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Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a 
median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in 
clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective 
strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to 
lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically sum-
marized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and 
circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well 
highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound 
to provide us with new diagnostic and therapeutic targets.
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Introduction

IPF remains a chronic, debilitating, progressive pulmonary 
parenchyma illness, which falls under idiopathic interstitial 
pneumonia (IIP). High-throughput sequencing and bioinfor-
matics analyses improve our understanding of IPF ranging 
from aging, protease systems, lipid peroxidation to signal 
transduction mechanisms [1]. Most IPF patients are spo-
radic, whereas familial pulmonary fibrosis (FPF) accounts 
for approximately 2 to 20% of cases, suggesting a gene-
environment interaction in IPF [2]. Increasing evidence 
indicates a greater influence of genetic factors; however, the 
possible molecular mechanisms involved in IPF have not 
been fully identified. With the discovery of ncRNA in the 
1960’s, we identified its involvement in gene expression at 
transcription or post-transcription level, through epigenetics. 
ncRNAs constitute 98% of the human genome and are tran-
scribed from the genome, but do not encode proteins. It can 
be categorized into lncRNAs, miRNAs, circRNAs, and other 
ncRNAs that differ in structure, size, and function. ncRNAs 
can modulate protein abundance by modifying transcription, 

mRNA processing and mRNA stability. Presently, ncRNAs 
are considered important mediators for various physiological 
and biological reactions, like metabolism and differentia-
tion and are also related to some pathological conditions 
[3]. Over the past years, researchers have discovered that 
different ncRNAs might be involved in different diseases 
like diabetes, cancer, atherosclerosis, etc. [4]. Understand-
ing the function of ncRNAs may elucidate the mechanisms 
underlying the pathogenesis of IPF, possible biomarkers for 
this disease, and novel approaches for IPF therapy.

Whether ncRNAs interact with each other in IPF remains 
a mystery, with relevant data being sparse and non-system-
atic. In this review, we systematically and comprehensively 
discuss the effect of ncRNAs on IPF pathogenesis and prog-
nosis and how the crosstalk within ncRNAs influences the 
development of IPF. However, these results still need further 
experimental validation and identification.

The recent advances of ncRNA in IPF

The effect of lncRNAs on IPF

lncRNAs are a kind of ncRNA that lack an open reading 
frame, are longer than 200 nucleotides and do not encode 
proteins. It was discovered by Okazaki et al. [5] and is 
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located in the nucleus or cytoplasm. Non-coding RNAs 
can be grouped into six species based on the position in the 
genome, namely, exon sense-overlapping lncRNA, intron 
sense-overlapping lncRNA, intronic antisense lncRNA, 
natural antisense lncRNA, bidirectional lncRNA and large 
intergenic noncoding RNA(lincRNA) [6, 7]. In human, 
more than 15,000 lncRNAs have been defined with the rapid 
development of molecular biology technology, many of 
which play a potential role in normal physiology and human 
disease. Some lncRNAs are considered valuable biomark-
ers for certain cancers, cardiovascular diseases, and lung 
disorders during diagnosis and therapy. Cao et al. [8] discov-
ered that, for the first time, 210 lncRNAs were upregulated 
while 358 were downregulated in murine bleomycin-induced 
fibrosis. This suggesting these aberrant-expression lncRNAs 
significantly alter the ultrastructure of lung tissue, laying 
the foundation for future research on the molecular targets 
of lncRNAs.

However, the number of lncRNAs involved in IPF 
and their effects have not been fully described. Mounting 
research exist on lncRNA in the pathogenesis mechanism 
of IPF. lncRNAs can regulate gene expression through tran-
scription, epigenetics and post-transcription processes [6]. 
Studies show that lncRNA might participate in a series of 
important procedures, like X-chromosome inactivation, gene 
imprinting, transcriptional activation and interference etc. 
[9]. Interestingly, in bleomycin-induced mice models, lncR-
NAs are found to be related to many signaling pathways, like 
the chemokine and JAK/STAT signal transduction pathway 
[8]. lncRNAs can affect the expression of target or adja-
cent genes and involve inflammation-immune responses and 
telomere-mitochondrial function., playing a more complex 
part in IPF.

lncRNAs can regulate target or adjacent gene in IPF

LncRNAs function according to different action modes 
and can act as ceRNA of miRNAs, by absorbing specific 
miRNA and regulating the expression of the target gene. In 
other words, lncRNA acts as a miRNA “sponge” which pre-
vents miRNA from binding to its targets. The expression 
of many lncRNAs strongly relates to their neighboring 
genes, which means they can function as cis-regulators. 
lncRNA transcription may influence adjacent genes in 
mostly positive or negative manners [10]. In fibroblasts, 
lncRNA RP11-413M3.4 promotes the upregulation of the 
adjacent gene Notch1, induces the proliferation and differ-
entiation of myofibroblasts and produces a large amount of 
collagen fibers, leading to pulmonary fibrosis [11]. Song 
et al. [12] indicated that lncITPF can increase the expres-
sion of its nearby host gene, Itgbl1, through TGF-β1. The 
expression of lncRNA AP003419.16 and its adjacent gene 
RPS6KB2, increased significantly in patients with IPF. More 

importantly, AP003419.16 might increase the possibility of 
aging-associated IPF [13]. The lncRNA, CDKN2B-AS1, 
appears down-regulated in IPF patients compared with 
healthy controls. Its adjacent gene, CDKN2A, which pro-
motes lung cancer formation via the p53-signaling pathway, 
is also downregulated in IPF patients [14]. Additionally, the 
lncRNAs uc.77 and 2700086A05Rik can cause EMT by 
regulating the adjacent genes, Zeb2 and Hoxa3, in paraquat-
induced pulmonary fibrosis in experimental mice [10].

lncRNAs are involved in IPF 
through the inflammation‑immune response 
and telomere‑mitochondrial function

Evidence of immune inflammatory damage has been found 
in many IPF cases. An up-to-date study revealed that the 
upregulation of certain lincRNAs, namely LINC00960 
and LINC01140, and knockdown of LINC01140 but not 
LINC00960, stimulates the inflammatory response in IPF 
fibroblasts. Thus, demonstrating the importance of lincR-
NAs as regulators of proliferation and inflammation in IPF 
for the first time [15]. Dai et al. [16] found that the lncRNA 
MALAT1 could activate the lipopolysaccharide-induced 
inflammatory response pathway and promote the progression 
of lung injury in rat models. lncRNAs located in telomeres 
can partially explain the cause of IPF, specifically lncRNA 
Telomeric repeat-containing RNA (TERRA). The regulatory 
mechanism of TERRA in IPF pathogenesis was identified 
in Gao’s research [17]. This suggested that the abnormal 
expression of TERRA in ILD cases is sensitive to oxidative 
stress or apoptosis in alveolar epithelial type 2 cells. Cao 
et al. [8] also found differences in expression of lncRNA 
RMRP and telomeres enzyme RNA component (TERC) in 
a bleomycin-induced fibrotic murine model. The destruc-
tion of the CCAAT box in the lncRNA TERC promoter can 
induce pulmonary fibrosis [18]. Moreover, Liu et al. [19] 
found that the inactivation of lncRNA TERT reduces the 
severity of pulmonary fibrosis in conditional knockout mice.

Research status of miRNA in IPF

miRNAs serve as early diagnostic biomarkers 
and therapeutic targets for IPF

Different from lncRNAs, miRNA is a class of single-
stranded ncRNAs with only 19–25 base pairs, guiding the 
effector to mRNAs to repress protein production [20]. It can 
directly bind to the 3′ untranslated region (3′ UTR) of its 
target gene to control gene expression. To date, research-
ers have identified more than 3700 statistically significant 
human mature miRNAs and acquired 3494 new precursors 
[21].
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miRNA may be a diagnostic biomarker for IPF and can 
also determine its prognosis [22]. Abnormal changes of 
miRNA expression not only show in peripheral blood but 
also in lung biopsy samples of IPF patients. Previous inves-
tigations have indicated that the miR-17-93 gene cluster 
(miR-145, miR-199-5p, miR-200 and miR-154) is abnor-
mally expressed in human IPF tissues. In patients, miR213p 
is up-regulated obviously, whereas miR630 is down-regu-
lated. Furthermore, animal model experiments have demon-
strated that inhibition of the miR-17-92 gene cluster (miR-
29, miR-145, miR-199-5p, and miR-200) expression levels 
can affect the progression of pulmonary fibrosis [23]. Yang 
et al. [24] indicated that 47 miRNAs differed in expression, 
with 21 being upregulated and 26 downregulated. Surpris-
ingly, over 80% of miRNAs are decrease in IPF cases. Apart 
from this, miR-21/miR-126 is upregulated and miR-672/
miR-143 downregulated in asthmatic mice models [25]. Dif-
ferent miRNA expression profiles could not only distinguish 
between cancers and non-cancers, but also different sub-
types of lung cancer [26, 27]. However, the function of miR-
26a in COPD is still unclear [28]. Differential expression of 
miRNA is observed when comparing slow-progressing with 
rapid-progressing IPF [29]. The content of miR-21, miR-155 
and miR-101-3p correlates with IPF development, indicating 
their potential use in determining the prognosis of IPF [30]. 
This shows that miRNAs can be novel diagnostic indicators 
for respiratory diseases, particularly IPF.

As previously discussed, the expression differences of 
miRNAs can lead to respiratory diseases, especially IPF. In a 
previous study, SPC3649, an LNA-modified complementary 
oligonucleotide that can bind to miR-122, is used to repress 
hepatitis C virus (HCV) viremia. This may be the first use 
of targeted miRNAs for treatment [31]. Experimentally, it 
has been found that inhibiting miR-21 in mice with renal 
fibrosis proportionately relieves the degree of renal injury 
[32]. The findings of Kota et al. [33] postulate the possibility 
of utilizing miR-26a for treating liver cancer. More relevant 
to our investigation, miR-486-5p may be a therapeutic tar-
get for pulmonary fibrosis [34]. Previous investigations have 
only identified miR-489 as a therapeutic intervention in the 
maturation of pulmonary fibrosis, induced by silica in mice. 
However, epigenetic modifying drugs for non-neoplastic 
lung diseases, like miRNAs, is at its beginning with initial 
preclinical animal models. Verification with further clinical 
studies is still required to validate their utility.

miRNAs involved in the pathogenesis mechanism of IPF

Gene regulation with lncRNAs is complex and difficult 
to study. miRNAs mainly regulates negatively the expres-
sion of their target genes at the post-transcriptional level 
through mRNA destabilization or/and degradation. Not only 
does miRNA play a significant part in cell proliferation and 

differentiation, but also in the mechanism of IPF pathopoie-
sis. They can also be involved in IPF lung epithelial repair, 
EMT, fibroblast activation, myofibroblast differentiation, 
macrophage polarization, alveolar epithelial cells (AEC) 
senescence, and collagen production [22]. Every miRNA 
can complement and bind to many different target genes and 
different miRNAs can also act on the same gene. MiR-29c 
can bind to the 3′ UTR of Foxo3a and regulate AEC update 
and apoptosis to hinder IPF [35]. MiR-26a can bind to its 
target, HMGA2, which transforms lung epithelial cells into 
myofibroblasts in mice model with bleomycin-driven fibro-
sis. It provides evidence that miR-26a takes on an essential 
part in the pathology of IPF through the EMT mechanism 
[36]. Moreover, miRNAs like miR-375, miR-200, and let-7d 
participate in IPF by regulating EMT. Additionally, miR-21, 
miR-26a, miR-155, miR-9-5p, and miR-27a-3p participate 
in the course of IPF by regulating fibroblast function [28]. 
MiR-145 adjusts myofibroblast function in bleomycin-
induced pulmonary fibrosis [37]. In another study, Wang and 
colleagues found that miR-34a not only promotes the expres-
sion of β-galactosidase, but also inhibits cell proliferation 
[38]. MiR3245p can activate ROCK-1 and ROCK2, which 
are involved in cell proliferation, differentiation, apoptosis, 
adhesion, motility, and ECM remodeling in mouse fibrosis 
models [39]. MiR-29 can regulate ECM through its target 
genes; COL1A1-A2, ELN, FBN1, and even COL3A1 [40]. 
Another target gene of miR3245p, namely ITGBL1, hin-
ders collagen formation, EMT, and myofibroblast mobility in 
the lung tissues of bleomycininduced mice models. Notably, 
miRNAs can regulate each other by complementarily bind-
ing to each other during the pathogenesis of diseases. Early 
literature states that that miR-26a and let-7d collaboratively 
attenuate pulmonary fibrosis [41]. Additionally, miRNAs 
can be involved in pulmonary fibrosis through methylation 
and the regulation of early inflammation after lung dam-
age. For example, the miR-17-92 cluster promoter is hyper-
methylated in IPF [42]. A summary of the miRNAs and their 
targets in IPF is illustrated in Table 1.

The role of circRNA in the development of IPF

Contrary to linear RNA, circRNA is derived from a single 
RNA molecule, the ends of which are formed with cova-
lent linkage rather than 5′ and 3′ free ends, is resistant to 
RNase R, and thus remains more stable than linear RNA. 
Initially, circRNA was believed to be “errors” or “faults” 
of RNA splicing. It is, however, part of the novel category 
of endogenous RNAs, more widespread and diverse in 
mammals than previously thought [43]. circRNA accounts 
for a considerable proportion of the transcript. Abun-
dant circular molecules exceeds its counterpart of linear 
mRNAs by at least tenfold [44]. Sanger et al. [45] was the 
first to discover circRNA, subsequently followed by the 
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discovery of DCC, ETS-1, SRY, cytochrome P450 2C24, 
and cANRIL, in succession [46]. Memczak et al. [47] have 
identified 2000, 1900, and 700 circular RNAs in humans, 
mice, and nematodes from the sequencing data, respec-
tively. However, the amount of circRNAs is probably much 
higher, as only reads spanning the back-splice sequence 
can be used for detection. Advances in RNA sequencing 
(RNA-seq) techniques have thus far led to the discovery 
of more than 100,000 types of circRNAs [44]. circRNAs 
can be grouped into three categories, namely, exonic cir-
cRNAs (ecircRNAs), circular intronic RNAs (ciRNAs) 
and exonic-intronic circRNAs (EIciRNAs). circRNAs 
mainly belong to annotated exons (86.6%) and are located 
in the cytoplasm. Only a small proportion of circRNAs 
originate from introns. It often displays tissue and devel-
opmental-stage-specific expression, playing a pivotal role 
in fine-tuning the regulation of post-transcriptional gene 
expression. More importantly, cells can secrete circRNAs 
into peripheral blood through exosomes. circRNAs com-
monly exist in exosomes, saliva, and blood. Based on their 
abundance, cell-type and tissue-specific expression and 
functions, circRNAs are recognized as emerging biomark-
ers in many diseases. The expression of circRNA is asso-
ciated with many diseases, like atherosclerotic vascular 
disease, cancer, neurodegenerative diseases, and diabetes. 
They are also differentially expressed not only in colo-
rectal cancer (CRC), but also in pancreatic ductal adeno-
carcinoma (PDAC) [48]. For example, the expression of 
circANRIL increases the risk of coronary heart disease 

and circRNA MYLK, as a ceRNA, promotes bladder can-
cer [49]. Researchers have discovered that the interaction 
of two molecules, ciRS-7 and miR-7, is associated with 
neural diseases [50]. In islet cells, CDR1as can interact 
with miR-7 and its targets to regulate the transcription, 
synthesis and secretion processes of insulin [51]. They 
indicate distinct positions in the diagnosis, treatment and 
prognosis of diseases. However, the effect of circRNA on 
IPF is little known for us.

Exceptional circRNA expression in IPF has been identi-
fied with highthroughput microarray assays. Li et al. [52] 
discovered that hsa_circRNA_100906, 102100 and 102348 
are upregulated, while hsa_circRNA_101225, 104780 and 
101242 are downregulated in IPF. circRNAs regulate RNA 
transcription [53], act as protein sponges [54], interact 
with proteins [55], translate proteins [56, 57] and can be 
used as miRNA sponges [58, 59] to affect cell behavior. 
However, the specific function and mechanism of circRNA 
in IPF has not been explicitly described as yet. In this 
study we provided valuable insights into the pathogenesis 
of circRNA in IPF. André et al. [60] revealed that BARD1, 
the host gene of hsa_circRNA_102910, can be involved in 
lung epithelial cell damage and fibroblast proliferation in 
IPF. The target gene of hsa_circRNA_102100 and 102101 
may be related to chromosomal aneuploidy integrity and 
flawed cell cycles in IPF [61]. Zinc finger MYM-type 2, 
the host gene of hsa_circRNA _101225, can be involved in 
IPF by binding to fibroblast growth factor receptor1 [62]. 
The target gene of circRNAhsa_ circ_104310 can affect 

Table 1  The targets and 
functions miRNAs involved in 
IPF

miRNAs Targets Functions Quotation

miR-213p Not clear Upregulation [23]
miR-630 Not clear Downregulation [23]
miR-29c Foxo3a AEC renewal and apoptosis [35]
miR-26a HMGA2 EMT and fibroblast regulation [23, 36]
miR-200 Not clear EMT [28]
Let-7d Not clear EMT [23]
miR-375 Not clear EMT [23]
miR-21 Not clear Fibroblast regulation [23]
miR-155 Not clear Fibroblast regulation [23]
miR-27a-3p Not clear Fibroblast regulation [23]
miR-9-5p Not clear Fibroblast regulation [23]
miR-145 Not clear Myofibroblast differentiation [37]
miR-34a Not clear Promotes the expression of senes-

cence markers and inhibits cell 
proliferation

[38]

MiR3245p ROCK1/2
ITGBL1

Cell proliferation, differentiation, 
apoptosis, adhesion, motility, and 
ECM remodeling

[39]

miR-29 ELN, FBN1, COL1A1, 
COL1A2, COL3A1

ECM [40]

miR-17–92 cluster DNMT-1 Methylation [42]



3173Molecular Biology Reports (2020) 47:3169–3179 

1 3

the expression of the most genes in a transacting form 
[63]. The host gene of hsa_circRNA_102348 may encode 
a general binding partner, or chaperone, and regulate the 
JAK/STAT signaling pathway [64].

The lncRNA‑miRNA interaction network 
promotes IPF

lncRNAs are not sufficient templates for protein transcrip-
tion but are involved in epigenetic regulation through miR-
NAs [65]. lncRNAs probably entangle with miRNAs and 
influence its expression. In our study, we attempted to 
ascertain the relationship between lncRNA and miRNA 
and its function in pulmonary fibrosis. lncRNA can act on 
miRNA in four ways. Firstly, lncRNAs may act as ceRNA 
which plays a “molecular sponge” role in miRNA. For 
example, miR-15a antagonizes the function of lncRNA 
PFAR, which gives rise to extracellular collagen depo-
sition, fibroblasts proliferation, migration and differen-
tiation. Suggesting that lncRNA PFAR can act as sponge 
for miR-15a, contributing to fibrogenesis in lung fibro-
blasts [66]. A similar mechanism occurs between lncRNA 
NONMMUT065582 and miR-138, and lncRNA NON-
MMUT022554 and miR-26a, during lung fibrosis [67, 
68]. The knock-down of lncRNA H19 diminishes lung 
pulmonary fibrosis by binding to miR-140, suggesting 
that H19 acts as sponge for miR-140 [69]. Meanwhile, 
H19 can play a molecular sponge role for miR-196a and 
miR-29b [70, 71]. The lncRNA, DNM3OS (dynamin 3 

opposite strand) and its relevant miRNA, display differ-
ential expression in experimental or clinical conditions 
[72]. lncRNA NONMMUT021928, designated as a pul-
monary fibrosis-associated lncRNA (PFAL), promotes 
cell propagation, migration, motility and fibroblast-myofi-
broblast transition processes by competitively binding to 
miR-18a [73]. The lnc-PCF accelerates the propagation 
of epithelial cells through the complementary binding of 
miR-344a-5p, which has the target gene map3k11 [74]. 
lncRNA MRAK088388 “sponges” miR-29b-3p to regu-
late N4bp2, whereas MRAK081523 binds to let-7i-5p 
to regulate Plxna4 in lung fibrosis [75]. Secondly, some 
lncRNAs can be generated as precursor molecules of miR-
NAs. For example, lncRNA H19 can generate miR-675 
[76]. Thirdly, lncRNA and miRNA compete for target 
gene binding, therefore attenuating the inhibitory effect of 
miRNA on target genes and increasing its stability. Lastly, 
lncRNA can also regulate the expression levels of miRNA 
by binding with other proteins.

miRNAs can also act on lncRNAs in two ways. Firstly, 
miRNA accelerates the degradation of “molecular sponge” 
lncRNA. In other words, miRNA can regulate the stabil-
ity or expression of lncRNA. When lncRNA-UCA1 binds 
to miR-216b, its half-life is significantly shortened, indi-
cating that miR-216b accelerates the degradation of the 
lncRNA-UCA1 molecule. Additionally, the inhibitor of 
miR-216b can prolong the half-life of the lncRNA-UCA1 
molecule and enhance its stability [77]. Secondly, miR-
NAs regulate the expression of lncRNA by regulating 
the methylation of lncRNA promoters. A summary of the 
lncRNAs and their targets in IPF is shown in Table 2.

Table 2  The targets and functions of lncRNAs involved in IPF

lncRNA Adjacent gene/target Function Quotation

RP11-413M3.4 Notch1 Promote the proliferation and differentiation of myofibroblasts and produce a large 
amount of collagen fibers

[11]

ITPF Itgbl1 [12]
AP003419.16 RPS6KB2 Increase the risk of age-associated IPF [13]
CDKN2B-AS1 CDKN2A Low expression in IPF predicts lung cancer [14]
uc.77 Zeb2 EMT [10]
2700086A05Rik Hoxa3 EMT [10]
PFAR miR-15a Extracellular collagen deposition, fibroblast proliferation, migration, and differentiation [66]
NONMMUT065582 miR-138 [67]
NONMMUT022554 miR-26a [68]
H19 miR-140/-196a/-29b Promote fibroblast proliferation and epithelial-mesenchymal transition of alveolar 

epithelial cells
[69–71]

DNM3OS Not clear [72]
NONMMUT021928 miR-18a Promote cell proliferation, migration and fibroblast- myofibroblast transition [73]
Lnc-PCF miR-344a-5p Promote the proliferation of epithelial cells [74]
MRAK088388 miR-29b-3p Upregulation [75]
MRAK081523 let-7i-5p Upregulation [75]
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circRNA acts on miRNA in the pathogenesis 
of IPF

circRNAs can also interact with miRNAs and influence 
their expression. Reports have stated that interactions 
between circRNA and miRNA undertake pathophysi-
ological significance. The circRNA/miRNA regulatory 
network is involved in many signaling pathways of lung 
fibrosis, like transforming growth factor (TGFβ1) and 
NF-κB, which effects cell propagation, motility, migra-
tion and collagen compound in IPF [43]. We will explain 
the interaction between circRNA and miRNA from the 
following two aspects:

Firstly, circRNAs can sponge miRNAs to regulate tran-
scription or affect parental gene expression, which is the 
principle function. circRNAs form part of a potent group 
of ceRNA molecules, including lncRNAs, pseudogenes 
and mRNAs, which all competitively bind to miRNAs. 
circRNAs may be more capable of binding to miRNAs 
than other ceRNAs as they are abundantly expressed in 
the cytoplasm and remain stable in cells. Tens of thou-
sands of circRNAs have been found to compete with other 
RNAs for miRNA binding sites, based on the bioinfor-
matics analysis, with only a few circRNAs being verified 
[78]. For example, CiRS-7, more specifically CDR1as, has 
been found to serve as a sponge for miRNA [79]. The 
reduced gene polymorphisms of miRNA binding sites in 
circRNA suggests it may play a regulatory role as a sponge 
for miRNA [78]. An exon circRNA with 1.2 kb, derived 
from the mammalian sex determination gene, may serve 
as a miR-138 sponge in the regulating process [57]. Fur-
thermore, hsa_circRNA_100906 can bind to miR3245p/
miR3305p and hsa_circRNA_102348 can directly inter-
act with miR630, both of which are downregulated in IPF 
[73]. Zhang et al. [79] reported that miR3385p matches 
with hsa_circRNA_102101 and 102100 to regulate the 
coding gene CDC27, in IPF. Hsa_circRNA_101996 can 
act as the molecular sponge of miR9 and 145, to regu-
late lung fibrosis via several signaling pathways, like the 

plateletderived growth factor receptor β (PDGFR-β) path-
way [80, 81]. Also, circRNA_ 102348 is upregulated and 
proves to directly interact with miR630 in IPF [73]. Is the 
sponge function of circRNAs a universal phenomenon? 
In an early investigation, several circRNAs bind to a par-
ticular miRNA through multiple binding sites. However, 
most circRNAs bind only to 1–2 binding sites on miRNA 
[82]. As mentioned, the CDR1as and SRY have more 
than 70 miR-7 and 16 miR-138 binding sites, respectively 
[43]. circRNAs with more than 10 miRNA-binding sites 
are very few [83]. Owing to the relative distribution of 
binding sites, some circRNAs lack the function of miRNA 
sponges [84]. Therefore, only a small number of circRNAs 
can function as miRNA sponges.

Instead of acting as a repository for miRNAs, circRNAs 
may also be involved in their intracellular transport. They 
are speculated to function as miRNA transporters, possibly 
even releasing their cargo by cleavage of a perfectly com-
plementary miRNA [85]. As a typical example, CDR1as 
can transport miR-7 to a target location where miR-671 can 
stimulate the release of its load. At the same time, miR-7 
targets PAK1 and FAK1, verifying the abovementioned 
assumptions [86, 87].

These results prove that circRNAs can form a series of 
post-transcriptional regulatory factors through its interaction 
with miRNAs. Compared with linear RNAs, more stable 
circRNAs are particularly attractive for researchers who con-
centrate on biotechnological and therapeutic applications. A 
summary of the circRNAs and their targets in IPF is shown 
in Table 3.

Systems biology and the related models

As IPF is a complicated dysfunctional in biological sys-
tem, we can adopt systems biology approach to IPF studies. 
Systems biology involves both collecting high-dimensional 
data, which derive from noncoding RNAs findings, genom-
ics, proteomics, epigenetic changes, metabolisms, and ana-
lyzing them in an integrated manner consisting of network 

Table 3  The targets and functions of circRNAs involved in IPF

circRNAs Targets Functions Quotation

circRNA_100906 miR3245p/3305p Downregulation in IPF [73]
circRNA_102101/102100 miR3385p Regulate the coding gene (CDC27) [79]
circRNA_101996 miR9 and 145 Regulate lung fibrosis via PDGFRβ pathway [80, 81]
circRNA_102348 miR630 Encode a general binding partner, or chaperone, and regulate the JAK/

STAT signaling pathway
[64, 73]

circRNA_102910 Not clear Involved in lung epithelial cell damage and fibroblast proliferation [60]
circRNA_101225 Not clear Binding to fibroblast growth factor receptor1 [62]
circRNA_104310 Not clear In a transacting form to affect the expression of most genes [63]
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and modeling approaches. In this way, we could further our 
understanding of the IPF pathogenesis [88]. In one study, 
regulatory gene expression networks were identified using 
linear mixed-effect models and dynamic regulatory events 
miner (DREM). DREM generated a systems biology model 
that identified progressively divergent gene expression tracks 
with microRNAs and transcription factors that specifically 
regulate mild or advanced fibrosis [89].Lorenzo-Salazar 
et al. [90] performed target-enriched sequencing on 11p15.5, 
14q21.3 and 17q21.31 loci and found that 36 SNVs were 
associated with IPF susceptibility. In another prior study, 
2D electrophoresis and mass spectrometry were used to 
compare protein patterns [91]. Allen et al. [92] conducted 
genome-wide analyses and identified KIF15, MAD1L1 and 
DEPTOR were association with IPF susceptibility. Todd 
et al. [93] applied aptamer-based proteomics to analyze 

plasma at enrolment. Linear regression model was used to 
determine differential protein expression while multivariable 
models were used to select proteins distinguished IPF from 
controls accurately.

Conclusion

Collectively, ncRNAs (including lncRNA, miRNA, and cir-
cRNA) can interact with each other to regulate the progres-
sion of lung fibrosis by means of a complicated network. 
This helps explain the treatment limitations of lung fibrosis 
over many years, while simultaneously providing a potential 
therapeutic strategy. IPF relates to multiple genes. Genetic 
variants, both rare (defined as having a minor allele fre-
quency of less than 0.1%) and common (those with an allele 

Fig. 1  The crosstalk among ncRNAs. A  circRNAs act as miRNAs 
sponges to repress target genes. B lncRNAs sponge miRNAs to regu-
late the expression process of target genes. C miRNAs regulate the 
expression of lncRNAs by regulating the methylation of lncRNAs 
promoters. D lncRNAs can also regulate the expression levels of 
miRNAs through other proteins. E Some lncRNAs can be generated 

as precursor molecules of miRNAs and others, like piRNAs, snoR-
NAs, etc. F lncRNAs and miRNAs compete for binding opportunities 
to target genes. G miRNAs can regulate each other through comple-
mentarily binding.H miRNAs accelerate the degradation of lncRNAs. 
I circRNAs function as miRNAs transporters, possibly even releasing 
their cargo by cleavage through a perfectly complementary miRNA
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frequency of more than 5%), are not only connected with 
sporadic pulmonary fibrosis, but also FPF. Certain genetic 
loci seem to be involved in complicated physiological pro-
cesses, like alveolar stability, host cell defense, cell-cell bar-
riers and cell senescence. Several common variants are also 
related to characteristic clinical phenotypes [94]. Definitive 
evidence supports this view that some single nucleotide 
polymorphisms (SNPs), as well as some common variants 
like MUC5B and TOLLIP are related to the susceptibility 
and prognosis of IPF [95]. Seven telomere-related genes 
(TERT, DKC1, RTEL1, NAF1, PARN, TINF2, and TERC) 
have been identified in adult-onset FPF so far [96]. Petrovski 
et al. [97] have also identified a relationship between TERT, 
RTEL1, and PARN and sporadic IPF. Further developments 
in genomic sciences will help identify other genes related 
to IPF in the next few years, providing new pathways for 
further research.

ncRNAs mainly include lncRNAs, miRNAs and cir-
cRNAs, each of which drive the progression of IPF. 
Additionally, ncRNAs can interact with each other in the 
pathogenesis of lung fibrosis. Therefore we have decrypted 
the crosstalk of ncRNAs in the progression of IPF sys-
tematically and integrally. A summary of interplay among 
ncRNAs in the development of IPF is shown in Fig. 2, the 
crosstalk among ncRNAs is summarized in Fig. 1.
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