Skip to main content
Log in

Effects of MOTS-c on the mitochondrial function of cells harboring 3243 A to G mutant mitochondrial DNA

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mitochondrial derived peptides (MDPs) are a class of peptide encoded in small open reading frames of mitochondrial DNA (mtDNA). MOTS-c, a recently discovered MDP, participates in retrograde signaling from the mitochondria to the nucleus to control cellular metabolism. Humanin, another MDP, has cytoprotective properties and enhances mitochondrial function. However, it has not yet been tested whether MOTS-c can affect mitochondrial function. We investigated the effect of exogenous and endogenous MOTS-c on mitochondrial function in a cybrid cell harboring 3243 A to G mutant mtDNA, which causes significant mitochondrial dysfunction. To test the effects of endogenous MOTS-c, the cybrid cell was transfected with a MOTS-c EGFP expression vector. Exogenous (synthetic) MOTS-c did not show a significant effect on the ATP content or the mRNA and protein levels of the mitochondrial complex in the mutant cybrid cells. Basal and stimulated mitochondrial respiration were also not affected by exogenous MOTS-c. The mutant cybrid cells transfected with the MOTS-c EGFP expression vector stably expressed MOTS-c, but ATP production and mRNA and protein levels of the mitochondrial complex were not affected. In contrast to other MDPs, MOTS-c does not improve mitochondrial dysfunction in cybrid cells with mutant mtDNA, which suggests the heterogeneous nature of MDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  2. Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  3. Kim SJ, Xiao J, Wan J, Cohen P, Yen K (2017) Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 595(21):6613–6621. https://doi.org/10.1113/jp274472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci USA 98(11):6336–6341. https://doi.org/10.1073/pnas.101133498

    Article  CAS  PubMed  Google Scholar 

  5. Gong Z, Tas E, Muzumdar R (2014) Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne) 5:210. https://doi.org/10.3389/fendo.2014.00210

    Article  Google Scholar 

  6. Kuliawat R, Klein L, Gong Z, Nicoletta-Gentile M, Nemkal A, Cui L, Bastie C, Su K, Huffman D, Surana M, Barzilai N, Fleischer N, Muzumdar R (2013) Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the beta cell. Faseb J 27(12):4890–4898. https://doi.org/10.1096/fj.13-231092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klein LE, Cui L, Gong Z, Su K, Muzumdar R (2013) A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun 440(2):197–203. https://doi.org/10.1016/j.bbrc.2013.08.055

    Article  CAS  PubMed  Google Scholar 

  8. Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R, Hinton DR (2016) The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction. Invest Ophthalmol Vis Sci 57(3):1238–1253. https://doi.org/10.1167/iovs.15-17053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21(3):443–454. https://doi.org/10.1016/j.cmet.2015.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim KH, Son JM, Benayoun BA, Lee C (2018) The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab 28(3):516–524.e517. https://doi.org/10.1016/j.cmet.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim SJ, Mehta HH, Wan J, Kuehnemann C, Chen J, Hu JF, Hoffman AR, Cohen P (2018) Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging (Albany NY) 10(6):1239–1256. https://doi.org/10.18632/aging.101463

    Article  CAS  Google Scholar 

  12. Janssen GM, Maassen JA, van Den Ouweland JM (1999) The diabetes-associated 3243 mutation in the mitochondrial tRNA(Leu(UUR)) gene causes severe mitochondrial dysfunction without a strong decrease in protein synthesis rate. J Biol Chem 274(42):29744–29748. https://doi.org/10.1074/jbc.274.42.29744

    Article  CAS  PubMed  Google Scholar 

  13. Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D, Lai ST, Nonaka I, Angelini C, Attardi G (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA 89(10):4221–4225. https://doi.org/10.1073/pnas.89.10.4221

    Article  CAS  PubMed  Google Scholar 

  14. Kariya S, Hirano M, Furiya Y, Ueno S (2005) Effect of humanin on decreased ATP levels of human lymphocytes harboring A3243G mutant mitochondrial DNA. Neuropeptides 39(2):97–101. https://doi.org/10.1016/j.npep.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Chae S, Ahn BY, Byun K, Cho YM, Yu MH, Lee B, Hwang D, Park KS (2013) A systems approach for decoding mitochondrial retrograde signaling pathways. Sci Signal 6(264):rs4. https://doi.org/10.1126/scisignal.2003266

    Article  CAS  PubMed  Google Scholar 

  16. Venegas V, Halberg MC (2012) Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 837:313–326. https://doi.org/10.1007/978-1-61779-504-6_21

    Article  CAS  PubMed  Google Scholar 

  17. Flierl A, Reichmann H, Seibel P (1997) Pathophysiology of the MELAS 3243 transition mutation. J Biol Chem 272(43):27189–27196. https://doi.org/10.1074/jbc.272.43.27189

    Article  CAS  PubMed  Google Scholar 

  18. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, O'Hearn S, Levy S, Potluri P, Lvova M, Davila A, Lin CS, Perin JC, Rappaport EF, Hakonarson H, Trounce IA, Procaccio V, Wallace DC (3243A) Progressive increase in mtDNA 3243A%3eG heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA 111(38):E4033–4042. https://doi.org/10.1073/pnas.1414028111

    Article  CAS  PubMed  Google Scholar 

  19. Lee C, Kim KH, Cohen P (2016) MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 100:182–187. https://doi.org/10.1016/j.freeradbiomed.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423(6938):456–461. https://doi.org/10.1038/nature01627

    Article  CAS  PubMed  Google Scholar 

  21. Pawlowski J, Kraft AS (2000) Bax-induced apoptotic cell death. Proc Natl Acad Sci USA 97(2):529–531. https://doi.org/10.1073/pnas.97.2.529

    Article  CAS  PubMed  Google Scholar 

  22. Harris MH, Vander Heiden MG, Kron SJ, Thompson CB (2000) Role of oxidative phosphorylation in Bax toxicity. Mol Cell Biol 20(10):3590–3596. https://doi.org/10.1128/mcb.20.10.3590-3596.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A2B4007166) and Seoul National University Hospital (0320160040). We thank Y. H. Wei from the National Yang-Ming University in Taiwan for providing the rho0 cell line. We also thank C. Lee from the University of Southern California for providing the MOTS-c-EGFP vector and anti-MOTS-c antibody.

Funding

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A2B4007166) and Seoul National University Hospital (0320160040).

Author information

Authors and Affiliations

Authors

Contributions

YMC and CHA designed the study. CHA, EHC and BSK conducted the experiments. CHA, EHC, BSK and YMC analyzed and interpreted the results. CHA and YMC wrote the manuscript.

Corresponding author

Correspondence to Young Min Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol of this study was approved by the Institutional Review Board at Seoul National University Hospital (No. H-0406-127-001). All procedures performed in this study were in accordance with the ethical standards of the institutional committee and with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 kb)

Supplementary file2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, C.H., Choi, E.H., Kong, B.S. et al. Effects of MOTS-c on the mitochondrial function of cells harboring 3243 A to G mutant mitochondrial DNA. Mol Biol Rep 47, 4029–4035 (2020). https://doi.org/10.1007/s11033-020-05429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05429-z

Keywords

Navigation