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Abstract
Down syndrome (DS) is one of the most common causes of intellectual disability and new approaches allowing its rapid and 
effective prenatal detection are being explored. In this study, we investigated the diagnostic potential of plasma microRNAs 
(miRNAs). This study builds upon our previous study in DS placentas, where seven miRNAs were found to be significantly 
up-regulated. A total of 70 first-trimester plasma samples from pregnant women were included in the present study (35 
samples with DS fetuses; 35 with euploid fetuses). Genome-wide miRNA profiling was performed in the pilot study using 
Affymetrix GeneChip™ miRNA 4.1 Array Strips (18 samples). Selected miRNAs were then analysed in the validation study 
using quantitative reverse transcription PCR (RT-qPCR; 52 samples). Based on the current pilot study results (12 miRNAs), 
our previous research on chorionic villi samples (7 miRNAs) and the literature (4 miRNAs), a group of 23 miRNAs was 
selected for the validation study. Although the results of the pilot study were promising, the validation study using the more 
sensitive RT-qPCR technique and a larger group of samples revealed no significant differences in miRNA profiles between 
the compared groups. Our results suggest that testing of the first-trimester plasma miRNAs is probably not suitable for non-
invasive prenatal testing (NIPT). Different results could be theoretically achieved at later gestational ages; however, such a 
result probably would have limited use in clinical practice.
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Background

Trisomy 21 (Down syndrome; DS) is the most common 
chromosomal disorder with an incidence of about 1:1000 to 
1:1100 live births worldwide [1]. Virtually all DS patients 
suffer from cognitive impairment of various degree and 
craniofacial abnormalities. Other phenotypic characteristics, 
such as cardiovascular defects, childhood leukemia, gastro-
intestinal anomalies or early-onset Alzheimer’s disease, 
occur with various frequencies and exhibit interindividual 
heterogeneity [2]. It is generally accepted that the DS phe-
notype is caused by the excess genetic material of chromo-
some 21 (Hsa21); however, specific molecular mechanisms 
or pathways leading to particular DS features have not been 
found [3].

Many studies have focused on gene expression in vari-
ous DS biological samples (for example, fetal or placen-
tal tissues, amniotic fluid cells, fetal or maternal blood) 
and they have reached varied conclusions. Some of these 
expression studies have even concluded that Hsa21 genes 
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in DS are not significantly more expressed than other dis-
omic genes [4–6].

The hypothesis that the major or most serious DS mani-
festations are caused by a few genes located at a relatively 
small region on Hsa21, the so-called Down Syndrome 
Critical Region (DSCR), was frequently discussed in pre-
vious years [7–9]. After reanalysis of all documented cases 
with partial trisomy 21 (PT21), the presumed DSCR was 
limited to a highly restricted DSCR (HR-DSCR), which 
does not contain any known gene [10].

Thus, all observations suggest that the DS phenotype 
is a consequence of global misregulation of gene expres-
sion, which occurs mainly due to imbalanced interactions 
between trisomic and disomic genes but also reflects the 
variability of the overall individual genome [11, 12]. 
Greater impact is exerted by haploinsufficient genes, which 
show a recognisable phenotype after the loss of one allele 
[13]. These genes, for example, dual-specificity tyrosine 
phosphorylation regulated kinase 1A (DYRK1A), are also 
sensitive to three copies [14, 15]. Moreover, individual 
genomic and epigenomic backgrounds, including micro-
RNA (miRNA) gene expression regulation, probably con-
tribute to the final DS phenotype [16].

miRNAs are small (17–25 nucleotides) non-coding 
RNAs, which regulate gene expression at the post-tran-
scriptional level. In most cases, the binding of miRNA to 
target mRNA with partial complementarity induces inhi-
bition of translation (RNA silencing). Otherwise, when a 
high degree of complementarity between miRNA and its 
target is achieved, the mRNA is degraded [17]. More than 
2600 human miRNAs have been described to date [18]. 
However, it has been found that one miRNA may affect 
hundreds of mRNAs; as a result, miRNAs regulate virtu-
ally all cellular processes. Therefore, miRNAs have been 
studied in the context of various pathologies, including 
cancer, cardiovascular diseases, diabetes and autoimmune 
diseases [19–22]. For example, miR-21 has been shown to 
play an essential role in various autoimmune diseases [23]. 
Furthermore, four miRNAs (miR-23a-3p, miR-27a-3p, 
miR-142-5p and miR-376c-3p) have been identified as 
sensitive non-invasive discriminators of early-stage colon 
cancer; two of these miRNAs (miR-23a-3p, miR-376c-3p) 
can also be used as prognostic markers [24].

Extracellular miRNAs associated with pregnancy are 
also systematically investigated in the plasma of pregnant 
women. Although differential miRNAs profiles have been 
described in many pregnancy-related conditions (for exam-
ple, preeclampsia, preterm delivery, ectopic pregnancy, 
gestational diabetes mellitus and fetal trisomies) in com-
parison with normal pregnancies, the specific mechanisms 
of miRNA release into the maternal circulation are not 
fully elucidated [25, 26]. While most authors presume 

placental origin of these miRNAs as is the case for cell-
free DNA, some also suggest a possible fetal origin [27, 
28].

The present study follows on from our previous study 
comparing miRNA expression profiles in euploid and tri-
somic placentas. Seven miRNAs were found to be signifi-
cantly up-regulated in DS placentas, three of which were 
located on chromosome 21 [29]. Because miRNAs are 
released via vesicles from the placenta to the maternal cir-
culation, in the current study we focused on plasma samples 
of pregnant women bearing DS or euploid fetuses. We aimed 
to further investigate the biological functions of miRNAs 
and to explore their potential for non-invasive prenatal test-
ing (NIPT) [30, 31].

Results

Pilot study

The initial pilot study served to identify a wider panel of 
potentially dysregulated miRNAs in plasma of pregnant 
women with DS fetuses. Genome-wide analysis, which 
allows the determination of expression levels of all miR-
NAs listed in mirBase v.20 in one reaction, was selected. 
A total of 18 plasma samples (nine with fetal trisomy 21; 
nine with normal karyotype) were loaded into Affymetrix 
miRNA array strips. There was a clear separation of the 
compared groups of samples based on principal component 
analysis (PCA) (Fig. 1).

Twelve miRNAs which most significantly discriminated 
the two compared groups of samples were selected using 
one-way ANOVA (p-value ≤ 0.05; FC ≥ 1.5; Table 1). Half 
of these miRNAs were up-regulated in samples with fetal 
trisomy, half of them were down-regulated. None of the 12 
selected miRNAs is on chromosome 21. Seven miRNAs that 
were validated as significantly elevated in DS placentas in 
our previous study [29] were not among the differentially 
expressed miRNAs in the current pilot study using plasma 
samples.

Validation study

A total of 23 miRNAs were selected for the validation study 
(Table 1). Apart from the 12 miRNAs identified in the pilot 
study, the selection was based on the results of our previous 
study on placenta samples (seven miRNAs) and the results 
of the current pilot study in combination with information 
in the literature (four miRNAs) [28, 32–35].

The expression levels of the 23 selected miRNAs were 
determined using qPCR analysis with individual miRNA 
assays in an independent set of samples. A total of 52 
plasma samples (26 with fetal trisomy 21; 26 with normal 
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Fig. 1  Scatter plot displaying compared groups of samples after principal component analysis (PCA). Samples with fetal trisomy (blue) are 
clearly separated from samples with euploid fetuses (red). (Color figure online)

Table 1  Set of 23 miRNAs selected for the validation study

Selection based on MirBase accession no Systematic ID Up/down-regulated

Validated results of previous study on CVS MIMAT0000097 miR-99a Up-regulated
MIMAT0003340 miR-542-5p Up-regulated
MIMAT0000254 miR-10b Up-regulated
MIMAT0000423 miR-125b Up-regulated
MIMAT0003783 miR-615 Up-regulated
MIMAT0000064 hsa-let-7c Up-regulated
MIMAT0003330 miR-654 Up-regulated

Current pilot study on plasma samples (Affymetrix 
miRNA 4.1 array strips); p ≤ 0.05

p ≤ 0.05 + FC ≥ 1.5 MIMAT0017991 hsa-miR-3613-3p Up-regulated
MIMAT0000062 hsa-let-7a-5p Down-regulated
MIMAT0000065 hsa-let-7d-5p Up-regulated
MIMAT0019745 hsa-miR-4668-5p Down-regulated
MIMAT0000421 hsa-miR-122-5p Up-regulated
MIMAT0002871 hsa-miR-500a-3p Up-regulated
MIMAT0000732 hsa-miR-378a-3p Up-regulated
MIMAT0005929 hsa-miR-1275 Down-regulated
MIMAT0004614 hsa-miR-193a-5p Down-regulated
MIMAT0025478 hsa-miR-6511a-5p Down-regulated
MIMAT0027682 hsa-miR-6891-5p Down-regulated
MIMAT0004983 hsa-miR-940 Up-regulated

 + literature MIMAT0005898 hsa-miR-1246 –
MIMAT0002824 hsa-miR-498 –
MIMAT0000101 hsa-miR-103a-3p –
MIMAT0000104 hsa-miR-107 –
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karyotype) were included. Differences in miRNA levels 
between compared groups of samples were evaluated using 
the non-parametric Mann–Whitney U-test (p-value ≤ 0.05; 
FC ≥ 2; Benjamini–Hochberg correction). None of the 23 
tested miRNAs was confirmed to be significantly differen-
tially expressed between plasma samples with fetal trisomy 
and samples with a confirmed normal fetal karyotype.

The power of the validation study, tested using post-hoc 
analysis in G*Power, [36] was high enough for all miRNAs 
tested (power > 0.98; table S2) with one exception – miR-
542 (power = 0.103). This miRNA had been added to the 
validation set of miRNAs because it was dysregulated in 
trisomic placentas in our previous study, so we wanted to 
verify its plasma levels. miR-542 levels in the plasma of 
pregnant women are very low—either it was detected with 
a high Ct value or it was completely absent and therefore 
probably not applicable for diagnosis at the plasma level.

Discussion

In our previous study, we performed miRNA expression 
profiling of chorionic villi samples (CVS) from euploid and 
trisomic pregnancies [29]. A total of 80 CVS samples (40 
with normal karyotype, 40 with trisomy of chromosome 21) 
were included. Seven miRNAs were verified using qPCR as 
significantly up-regulated in DS placentas (miR-99a, miR-
542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654). 
Of these, three miRNAs were located on chromosome 21 
(miR-99a, miR-125b, let-7c). As well as genes involved in 
various essential biological processes, we identified many 
genes involved in placenta development (GJA1, CDH11, 
EGF, ERVW-1, ERVFRD-1, LEP and INHA) as being poten-
tially altered by elevated miRNA levels.

Human placenta expresses more than 500 different miR-
NAs, some of them specific for this tissue [37]. Placen-
tal-specific miRNAs are expressed from three main clus-
ters—C14MC (chromosome 14 miRNA cluster), C19MC 
and miR-371-3 [38]. Typical changes in the expression of 
miRNAs from these three clusters during pregnancy sug-
gest their potential involvement in physiological processes 
[39]. For example, expression of miRNAs from cluster 
C19MC increases continually from the first to the third 
trimester and closely correlates with placenta growth [40]. 
Decreased levels of specific miRNAs from C19MC (hsa-
miR-518b, hsa-miR-1323, hsa-miR-520 h, and hsa-miR-
519d) have been associated with fetal growth restriction 
[41]. miRNAs are released from placenta, primarily from 
placental trophoblast, into maternal and fetal circulation 
mainly via exosomes [30]. Increased concentrations of both 
total exosomes and placenta-derived exosomes were found 
in the plasma of pregnant women who subsequently devel-
oped preeclampsia [42]. Moreover, two of these exosomal 

miRNAs (hsa-miR-486-1-5p and hsa-miR-486-2-5p) were 
suggested as potential markers for presymptomatic diagnosis 
of preeclampsia.

Our previous results suggested that miRNAs upregulated 
in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-
125b, miR-615, let-7c and miR-654) can potentially affect 
the expression of many genes crucial for intercellular com-
munication (e.g. connexin 1), cytotrophoblast cell adhesion 
(cadherin 11) or syncytiotrophoblast differentiation (syncy-
tin-1 and 2) and, thus, affect physiological placental develop-
ment [29]. However, the placenta is not the only determinant 
of pregnancy-associated miRNA levels in maternal and fetal 
blood. Another source or mechanism influencing these lev-
els is probably involved [31]. The hypothesis that miRNAs 
are somehow transported from the fetus into the maternal 
circulation and vice versa is still unproven [28].

To further extend our knowledge of the biological func-
tions of miRNAs and assess their diagnostic potential, we 
focused the follow-up study on maternal plasma samples. To 
the best of our knowledge, this is the first study performing 
genome-wide miRNA profiling in plasma samples of preg-
nant women with euploid and DS fetuses.

Methods analysing genome-wide miRNA profiling (NGS 
or arrays) require a high miRNAs input, which is challenging 
in the case of plasma samples. Therefore, most of the studies 
analyse only a selected group of miRNAs in plasma using 
qPCR, where a much smaller input is needed, or perform a 
genome-wide analysis of whole maternal blood, where the 
overwhelming background from maternal blood cells makes 
it virtually impossible to analyse cell-free nucleic acids from 
the placenta [34].

To achieve the highest yield and purity of miRNAs from 
plasma for Affymetrix miRNA array strips, we performed 
exhaustive and systematic method optimisation (Materi-
als and Methods; S1). Use of miRNA arrays enabled us to 
evaluate all miRNAs listed in miRBase v.20 in one reaction. 
Twelve miRNAs were identified as being significantly dys-
regulated between compared groups of samples.

Nevertheless, promising results from the initial study 
phase were not verified in subsequent validation phase 
using more sensitive method RT-qPCR and a larger group 
of samples.

We could not select a single miRNA that would discrimi-
nate euploid and DS pregnancies on the plasma level. How-
ever, clear separation of compared groups is visible when 
comparing the levels of the larger group of most dysregu-
lated miRNAs obtained from miRNA arrays (Fig. 2).

Several articles comparing miRNA levels in the plasma 
of pregnant women bearing euploid and DS fetuses have 
been published so far (Table 2). Nevertheless, these studies 
may have possibly come to different results due to the dif-
ferent workflow used. The lack of a standardised normalisa-
tion strategy represents a general issue in plasma miRNA 
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evaluation. Various reference miRNAs are used for normali-
sation of raw expression data. For example, miR-16 is often 
selected as a reference target, but it was found to be very sus-
ceptible to hemolysis [43]. Small nuclear or nucleolar RNAs 
are suitable only for normalisation of samples where nuclear 
material is expected, but not for plasma samples [44]. On the 
other hand, global mean normalisation is applicable only for 
a larger miRNA set (> 100 miRNAs) [45]. To prevent distor-
tion of our results, we decided to normalize our data with 
the same total miRNAs input as described previously [46].

Kotlabova et al. performed expression analysis of five 
miRNAs from chromosome 21 (miR-99a, let-7c, miR-
125b-2, miR-155 and miR-802) using qPCR with normalisa-
tion to reference miRNAs—miR-16 and let-7d [47]. Never-
theless, they found no differences between selected miRNA 
levels in the compared groups of samples (12 pregnancies 
with DS fetuses; 12 control samples). Another study evalu-
ating 14 miRNAs from Hsa21 (including the five miRNAs 
which Kotlabova et al. focused on) also using qPCR with 
normalisation to U6 snRNA was published by Erturk et al. 
[26]. They compared 33 euploid and 23 trisomic pregnancies 

and found two miRNAs—miR-99a and miR-3156—which 
were elevated in DS pregnancies. The most comprehensive 
study so far has been carried out by Kamhieh-Milz et al. 
[28]. A group of 1043 miRNAs were analysed using the 
high-throughput qPCR SmartChip Human miRNA Panel. 
Nevertheless, a very small number of samples were included 
(7 DS fetuses; 7 controls). Using a combination of three 
different normalisation strategies (corrected threshold cycle 
values, normalised relative quantities and a combination of 
both methods together) they found 36 miRNAs to be dif-
ferentially expressed in DS versus control pregnancies, 
neither miR-99a nor miR-3156 were among them. The lat-
est work on the topic was published by Zbucka-Kretowska 
et al. [48]. They examined levels of 800 miRNAs using 
NanoString technology within 12 DS pregnancies and 12 
controls. Using normalisation to the geometric mean of top 
100 probes (global mean), a group of 13 miRNAs was found 
to be dysregulated.

Although the study by Kotlabova et al. applied a cor-
rection for multiple testing, the remaining three studies 
did not. Omitting this correction can lead to false-positive 

Fig. 2  Heatmap displaying clear 
separation of pregnancies with 
DS fetuses (T21; orange) in 
comparison with controls (K; 
red) according to expressions 
of 61 miRNAs with the lowest 
p-value (fold change value was 
not considered). These data are 
based on the results of the pilot 
study (miRNA arrays). Most of 
the dysregulated miRNAs are 
down-regulated in the DS group 
of plasma samples (44 miR-
NAs). (Color figure online)

Table 2  Overview of the 
articles on the topic

C controls, T21 samples with fetal trisomy of 21, GW average gestational week, B-H Benjamini-Hochberg

Study Included miRNAs Samples (C/T21) GW Normalization Correction

Kotlabova et al. 5 12/12 18.5 miR-16; let-7d Bonferroni
Erturk et al. 14 33/23 17–18 U6 snRNA No
Zbucka-Kretowska et al. 800 12/12 15–18 Global mean No
Kamhieh-Milz et al. 1043 7/7 14.1 Multiple strategies No
Our study All in miRBase v.20 35/35 13.3 Input volume B-H
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results, especially for a high number of comparisons 
and small sample size, as in the case of the studies by 
Kamhieh-Milz et al. and Zbucka-Kretowska et al. [49]. 
Moreover, Zbucka-Kretowska et al. themselves reported 
that using Benjamini-Hochberg’s correction they would 
not reach any statistically significant results.

Our study included samples from early gestational 
weeks (11–14), which would allow potential utilization 
of miRNA markers found for early NIPT. However, our 
results from the validation study demonstrate that levels 
of pregnancy-associated miRNAs are too low in such early 
pregnancies. Analysis of samples from later gestational 
weeks would potentially lead to different results, but with-
out the required potential for early diagnosis. Differences 
in gestational age could also contribute to the discrepan-
cies between the results of studies compared (Table 2).

As well as different detection platforms, various pre-
analytical steps in sample handling, like sample stor-
age conditions (time, temperature), type of preservative 
tube, concrete blood centrifugation conditions for plasma 
separation, plasma input volume to isolation and type of 
miRNA isolation (see Supplement Materials; S1), have 
also proven to have an impact on the results achieved [43, 
50, 51].

Regardless of the different procedures and data process-
ing, none of the studies comparing plasma samples from 
euploid and DS pregnancies found any miRNA that could 
discriminate compared groups in all cases. These results 
indicate that miRNA determination in plasma from pregnant 
women is not applicable for NIPT of fetal DS.

Since most of the placental miRNAs are released to the 
circulation of pregnant woman via exosomes [30], it would 
be interesting in a future study to focus specifically on exo-
somal miRNAs. Exosomal miRNAs may be masked in the 
pool of total plasmatic miRNAs by other abundant miRNAs 
associated with RNA-binding proteins or derived from apop-
totic cells. Exosomes are a specific subtype of extracellular 
vesicles, which probably play a significant role in the inter-
cellular communication pathways involved in placentation, 
the formation of the vascular system between the mother and 
fetus and the induction of maternal immune tolerance to the 
fetus [52–55]. Therefore, exosomes could have potential as 
early non-invasive biomarkers of various pregnancy com-
plications, especially those connected to placenta develop-
ment. Indeed, exosomes are currently intensively studied in 
preeclampsia [42, 56]. As Down syndrome pregnancies are 
also complicated by abnormal placentation [57], exosomes 
released from such an impaired placenta could be also prom-
ising markers for early detection of Down syndrome fetuses 
from the maternal circulation. So far, miRNAs from circu-
lating nanoparticles have only been studied in young indi-
viduals with DS and their siblings with promising results 
achieved [58].

Conclusion

Previously, we found dysregulated miRNA levels in DS 
placentas that potentially interfere with essential biological 
pathways. In our current study, we focused on the plasma 
of pregnant women to explore whether overexpressed pla-
cental miRNAs are also detectable in maternal circulation 
and therefore applicable for NIPT. To our best knowledge, 
this is the first study performing genome-wide profiling of 
plasmatic miRNAs on such a large cohort of first-trimester 
pregnant women with DS fetuses. However, we could not 
conclusively demonstrate differences in miRNA levels in the 
first-trimester plasma of pregnant women with euploid and 
DS fetuses. The main reason probably was the high back-
ground of maternal miRNAs, which did not allow detection 
of potential differences in pregnancy-associated miRNAs in 
such early pregnancies. Further research will be needed to 
clarify the role of miRNAs in DS pathophysiology.

Materials and methods

The study consisted of two phases. A pilot study was per-
formed using Affymetrix GeneChip™ miRNA 4.1 Array 
Strips (Affymetrix, USA) and enabled the selection of a 
broader spectrum of miRNAs with different expression lev-
els between the compared groups (18 samples of plasma of 
pregnant women included; nine with trisomic and nine with 
euploid fetuses). Based on the pilot study results, our previ-
ous research on CVS samples [29] and the literature, a group 
of 23 miRNAs were selected for the subsequent validation 
(Table 1). TaqMan Advanced miRNA Assays (Life Tech-
nologies, USA) were used in validation study (52 samples 
included; 26 with trisomic and 26 with euploid fetuses).

Clinical samples

Plasma samples of pregnant women were collected between 
January 2015 and November 2017 at the Department of 
Obstetrics and Gynecology of the First Faculty of Medicine 
and General University Hospital in Prague, Screening Cen-
tre ProfiG2 in Prague and Genvia Genetic Laboratories. All 
samples were obtained before CVS between the 11th and 
14th gestational weeks from patients with an increased fetal 
trisomy risk based on first trimester combined test, increased 
maternal age or abnormal ultrasound finding (only in case 
of DS pregnancies). A total of 70 samples were included in 
the study; 35 of them were cytogenetically confirmed to have 
complete fetal trisomy of chromosome 21 (47, XX, + 21 or 
47, XY, + 21), and 35 to have normal karyotype (46, XX 
or 46, XY). Only non-smoking pregnant women without 
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any medication or any subsequently identified placental 
pathologies (e.g., preeclampsia), which can affect the over-
all miRNA profile, were included in our study [59, 60]. 
There were no statistically significant differences between 
compared groups of samples in maternal age, BMI, fetal 
sex or sample storage time (Table 3). All of the participants 
included were Caucasians.

The study was approved by the Ethical Committee of the 
First Faculty of Medicine, Charles University and General 
University Hospital in Prague. The informed consent was 
obtained from all participants.

Sample processing and miRNA isolation

Plasma separation and storage

Peripheral blood samples were collected by venepuncture 
using cell-free DNA BCT tubes (Streck, USA) to prevent 
coagulation. Tubes were stored at room temperature and pro-
cessed within 6 h after sampling at the Institute of Biology 
and Medical Genetics of the First Faculty of Medicine and 
General University Hospital in Prague and Genvia Genetic 
Laboratories. Two-step centrifugation was performed to 
obtain plasma samples from peripheral blood samples: (1) 
1100×g for 10 min at 10 °C and (2) 14,500×g for 10 min at 
room temperature. Plasma samples were frozen at − 80 °C.

Optimisation of miRNA extraction

To achieve the highest miRNA yield, we tested six different 
miRNA isolation kits with various input (200–2000 μl) and 
elution (14–50 μl) volumes. Improvement in miRNA extrac-
tion using a vacuum concentrator or glycogen were also 
tested. Concentration and quality of isolated miRNA sam-
ples were then evaluated using three different approaches 
(fluorometer, spectrophotometer and RT-qPCR). The best 
version of sample processing was selected for the prepara-
tion of clinical samples. The detailed optimisation procedure 
is provided in Supplemental information (S1).

miRNA isolation

Total RNA enriched for small RNAs was extracted from 
900 μl of plasma using a NucleoSpin miRNA Plasma kit 
(Macherey–Nagel, Germany) and eluted with 20 μl of sup-
plied elution buffer. The whole procedure was performed 
to achieve the highest yield based on previous optimisation 
(S1) and following manufacturer’s recommendations. Before 
proceeding to the microarray (pilot study) or reverse tran-
scription (validation study) step, the miRNA concentration 
of all samples was measured using a fluorometer Qubit 3.0 
(Thermo Fisher Scientific, USA) and total RNA concentra-
tion was determined by spectrophotometer (IMPLEN, Ger-
many). While miRNA concentration of all samples ranged 
between 2 and 3 ng/μl, concentrations of total RNA were 
about ten times higher (20–30 ng/μl).

miRNA expression analysis

Pilot study: genome‑wide miRNA profiling

Total RNA (130 ng) enriched for low molecular weight RNA 
from each sample was labelled using the FlashTag Biotin 
HSR RNA Labelling Kit (Affymetrix) on the GeneAtlas 
Hybridization Station (Affymetrix) and subsequently, it 
was processed using the GeneAtlas Hybridization, Wash 
and Stain Kit for miRNA Array Strips (Applied Biosys-
tems, USA) on the GeneAtlas Fluidics Station (Affymetrix) 
according to the manufacturer’s instructions. Array strip 
fluorescence intensities were finally determined using the 
GeneAtlas Imaging Station (Affymetrix). Raw data were 
processed and visualized using Partek Genomics Suite soft-
ware (Partek, USA).

Validation study: qPCR using TaqMan miRNA assays

A total of 23 miRNAs were selected for the validation study 
(Table 1). The set of miRNAs consisted of three groups:

(1) Seven miRNAs verified as being overexpressed in DS 
placentas in our previous study [29],

Table 3  Clinical characteristics 
of individuals included to the 
study

Maternal age BMI Fetal sex Gest. age N

Average ± SD Average ± SD Female Male Average ± SD

Pilot study
 Euploid fetuses 34.8 ± 1.6 23.8 ± 3.1 4 5 13.3 ± 0.3 9
 DS fetuses 36.9 ± 3.3 23.2 ± 2.1 4 5 13.2 ± 0.4 9

Validation study
 Euploid fetuses 33.3 ± 4.8 23.2 ± 3.8 13 13 13.4 ± 1.3 26
 DS fetuses 34.4 ± 6.3 24.1 ± 4.5 10 12 13.5 ± 0.8 26
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(2) 12 miRNAs with significantly different expression lev-
els between plasma samples of pregnant women with 
euploid and trisomic fetuses according to the results of 
the pilot study (p-value ≤ 0.05; fold change (FC) ≥ 1.5),

(3) Four miRNAs which did not fulfil the above conditions 
but were reported in the literature as being possibly 
associated with DS pathophysiology [28, 32, 33].

The same total miRNAs input (4 ng) from each sample 
based on fluorometer (Qubit 3.0) measurement was reverse-
transcribed using TaqMan™ Advanced miRNA cDNA Syn-
thesis Kit (Applied Biosystems). Expression of each miRNA 
was determined using quantitative real-time PCR (qPCR) 
with TaqMan Advanced miRNA Assays and TaqMan Fast 
Advanced Master Mix (Applied Biosystems). We have fol-
lowed the procedure recommended by the manufacturer. All 
reactions were performed in triplicate. Expression levels of 
the miRNAs were detected on QuantStudio 12 K Flex Real-
time PCR System (Applied Biosystems).

Data analysis

Pilot study

Raw results of miRNA array strips were evaluated using 
Partek Genomics Suite software (Partek, USA). One-way 
ANOVA with a cut-off p-value ≤ 0.05 and FC ≥ 1.5 was used 
for detection of differentially expressed miRNAs. To control 
the false discovery rate, the Benjamini–Hochberg correc-
tion was applied. All visualisations, such as heatmaps, were 
prepared using Partek software. Samples were normalised 
to the same total miRNA input based on measurement by 
fluorometer (Qubit 3.0).

Validation study

For the initial data processing, QuantStudio 12 K Flex Soft-
ware v1.1.2 and ExpressionSuite software v1.0.3 (Thermo 
Fisher Scientific) were used. The qPCR results normalised 
to the same total miRNAs input as in the pilot study were 
statistically evaluated using qBase + v2.4 software (Bioga-
zelle, Belgium). Expression data of plasma from women 
with euploid and trisomic fetus were compared using a 
nonparametric Mann–Whitney test with corrected cut-off 
p-value ≤ 0.05 and FC ≥ 2. To evaluate the power of our 
study we performed post-hoc analysis using G*Power soft-
ware [36].
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