enhancing autophagy proteins -PI3K, ERK(1/2), AMPK and Beclin-1 during early ischemia-reperfusion injury in vitro. Am J Transl Res 8:3251–65

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 1:356–37

    CAS  Google Scholar 

  35. Winter JN, Jefferson LS, Kimball SR (2011) ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am J Physiol Cell Physiol 300:C1172-80

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen T, Miao Y, Ding C, Fan W, Liu S, Lv Y, Song S, et al (2019) Activation of the p38/MAPK pathway regulates autophagy in response to the CYPOR-dependent oxidative stress induced by zearalenone in porcine intestinal epithelial cells. Food Chem Toxicol

  37. Lu S, Luo Y, Sun G, Sun X (2020) Ginsenoside compound K attenuates ox-LDL-mediated macrophage inflammation and foam cell formation via autophagy induction and modulating NF-κB, p38, and JNK MAPK signaling. Front Pharmacol 11

  38. Hill SM, Wrobel L, Rubinsztein DC (2019) Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ 26(4):617–629

    CAS  PubMed  Google Scholar 

  39. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M et al (2016) Mammalian autophagy: how does it work. Annu RevBiochem 85:685–713

    CAS  Google Scholar 

  40. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabo-lism, and disease. Cell 169(361–71):11

    Google Scholar 

  41. Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H (2020) Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J Biomed Sci 27(1):1–6

    Google Scholar 

  42. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano AC, Monfregola J et al (2017) MTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest 127:3717–3729

    PubMed  PubMed Central  Google Scholar 

  43. Di Malta C, Siciliano D, Calcagni A, Monfregola J, Punzi S, Pastore N et al (2017) Transcriptional activation of RagD GTPase controls MTORC1 and promotes cancer growth. Science 356:1188–1192

    PubMed  PubMed Central  Google Scholar 

  44. Yang C, Luo M, Zhuang X, Li F, Gao C (2020) Transcriptional and epigenetic regulation of autophagy in plants. Trends Gene 2020

  45. Birnbaum A, Sodders M, Bouska M, Chang K, Kang P, McNeill E, Bai H (2020) FOXO regulates neuromuscular junction homeostasis during Drosophila aging. Front Aging Neurosci 12

  46. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364

    CAS  PubMed  Google Scholar 

  47. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy O (2020) Fine-tuning of AMPK–ULK1–mTORC1 regulatory triangle is crucial for autophagy oscillation. Sci Rep 10(1):1–2

    Google Scholar 

  49. Zheng J, Hu S, Wang J, Zhang X, Yuan D, Zhang C, Liu C, Wang T, Zhou Z (2021) Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. Pharmac Bio 59(1):183–91

    CAS  Google Scholar 

  50. Papackova Z, Cahova M (2014) Important role of autophagy in regulation of metabolic processes in health, disease and aging. Physiol Res 63:409–420

    CAS  PubMed  Google Scholar 

  51. Schiavi A, Ventura N (2014) The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 56:147–153

    CAS  PubMed  Google Scholar 

  52. Wondmkun YT (2020) Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabet, Metabol Syndrome Obes: Targets Ther 13:3611

    CAS  Google Scholar 

  53. Martens S, Fracchiolla D (2020) Activation and targeting of ATG8 protein lipidation. Cell Dis 6(1):1–1

    Google Scholar 

  54. Johansen T, Lamark T (2020) Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J Mol Bio 432(1):80–103

    CAS  Google Scholar 

  55. Tan C-C, Yu J-T, Tan M-S, Jiang T, Zhu X-C, Tan L (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957

    PubMed  Google Scholar 

  56. Pagano AF, Py G, Bernardi H, Candau RB, Sanchez AM (2014) Autophagy and protein turnover signaling in slow-twitch muscle during exercise. Med Sci Sports Exerc 46:1314–1325

    CAS  PubMed  Google Scholar 

  57. Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 1:356–376

    CAS  Google Scholar 

  58. Pietrocola F, Bravo-San Pedro JM (2021) Targeting autophagy to counteract obesity-associated oxidative stress. Antioxidants 10:102

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ et al (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metabol 14:173–83

    CAS  Google Scholar 

  60. Rubinsztein DC (2012) Autophagy – alias self-eating – appetite and ageing. EMBO Rep 13:173–4

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S et al (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13:258–65

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H et al (2010) Atten- uated mtor signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 16:235–46

    PubMed  PubMed Central  Google Scholar 

  63. Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L et al (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metabol 96:E268-77

    CAS  Google Scholar 

  64. Slutsky N, Vatarescu M, Haim Y, Goldstein N, Kirshtein B, Harman-Boehm I et al (2016) Decreased adiponectin links elevated adipose tissue autophagy with adipocyte endocrine dysfunction in obesity. Int J Obes 40(6):912–920

    CAS  Google Scholar 

  65. Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN (2021) Autophagy in liver diseases. World J Hepatol 13(1):6

    PubMed  PubMed Central  Google Scholar 

  66. Hirota M, Ohmuraya M, Hashimoto D, Suyama K, Sugita H, Ogawa M (2020) Roles of autophagy and pancreatic secretory trypsin inhibitor in trypsinogen activation in acute pancreatitis. Pancreas 49(4):493–7

    CAS  PubMed  Google Scholar 

  67. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes er stress and causes insulin resistance. Cell Metab 11:467–78

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Choi J, Song CH (2020) Insights into the role of endoplasmic reticulum stress in infectious diseases. Front Immunol 10:3147

    PubMed  PubMed Central  Google Scholar 

  69. Barros JA, Siqueira JA, Cavalcanti JH, Araújo WL, Avin-Wittenberg T (2020) Multifaceted roles of plant autophagy in lipid and energy metabolism. Trends Plant Sci

  70. Codogno P, Meijer AJ (2010) Autophagy: a potential link between obesity and insulin resistance. Cell Metabol 11:449–51

    CAS  Google Scholar 

  71. Osborn O, Sears DD, Olefsky JM (2010) Fat-induced inflammation unchecked. Cell Metabol 12:553–4

    CAS  Google Scholar 

  72. Ye J (2013) Mechanisms of insulin resistance in obesity. Front Med 7:14–24

    PubMed  PubMed Central  Google Scholar 

  73. Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta cell-death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:S97-107. https://doi.org/10.2337/diabetes.54.suppl_2.s97

    Article  CAS  PubMed  Google Scholar 

  74. Marcelin G, Da Cunha C, Gamblin C, Suffee N, Rouault C, Leclerc A, Lacombe A, Sokolovska N, Gautier EL, Clément K, Dugail I (2020) Autophagy inhibition blunts PDGFRA adipose progenitors’ cell-autonomous fibrogenic response to high-fat diet. Autophagy 16(12):2156–66

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung HS, Chung KW, Kim JW, Kim J, Komatsu M, Tanaka K, Nguyen YH et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324

    CAS  PubMed  Google Scholar 

  76. Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim KH et al (2012) Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55:392–403

    CAS  PubMed  Google Scholar 

  77. Aoyagi K (2016) VAMP7 regulates autophagy to maintain mitochondrial homeostasis and to control insulin secretion in pancreatic beta- cells. Diabetes 65:1648–1659

    CAS  PubMed  Google Scholar 

  78. Chu KY, O’Reilly L, Ramm G, Biden TJ (2015) Highfat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice. Diabetologia 58:2074–2078

    CAS  PubMed  Google Scholar 

  79. Fujitani Y, Ueno T, Watada H (2010) Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. Am J Physiol Cell Physiol. 299:C1–C6

    CAS  PubMed  Google Scholar 

  80. Yin JJ, Li YB, Wang Y, Liu GD, Wang J, Zhu XO et al (2012) The role of autophagy in endoplasmic reticulum stress-induced pancreatic beta cell death. Autophagy 8:158–64

    CAS  PubMed  Google Scholar 

  81. Gonzalez CD, Lee MS, Marchetti P, Pietropaolo M, Towns R, Vaccaro MI et al (2011) The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 7:2–11

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-alpha- dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    PubMed  PubMed Central  Google Scholar 

  83. Jeckel KM, Miller KE, Chicco AJ, Chapman PL, Mulligan CM, Falcone PH et al (2011) The role of dietary fatty acids in predicting myocardial structure in fat-fed rats. Lipids Health Dis 10(1):92

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chrostowska M, Szyndler A, Hoffmann M, Narkiewicz K (2013) Impact of obesity on cardiovascular health. Best Pract Res Clin Endocrinol Metab 27:147–156

    PubMed  Google Scholar 

  85. Ren SY, Xu X (2015) Role of autophagy in metabolic syndrome-associated heart disease. Biochim Biophys Acta 1852:225–231

    CAS  PubMed  Google Scholar 

  86. Sung JK, Kim J-Y (2010) Obesity and preclinical changes of cardiac geometry and function. Korean Circ J. 40:55–61

    PubMed  PubMed Central  Google Scholar 

  87. Nalliah CJ, Sanders P, Kottkamp H, Kalman JM (2015) The role of obesity in atrial fibrillation. Eur Heart J. 37:1565–1572

    PubMed  Google Scholar 

  88. Sciarretta S, Yee D, Shenoy V, Nagarajan N, Sadoshima J (2014) The importance of autophagy in cardioprotection. High Blood Press Cardiovasc Prev 21:21–28

    CAS  PubMed  Google Scholar 

  89. Zhang J, Liu J, Huang Y, Chang JY, Liu L, McKeehan WL et al (2012) FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circulation Res 110(4):e29-39

    CAS  PubMed  Google Scholar 

  90. Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al (2017) A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev

  91. He H, Liu X, Lv L, Liang H, Leng B, Zhao D et al (2014) Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress. Cell Death Dis 5(1):e997

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Unsöld B, Bremen E, Didié M, Hasenfuss G, Schäfer K (2015) Differential PI3K signal transduction in obesity-associated cardiac hypertrophy and response to ischemia. Obesity (Silver Spring) 23:90–99

    Google Scholar 

  93. Cheng J, Mujahid H, Wang H, Kong J, Yin Y, Cheng J et al (2014) Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS One 9:e90563

    PubMed  PubMed Central  Google Scholar 

  94. Zhang J, Xiang H, Liu J, Chen Y, He RR, Liu B (2020) Mitochondrial Sirtuin 3: new emerging biological function and therapeutic target. Theranostics 10(18):8315

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hariharan N, Maejima Y, Nakae J, Paik J, DePinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    CAS  PubMed  Google Scholar 

  97. Zhu H, He L (2015) Beclin 1 biology and its role in heart disease. Curr Cardiol Rev 11:229–237

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang Z, Li L, Zhao H, Peng S, Zuo Z (2015) Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism 64:917–925

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tanner MA, Thomas TP, Maitz CA, Grisanti LA (2020) β2-Adrenergic receptors increase cardiac fibroblast proliferation through the gαs/ERK1/2-dependent secretion of interleukin-6. Int J Mol Sci 21(22):8507

    CAS  PubMed Central  Google Scholar 

  100. Nishida K, Zaffagnini G, Fracchiolla D, Turco E, Abert C, Romanov J et al (2016) Autophagy during cardiac remodeling. J Mol Cell Cardiol 95:11–18

    CAS  PubMed  Google Scholar 

  101. Zuo Z, Liu J (2020) Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage. Curr Opin Struct Biol 62:166–74

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim KH, Eong YT, Oh H, Kim SH, Cho JM, Kim YN et al (2013) Autophagy de ficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83

    CAS  PubMed  Google Scholar 

  103. Kosacka J, Kern M, Klöting N, Paeschke S, Rudich A, Haim Y et al (2015) Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 409:21–32

    CAS  PubMed  Google Scholar 

  104. He Q, Sha S, Sun L, Zhang J, Dong M (2016) GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem Biophys Res Commun 476:196–203

    CAS  PubMed  Google Scholar 

  105. Matsuura N, Asano C, Nagasawa K, Ito S, Sano Y, Minagawa Y et al (2015) Effects of pioglitazone on cardiac and adipose tissue pathology in rats with metabolic syndrome. Int J Cardiol 179:360–9

    PubMed  Google Scholar 

  106. Mao Y, Cheng J, Yu F, Li H, Guo C, Fan X (2015) Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor- kappaB inhibition. Cell Physiol Biochem 37:563–576

    CAS  PubMed  Google Scholar 

  107. Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X et al (2013) Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non- alcoholic fatty liver conditions in mice. J Hepatol 58:993–999

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Uchinaka A, Yoneda M, Yamada Y, Murohara T, Nagata K (2017) Effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism in rats with metabolic syndrome. Pharmacol Res Perspect 5

  109. Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG (2016) Bortezomib attenuates palmitic acid- induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell Signal 28:788–797

    CAS  PubMed  Google Scholar 

  110. Bhattacharya B, Low SH, Soh C, Kamal Mustapa N, Beloueche-Babari M, Koh KX et al (2014) Increased drug resistance is associated with reduced glucose levels and enhanced glycolysis phenotype. Br J Pharmacol 171:3255–3267

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bursch W, Karwan A, Mayer M, Dornetshuber J, Fröhwein U, Schulte-Hermann R et al (2008) Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology 254:147–157

    CAS  PubMed  Google Scholar 

  112. He C, Wei Y, Sun K, Li B, Dong X, Zou Z et al (2013) Beclin 2 functions in autophagy, degradation of G protein- coupled receptors, and metabolism. Cell 154:1085–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Aoyagi K, Ohara-Imaizumi M, Itakura M, Torii S, Akimoto Y, Nishiwaki C et al (2016) VAMP7 regulates autophagy to maintain mitochondrial homeostasis and to control insulin secretion in pancreatic beta- cells. Diabetes 65:1648–1659

    CAS  PubMed  Google Scholar 

  114. Lim YM, Lim H, Hur KY, Quan W, Lee HY, Cheon H et al (2014) Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 5:4934

    CAS  PubMed  Google Scholar 

  115. Nunez CE, Rodrigues VS, Gomes FS, De Moura RF, Victorio SC, Bombassaro B et al (2013) Defective regulation of adipose tissue autophagy in obesity. Int J Obes 37:1473–1480

    CAS  Google Scholar 

  116. Hadi NR, Abdulzahra MS, Al-Huseini LM, Al-Aubaidy HA (2017) A comparison study of the echocardiographic changes in hypertensive patients treated with telmisartan vs. enalapril. Int J Cardiol 230:269–274

    PubMed  Google Scholar 

  117. Woo Y, Jung YJ (2017) Angiotensin II receptor blockers induce autophagy in prostate cancer cells. Oncol Lett 1:3579–3585

    Google Scholar 

  118. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M et al (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545:108–111

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors want to thank Chitkara College of Pharmacy, Chitkara University, Punjab, India for providing resources for completion of the current article.

Funding

The author did not receive any funding for the current article.

Author information

Authors and Affiliations

Authors

Contributions

TB: Conceived the idea and wrote the draft of the article; AS and SC: Literature Review; RB: Figure Work.

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behl, T., Sehgal, A., Bala, R. et al. Understanding the molecular mechanisms and role of autophagy in obesity. Mol Biol Rep 48, 2881–2895 (2021). https://doi.org/10.1007/s11033-021-06298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06298-w

Keywords

Navigation