Skip to main content

Advertisement

Log in

Dengue and Zika virus multi-epitope antigen expression in insect cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dengue virus and Zika virus are arthropod-borne flaviviruses that cause millions of infections worldwide. The co-circulation of both viruses makes serological diagnosis difficult as they share high amino acid similarities in viral proteins. Antigens are one of the key reagents in the differential diagnosis of these viruses through the detection of IgG antibodies in serological assays during the convalescent-phase of infections. Here, we report the expression of Dengue virus (DENV) and Zika virus (ZIKV) antigens containing non-conserved and immunodominant amino acid sequences using the baculovirus expression vector system in insect cells. We designed DENV and ZIKV antigens based on the domain III of the E protein (EDIII) after analyzing previously reported epitopes and by multiple alignment of the most important flaviviruses. The ZIKV and DENV multi-epitope genes were designed as tandem repeats or impaired repeats separated by tetra- or hexa-glycine linkers. The biochemical analyses revealed adequate expression of the antigens. Then, the obtained multi-epitope antigens were semi-purified in a sucrose gradient and tested using patients’ sera collected during the convalescent-phase that were previously diagnosed positive for anti-DENV and -ZIKV IgG antibodies. The optimal serum dilution was 1:200, and the mean absorbance values in the preliminary tests show that multi-epitope antigens have been recognized by human sera. The production of both antigens using the multi-epitope strategy in the eukaryotic system and based on the EDIII regions provide a proof of concept for the use of antigens in the differentiation between DENV and ZIKV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG (2018) Structural biology of zika virus and other flaviviruses. Nat Struct Mol Biol 25:13–20. https://doi.org/10.1038/s41594-017-0010-8

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khetarpal N, Khanna I (2016) Dengue fever : causes, complications, and vaccine strategies. J Immunol Res. https://doi.org/10.1155/2016/6803098

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salles TS, Sá-guimarães TE, Seam E et al (2018) History, epidemiology and diagnostics of dengue in the American and Brazilian contexts : a review. Parasi Vector 11:1–12

    Article  Google Scholar 

  5. Duarte JL, Diaz-quijano FA, Batista AC, Giatti LL (2019) Major article climatic variables associated with dengue incidence in a city of the Western Brazilian Amazon region. J Brazilian Soc Trop Med 52:1–8

    Google Scholar 

  6. Agumadu VC, Ramphul K (2018) Zika Virus: a review of literature. Cureus 10:1–5. https://doi.org/10.7759/cureus.3025

    Article  Google Scholar 

  7. de Araújo TVB, Rodrigues LC, de Alencar Ximenes RA et al (2016) Association between zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infect Dis 16:1356–1363. https://doi.org/10.1016/S1473-3099(16)30318-8

    Article  PubMed  Google Scholar 

  8. De SWV, De AMDFPM, Vazquez E et al (2018) Microcephaly epidemic related to the zika virus and living conditions in recife, Northeast Brazil. BMC Public Health 18:1–7. https://doi.org/10.1186/s12889-018-5039-z

    Article  Google Scholar 

  9. Cauchemez S, Besnard M, Bompard P et al (2016) Association between zika virus and microcephaly in French polynesia, 2013–15: a retrospective study. Lancet 6736:1–8. https://doi.org/10.1016/S0140-6736(16)00651-6

    Article  Google Scholar 

  10. Karkhah A, Nouri HR, Javanian M et al (2018) Zika virus: epidemiology, clinical aspects, diagnosis, and control of infection. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-018-3354-z

    Article  PubMed  Google Scholar 

  11. Waggoner JJ, Pinsky BA (2016) Zika virus: diagnostics for an emerging pandemic threat. J Clin Microbiol 54:860–867. https://doi.org/10.1128/jcm.00279-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai L, Song J, Lu X et al (2016) Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19:696–704. https://doi.org/10.1016/j.chom.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  13. Tsai W-Y, Youn HH, Brites C et al (2017) Distinguishing secondary dengue virus infection from zika virus infection with previous dengue by a combination of three serological tests. Clin Infect Dis 65:1829–1836. https://doi.org/10.1093/cid/cix672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felix AC, Souza NCS, Figueiredo WM et al (2017) Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection. J Med Virol 89:1477–1479. https://doi.org/10.1002/jmv.24789

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Pinsky BA, Ananta JS et al (2017) Diagnosis of zika virus infection on a nanotechnology platform. Nat Med 23:548–550. https://doi.org/10.1038/nm.4302

    Article  CAS  PubMed  Google Scholar 

  16. Johnson S, Fremont DH, Sukupolvi-Petty S et al (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84:9227–9239. https://doi.org/10.1128/jvi.01087-10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shrestha B, Nelson CA, Brien JD et al (2010) The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6:1–18. https://doi.org/10.1371/journal.ppat.1000823

    Article  CAS  Google Scholar 

  18. Zhao H, Fernandez E, Dowd KA et al (2016) Structural Basis of zika virus-specific antibody protection. Cell 166:1016–1027. https://doi.org/10.1016/j.cell.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rockstroh A, Moges B, Barzon L et al (2017) Specific detection of dengue and zika virus antibodies using envelope proteins with mutations in the conserved fusion loop. Emerg Microbes Infect 6:1–9. https://doi.org/10.1038/emi.2017.87

    Article  CAS  Google Scholar 

  20. Premkumar L, Collins M, Graham S et al (2018) Development of envelope protein antigens to serologically differentiate zika virus infection from dengue virus infection. J Clin Microbiol 56:1–13. https://doi.org/10.1128/JCM.01504-17

    Article  Google Scholar 

  21. Maillère B, Boyton RJ, Dorner M et al (2018) T cell immunity to zika virus targets immunodominant epitopes that show cross-reactivity with other flaviviruses. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-017-18781-1

    Article  CAS  Google Scholar 

  22. Chen WH, Chou FP, Wang YK et al (2017) Characterization and epitope mapping of dengue virus type 1 specific monoclonal antibodies. Virol J 14:1–11. https://doi.org/10.1186/s12985-017-0856-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasques RM, Lacorte C, da Luz LL et al (2019) Development of a new tobamovirus-based viral vector for protein expression in plants. Mol Biol Rep 46:97–103. https://doi.org/10.1007/s11033-018-4449-4

    Article  CAS  PubMed  Google Scholar 

  24. Tripathi NK, Shrivastva A, Pattnaik P et al (2007) Production, purification and characterization of recombinant dengue multiepitope protein. Biotechnol Appl Biochem 46:105. https://doi.org/10.1042/ba20060090

    Article  CAS  PubMed  Google Scholar 

  25. Maldaner FR, Aragão FJL, Dos Santos FB et al (2013) Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 97:5721–5729. https://doi.org/10.1007/s00253-013-4918-6

    Article  CAS  PubMed  Google Scholar 

  26. Chaves LCS, Ribeiro BM, Blissard GW (2018) Production of GP64-free virus-like particles from baculovirus-infected insect cells. J Gen Virol 99:265–274. https://doi.org/10.1099/jgv.0.001002

    Article  CAS  PubMed  Google Scholar 

  27. Liu F, Wu X, Li L et al (2013) Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif 90:104–116. https://doi.org/10.1016/j.pep.2013.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ardisson-Araújo DMP, Rocha JR, Da Costa MHO et al (2013) A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification. Virol J 10:1–9. https://doi.org/10.1186/1743-422X-10-262

    Article  CAS  Google Scholar 

  29. Sambrook J, Russel DW (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York p 1890-1890

  30. O’Reilly DR, Miller L, Luckow VA (1992) Baculovirus expression vectors: a laboratory manual. Oxford University Press, New York

    Google Scholar 

  31. AnandaRao R, Swaminathan S, Fernando S et al (2005) A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expr Purif 41:136–147. https://doi.org/10.1016/j.pep.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  32. Rao RA, Swaminathan S, Fernando S et al (2006) Recombinant multiepitope protein for early detection of dengue infections. Clin Vaccine Immunol 13:59–67. https://doi.org/10.1128/CVI.13.1.59-67.2006

    Article  CAS  Google Scholar 

  33. Tripathi NK, Babu JP, Shrivastva A et al (2008) Production and characterization of recombinant dengue virus type 4 envelope domain III protein. J Biotechnol 134:278–286. https://doi.org/10.1016/j.jbiotec.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  34. Tripathi NK, Shrivastava A, Rao BKC, PVL, (2011) Recombinant dengue virus type 3 envelope domain III protein from Escherichia coli. Biotechnol J 6:604–608. https://doi.org/10.1002/biot.201000399

    Article  CAS  PubMed  Google Scholar 

  35. Álvarez-Rodríguez LM, Ramos-Ligonio A, Rosales-Encina JL et al (2012) Expression, purification, and evaluation of diagnostic potential and immunogenicity of a recombinant NS3 protein from all serotypes of dengue virus. J Trop Med. https://doi.org/10.1155/2012/956875

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tripathi NK, Shrivastva A, Pattnaik P et al (2007) Production of IgM specific recombinant dengue multiepitope protein for early diagnosis of dengue infection. Biotechnol Prog 23:488–493. https://doi.org/10.1021/bp0602698

    Article  CAS  PubMed  Google Scholar 

  37. Safronetz D, Sloan A, Stein DR et al (2017) Evaluation of 5 commercially available Zika virus immunoassays. Emerg Infect Dis 23:1577–1580. https://doi.org/10.3201/eid2309.162043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rockstroh A, Barzon L, Pacenti M et al (2015) Recombinant envelope-proteins with mutations in the conserved fusion loop allow specific serological diagnosis of dengue-infections. PLoS Negl Trop Dis 9:1–12. https://doi.org/10.1371/journal.pntd.0004218

    Article  CAS  Google Scholar 

  39. Zaidi MB, CedilloBarron L, González Y, Almeida ME et al (2020) Serological tests reveal significant cross-reactive human antibody responses to Zika and Dengue viruses in the Mexican population. Acta Trop. https://doi.org/10.1016/j.actatropica.2019.105201

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Fundação de Apoio a Pesquisa do Distrito Federal (FAP/DF Grant Numbers 193.001532/2016 and 0193.000416/2016) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001". Our thanks to the researchers of the “Zika Plan” group (734584-European Union’s Horizon 2020) and also to Apoio a Pesquisa do Estado de Goiás (FAPEG) (Project Number 201710267001241) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Nagata.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPEG 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes-Luz, L., Junqueira, I.C., da Silveira, L.A. et al. Dengue and Zika virus multi-epitope antigen expression in insect cells. Mol Biol Rep 47, 7333–7340 (2020). https://doi.org/10.1007/s11033-020-05772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05772-1

Keywords

Navigation