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Abstract
Apigenin is a flavonoid with antioxidant and anticancer effects. It has been reported that apigenin inhibits proliferation, 
migration, and invasion and induces apoptosis in cultured lung cancer cells. However, there is little information on the 
involvement of microRNAs (miRNAs) in its effects. miRNA microarray analysis and polymerase-chain-reaction analysis 
of miRNAs revealed that treatment of human lung cancer A549 cells with apigenin up-regulated the level of miR-34a-5p. 
Furthermore, mRNA microarray analysis and the results of three microRNA target prediction tools showed that Snail Family 
Transcriptional Repressor 1 (SNAI1), which inhibits the induction of apoptosis, had its mRNA expression down-regulated in 
A549 cells treated with apigenin. Our findings suggest that apigenin might induce apoptosis by down-regulation of SNAI1 
through up-regulation of miR-34a-5p in A549 cells.
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Introduction

Apigenin (4′,5,7-trihydroxyflavone) is a flavone classed as 
a flavonoid based on the structure flavan, and is found in 
many kinds of vegetables and fruits [1] including olives 
[2], parsley [3, 4], celery [3, 5], chamomile [6] and guava 
[1]. Apigenin has antioxidant effects that stabilize free radi-
cals of the reactive oxygen species that can damage DNA 
or proteins [7]. It also has anti-cancer effects that include 
inhibiting cell growth, arresting the cell cycle, and inducing 
apoptosis in many cancers including leukemia [8, 9]. It has 
been reported that these effects are due to many signaling 
pathways [10, 11] in a number of cancer cell lines including 
human lung cancer A549 cells [12]. However, there is little 
information on the involvement of miRNAs in its effects. 
In this study, we investigated the involvement of miRNA 

on the anti-cancer effects of apigenin in human lung cancer 
A549 cells.

miRNAs bind with sequence complementarity to the 3′ 
untranslated regions (3′UTR) of one or more target mRNAs 
and act as endogenous regulators of their gene expression 
[13]. miRNAs are first transcribed by RNA polymerase II 
in the nucleus to primary miRNAs (pri-miRNAs). Pri-miR-
NAs are then processed by class 2 ribonuclease III enzyme 
(Drosha) to generate precursor miRNAs (pre-miRNAs). 
Then, pre-miRNAs are exported into the cytoplasm by the 
transporter exportin-5 (XPO5) [14]. In the cytoplasm, pre-
miRNAs are processed by RNAse III (Dicer) [15], gener-
ating mature miRNAs, which are a double-stranded and 
approximately 22 nucleotides in length without the stem 
loop structures. One of the two complementary short RNA 
molecules is integrated into the RNA-induced silencing 
complex (RISC complex) that contains members of the 
Argonaute (Ago) family and regulates mRNA expression by 
binding to imperfect complementary sites, mainly within the 
3′UTR [16]. The section containing nucleotides 2 through 
8 of the miRNAs 5′ end is called the seed region and domi-
nates the binding process. miRNAs have a variety of crucial 
regulatory functions that are associated with various human 
diseases, including cancer [17–19]. To find mRNA targets 
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of miRNAs, prediction tools are used, and each tool has dif-
ferent methods and algorithms.

Materials and methods

Cell culture

A549 cells were obtained from RIKEN Cell Bank (Tsukuba, 
Japan). Cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (low glucose)(DMEM, SIGMA-ALDRICH, St. 
Louis, MO, USA), supplemented with 10% fetal bovine 
serum (Moregate BioTech, Bulimba, Australia), 1% penicil-
lin and streptomycin, and 2% GlutaMax™ (GIBCO, Dublin, 
Ireland), and incubated in a humidified atmosphere of 5% 
 CO2 at 37 °C. For caspase-3/7 activity assays, cells were 
seeded at a density of 5 ×  103 cells/cm2 in 35-mm glass bot-
tom dishes (IWAKI, Japan) and treated with various con-
centrations of apigenin. For extracting total RNA, cells were 
seeded at a density of 1 ×  105 cells/well in 6-well plates and 
were treated with 50 μM apigenin or dimethyl sulfoxide 
(DMSO, as control) for 48 h. We chose this concentration 
(50 μM) and exposure time (48 h) based on the 50% lethal 
dose.

Cell viability assay

A549 cells were seeded at a density of 700 cells/well in 
96-well plates and were subcultured for 1 day. After cells 
were treated with various concentrations (0, 20, 40, 60, 
80, and 100 µM) of apigenin for 72 h, cell viability was 
measured by using the Cell Counting Kit-8 (Dojindo, 
Japan), according to the manufacturer’s protocol. Viable 
cells have NADH/NADPH and dehydrogenase to produce 
ATP by glycolysis, while dead cells do not. Thus, viable 
and dead cells are identified by assaying NAD/NADPH, 
which is performed by coupling with a colorimetric tetra-
zolium redox reaction mediated by the electron carrier 
1-methoxy-5-methylphenaziniummethylsulfate.

Caspase‑3/7 activity assay

A549 cells were seeded at a density of 5 ×  103 cells/cm2 in 
35-mm glass-bottom dishes and were treated with 100 μM 
apigenin after being subcultured for 1 day. The activity of 
caspase-3/7 in A549 cells treated with apigenin for 72 h was 
visualized using the CellEvent™ Caspase-3/7 Green Detec-
tion Reagent (Invitrogen, Japan) according to the manufac-
turer’s protocol. Staurosporine at 10 µM was used as a posi-
tive control.

miRNA microarray assay

Total RNA was isolated from A549 cells treated with 50 μM 
apigenin for 48 h using the miRNeasy mini kit (Qiagen, 
Hilden, Germany) following the manufacturer’s protocol. 
For miRNA expression analysis, the Human miRNA Micro-
array V21.0 array (based on miRbase release 21.0, Agilent 
Technologies, Inc., Santa Clara, CA, USA) was used accord-
ing to the manufacturer’s protocol. Total RNA was labelled 
and hybridized using the miRNA Complete Labeling and 
Hyb Kit (Agilent Technologies, Inc.). The miRNA microar-
ray chips were scanned using an Agilent SureScan Micro-
Array Scanner (G2600D, Agilent Technologies, Inc.), and 
the signal values were analyzed using Feature Extraction 
software 12.0.3.1 (Agilent Technologies, Inc.).

PCR of miRNA

The expressions of miR-34a-5p in A549 cells treated with 
50 μM apigenin for 48 h were examined by real-time qRT-
PCR. Total RNA was isolated from apigenin-treated A549 
cells using the miRNeasy mini kit (Qiagen) following the 
manufacturer’s protocol and 1 µg of the total RNA was 
reverse-transcribed to complementary DNA (cDNA) using 
the TaqMan MicroRNA Reverse Transcription Kit (Applied 
Biosystems, CA, USA) according to the manufacturer’s pro-
tocol. qRT-PCR analysis was performed using the TaqMan 
Universal PCR Master Mix II (Applied Biosystems) by a 
LightCycler 480 System II (Roche, Basel, Switzerland). 
This PCR was performed using specific primers: TaqMan 
MicroRNA Assays INV, S hsa-miR-34a and RNU6B as an 
endogenous control.

mRNA microarray

We used the same total RNA that was used in the miRNA 
microarray. Total RNA was labelled with the Low Input 
Quick Amp Labelling Kit (Agilent Technologies, Inc.) 
and hybridized using the Gene Expression Hybridization 
Kit (Agilent Technologies, Inc.). The Sureprint G3 Human 
Gene Expression V3 array (26,083 Entrez Genes, 30,606 
lncRNAs, Agilent Technologies, Inc.) was used according to 
the manufacturer’s protocol. The chips were scanned using a 
SureScan MicroArray Scanner (G2600I, Agilent Technolo-
gies, Inc.), and the signal values were analyzed using Feature 
Extraction software 12.0.3.1 (Agilent Technologies, Inc.).

Real‑time RT‑qPCR of mRNA

mRNA expression level of SNAI1 and FOXG1 in A549 
cells treated with 50 μM apigenin for 48 h were examined 
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by real-time qRT-PCR. Total RNA (1 μg) was reverse-
transcribed using a Roche Transcriptor First Strand cDNA 
Synthesis Kit (Roche, IN, USA) according to the manufac-
turer’s protocol. qRT-PCR analysis was performed using 
Roche LightCycler 480 SYBR Green I Master (Roche) by 
a LightCycler 480 System II (Roche). Specific primers for 
real-time qRT-PCR were designed using the website of 
primer3plus and are as follows: SNAI1: sense 5′-ACC CCA 
CAT CCT TCT CAC TG-3′ and antisense 5′-TAC AAA AAC 
CCA CGC AGA CA-3′, FOXG1: sense 5′-GTC AAT GAC TTC 
GCA GAG CA-3′ and antisense 5′-GTC TGG TCC CAG GGA 
TGT TA-3′ and β-actin: sense 5′-GGA CTT CGA GCA AGA 
GAT GG-3′ and antisense 5′-AGC ACT GTG TTG GCT 
TAC AG-3′ (Eurofins Genomics, Tokyo, Japan).

Prediction of target mRNAs

We searched target mRNAs of miR-34a-5p using three pre-
diction web tools: TargetScan (http://www.targe tscan .org/
vert_72/), DIANA TOOLS (http://diana .imis.athen a-innov 
ation .gr/Diana Tools /index .php?r=micro T_CDS/index ), and 
miRDB (http://mirdb .org), and made three lists. Genes in 
two or three lists were chosen as target mRNAs of miR-
34a-5p. Results of the three prediction tools were merged 
into a predicted target mRNAs list with the data extrac-
tion and reporting tool, AWK in UNIX. These lists were 
combined with the list of decreasing mRNAs in apigenin-
treated A549 cells by microarray analysis into the final target 
mRNAs list.

Statistical analysis

Numerical data were expressed as mean ± SD values of the 
results from three observations and the significance of dif-
ferences was analyzed by using two-sided Student’s t-test. 
Statistical significance was set at P < 0.05. Experiments 
were repeated independently in triplicate and the results 
were qualitatively identical in every case.

Results

Effects of apigenin on viability and apoptosis 
of A549 cells

As shown in Fig. 1A, apigenin significantly decreased the 
viability of A549 cells in a dose-dependent manner. Forty 
micromolar apigenin was the 50% lethal dose for A549 
cells and 80 μM was the lethal equivalent. Live cells were 
identified by nuclear staining (blue) with Hoechst 33,342 
and caspase-3/7 activity (green) was fluorescently moni-
tored as depicted in Fig. 1B a and b, respectively. Since 
apigenin strongly suppresses cell growth in a concentra-
tion as low as 50 μM, fewer cells were observed in the 
dish containing apigenin than in that of the vehicle con-
trol. Caspase-3/7 was activated in most cells remaining on 
the glass dish, equivalent to that of staurosporine-induced 
apoptosis.

Fig. 1  Effects of apigenin on viability and apoptosis of A549 cells. 
A A549 cells were treated by various concentrations of apigenin 
(n = 5) and cell viability was measured by using the Cell Counting 
Kit-8 (Dojindo, Japan). Data are representative of results from three 
separate experiments. *P < 0.05 vs. vehicle, and **P < 0.01 vs. vehi-
cle. B Activity of caspase-3/7 in 100 μM apigenin-treated A549 cells 

for 72  h was visualized using the CellEvent™ Caspase-3/7 Green 
Detection Reagent (Invitrogen, Japan) with a fluorescence micro-
scope (KEYENCE BZ-X800, Osaka, Japan). Photographs a and b 
show the cells stained with Hoechst 33,342 to visualize nuclei and 
with CellEvent Caspase-3/7 reagents to detect apoptosis, respectively. 
Staurosporine at 10 μM was added to dish for 3 h. Bar 100 μm

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index
http://mirdb.org
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Up‑regulation of miR‑34a‑5p by apigenin in A549 
cells

To investigate the change in miRNA levels in apigenin-
treated A549 cells, we performed miRNA microarray analy-
sis (Fig. 2A). Consequently, miR-34a-5p was identified as a 
candidate that is up-regulated by 50 μM apigenin for 48 h in 
A549 cells. The expression of miR-34a-5p was increased by 
1.53-fold against vehicle. To assess the expression level of 
miR-34a-5p quantitatively and to verify that up-regulation 
of miR-34a-5p was not a false-positive, we performed real-
time RT-qPCR. As shown in Fig. 2B, expression of miR-
34a-5p was significantly enhanced 1.65 ± 0.39-fold (n = 3) 
against vehicle, being in good agreement with the microar-
ray analysis.

Target mRNAs of miR‑34a‑5p

To search for mRNAs decreased by miR-34a-5p in apigenin-
treated A549 cells, we performed mRNA microarray analy-
sis by using the same RNA sample that was used for the 
miRNA microarray. About 2000 mRNAs decreased to less 
than 0.5 times. To find mRNAs regulated by miR-34a-5p, 
we employed multiple algorithms, including TargetScan, 
DIANA TOOLS, and miRDB, to screen for specific mRNAs 
targeted by miR-34a-5p. TargetScan, DIANA TOOLS, and 
miRDB listed 751, 1108, and 547 targets, respectively. 
These analyses revealed 640 mRNAs included in two or 
more lists (Fig. 3A). From this list and the mRNA microar-
ray, 32 target genes were selected (Table 1). Among the 32 
mRNAs, we selected SNAI1 and FOXG1 mRNAs, because 

Fig. 2  Up-regulation of miR-
34a-5p by apigenin in A549 
cells. A miRNA microarray 
analysis showed that miR-
34a-5p was up-regulated by api-
genin. A549 cells were treated 
with 50 µM apigenin for 48 h. 
B Up-regulation of miR-34a-5p 
was verified with real-time 
RT-qPCR (n = 3). **P < 0.01 vs. 
vehicle

Fig. 3  Down-regulation of 
SNAI1 mRNA by miR-34a-5p. 
A Venn diagram showing the 
overlap of mRNAs that were 
predicted to decrease by miR-
34a-5p by alternative algorithms 
(TargetScan, DIANA TOOLS, 
and miRDB). B SNAI1 and 
FOXG1were chosen as targets 
of miR-34a-5p and were veri-
fied with real-time RT-qPCR 
(n = 3). *P < 0.05 vs. vehicle

TargetSacn DIANA TOOLS

MIRDB

751

640

1108

548

0

*

1

2

0.5

1.63

0.5

1.5

2.5

vehicle vehicleapigenin apigenin

SNAI1 FOXG1

R
el

at
iv

e 
Ex

pr
es

si
on

( E
ac

h 
m

R
N

A
/β

-a
ct

in
 m

R
N

A
 )

A B



2295Molecular Biology Reports (2021) 48:2291–2297 

1 3

SNAI1 [20–22] and FOXG1 [23–25] have been reported 
to inhibit apoptosis. Real-time RT-qPCR revealed that the 
expression of SNAI1 mRNA in apigenin-treated A549 cells 
significantly decreased 0.50 ± 0.24-fold (n = 3) against the 
vehicle (Fig. 3B). FOXG1 was a false-positive (Fig. 3B).

Discussion

In the present study, we tried to clarify the relationship 
between miRNA and apoptotic induction by apigenin in the 
lung cancer cell line A549. An miRNA micro array assay 
using A549 cells treated with apigenin revealed that expres-
sion level of miR-34a-5p increased in A549 cells. miR-
34a-5p has been shown to target various genes involved in 

proliferation, metastasis and apoptosis [26–31]. The mRNA 
micro array assay and a merged list generated by three pre-
diction tools suggested 32 miR-34a-5p candidate target 
genes. We selected SNAI1 and FOXG1 as candidates for 
inducers of apoptosis, because apigenin induced caspase-3/7 
activity in A549 cells (Fig. 1B). Real-time RT-qPCR showed 
that level of SNAI1 mRNA decreased by 50% after apigenin 
treatment. Based on these results, we propose that apigenin 
induces apoptosis through the miR-34a-5p/SNAI1 pathway 
in A549 cells (Fig. 4). However, further investigation, for 
example, Western Blot analysis of SNAI1, is required in 
order to verify the SNAIL1 involvement.

Apigenin is well-known to have anti-cancer effects 
against a number of human cancer cells [9, 10], includ-
ing human lung cancer A549 cells [32, 33], and is a potent 
remedial tool in cancer therapy [8]. Sung et al. [9] reported 
that the oral administration of apigenin (20–50 μg/mice) 
for 20 weeks reduces tumor volumes and induces complete 
abolishment of distant organ metastases in a transgenic 
adenocarcinoma of mouse prostate (TRAMP) model. These 
values are equivalent to 60–150 mg/60 kg when converted 
to human use. Apigenin is reported to exist at concentra-
tions of 192–2408, 2000, 139, 3000–5000, and 579 mg/kg 
in olive leaf [2], parsley [9], celery leaf [5], chamomile [9], 
and guava [1], respectively. It may be possible to receive the 
required amount of apigenin from foods for the prevention 
of cancer.

Furthermore, apigenin is able to induce apoptosis in 
human lung cancer A549 cells in vitro [32, 33]. Recent 
reports show that miR-34a-5p is an inducer of apoptosis, 
cell-cycle arrest, and senescence in different cancers [27, 
31]. Luteolin, which is also a flavone, induces apoptosis by 
up-regulation of miR-34a-5p in human gastric cancer cells 
[34]. SNAI1, a zinc-finger transcription factor, is known to 

Table 1  Candidates of target gene down-regulated by miR-34a-5p

We selected bold genes as candidate 

Gene Accession Signal ratio

ANK3 NM 001204404 0.432
BMP3 NM 001201 0.475
C9orf47 NM 001001938 0.499
CA7 NM 001014435 0.386
CDH4 NM 991793 0.294
COL12A1 NM 004370 0.098
ESYT3 NM 031913 0.410
FAT4 NM 001291303 0.121
FOXG1 NM 005249 0.444
GABRA3 NM 000808 0.352
GPC6 NM 005708 0.491
HPSE NM 006665 0.396
IGFBP3 NM 001013398 0.425
ISY1-RAB43 NM 001204890 0.465
MAPT NM 016835 0.431
MARCH8 NM 001282866 0.251
MYOCD NM 153604 0.099
NETO1 NM 138966 0.435
PARP15 NM 001113523 0.234
PDXK ENST00000438837 0.352
RARB NM 000965 0.279
RIMS3 NM 014747 0.447
SCN2B NM 004588 0.136
SEMA4F NM 004263 0.459
SERPINE1 NM 000602 0.499
SERPINF2 NM 000934 0.456
SNAI1 NM 005985 0.447
SNX30 NM 001012994 0.483
TANC2 NM 025185 0.491
TNFSF14 NM 003807 0.416
TRANK1 NM 014831 0.276
ZC3H12B ENST00000617377 0.245

A549

miR-34a-5p

SNAI1

Apigenin

Caspase-3/7

Apoptosis

Fig. 4  Schematic diagram by which the miR-34a-5p target SNAI1 
regulates apoptosis with apigenin in A549 cells
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mediate the enhancement of proliferation and the inhibition 
of apoptosis in cancer cells [35]. Moreover, Shenas et al. 
[36] demonstrated that the silencing of SNAI1 leads to the 
induction of apoptosis, and Wan et al. [22] revealed that 
inhibition of SNAIL enhances TRAIL-induced apoptosis. 
However, the stimulator of the miR-34a-5p /SNAI1 pathway 
in the apoptosis of A549 cells has not been clearly identi-
fied. In this study, we found that apigenin induces apoptosis 
through down-regulation of SNAI1 by up-regulating miR-
34a-5p in lung cancer cells. Further research is needed to 
identify how apigenin up-regulates miR-34a-5p.
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