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Abstract
Drug-protein binding plays a key role in determining the pharmacokinetics of a drug. The distribution and protein binding 
ability of a drug changes over a lifetime, and are important considerations during pregnancy and lactation. Although proteins 
are a significant fraction in plasma composition, they also exist beyond the bloodstream and bind with drugs in the skin, tis-
sues or organs. Protein binding influences the bioavailability and distribution of active compounds, and is a limiting factor 
in the passage of drugs across biological membranes and barriers: drugs are often unable to cross membranes mainly due 
to the high molecular mass of the drug-protein complex, thus resulting in the accumulation of the active compounds and a 
significant reduction of their pharmacological activity. This review describes the consequences of drug-protein binding on 
drug transport across physiological barriers, whose role is to allow the passage of essential substances—such as nutrients 
or oxygen, but not of xenobiotics. The placental barrier regulates passage of xenobiotics into a fetus and protects the unborn 
organism. The blood–brain barrier is the most important barrier in the entire organism and the skin separates the human 
body from the environment.

Keywords Breast milk, Drug-protein binding, Skin barrier, 
Protein binding, The blood–brain barrier, The placental 
barrier.

Drug‑protein binding

Following absorption from the gastrointestinal system 
or direct infusion into bloodstream, a drug can bind with 
plasma proteins. The main proteins responsible for the bind-
ing in plasma are human serum albumin (HSA) and alpha-
1-acid glycoprotein (AAG) [1–3]. Their concentrations and 
functions are listed in Table 1 [4–6]. While the protein-drug 
complex is relatively stable, the connection between mol-
ecules is reversible: molecules can join and separate, and the 
equilibrium state is reached a few hours after the administra-
tion of a medicine [3].

The structure and properties of the drug determine the 
extent of both: plasma protein binding (PPB) and protein 
binding (PB) in the sense of the general process, because 

these concepts should be distinguished. Lipophilicity 
(described as logP) and acid–base properties have a signifi-
cant correlation with binding [7]. Hydrophobic and acidic 
drugs (e.g. warfarin, ketoprofen, ibuprofen, diazepam) bind 
preferably to HSA, while AAG connects with the basic 
ones (e.g. bupivacaine, clindamycine) [6–9] which should 
be taken into account while setting the therapy. Binding 
can also increase the solubility of compounds, especially 
hydrophobic ones, which would otherwise not be distributed 
in the aqueous environment of plasma [10]. A connection 
with the plasma proteins protects compounds from oxida-
tion, lowers their toxicity and increases their half-life; drugs 
highly bound to the plasma proteins often reveal low first 
pass-metabolism [10–12]. Volume of distribution depends 
from PB as well and is decreased for drugs highly bound in 
plasma or increased for those which bind in tissues [13–15]. 
In addition drugs with higher affinity to a binding site on a 
plasma protein can replace one with lower affinity and such 
competition can lead to an uncontrolled rise in the concen-
tration of the free, unbound fraction of a drug [16]. This 
can have serious consequences for narrow therapeutic index 
(NTID) drugs, where the difference between therapeutic and 
toxic doses is minimal (e.g. cardenolides, carbamazepine, 
phenytoin or warfarin [17, 18]) and any changes in the con-
centration of unbound, active form may be poorly tolerated 
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by the organism. A sudden increase in the unbound fraction 
of the drug may provide a toxic effect [19]. This can lead to 
clinical consequences such as high risk of bleeding (warfa-
rin) [19] or cardiac arrest (cardenolides) [20].

Level of protein binding depends on the properties of a 
drug but also on the surrounding environment for example, 
the temperature or pH. The latter can change the ionization 
state of the chemical compound [10, 21, 22]. The degree of 
plasma protein binding is governed by two variables, these 
being the unbound fraction of the drug in plasma (fu,p) and 
the percentage of plasma protein binding (PPB%), as given 
below in Eqs. 1 and 2 [3]:

An important consideration, often omitted in the litera-
ture, is that of drug-protein binding occurring outside the 
bloodstream. Compounds can bind with macromolecules 
in skin, breast milk, tissues and organs including the pla-
centa [13, 23, 24], where they become ‘stuck’ and are thus 
prevented from reaching site of pharmacological action 
[23, 25]. These drugs may later pass into the plasma but 
in an uncontrolled way, which disturbs the dosage and the 
intended result of pharmacotherapy.

Transfer across biological membranes 
and barriers

The cell membrane is a semipermeable phospholipid bilayer, 
which separates cell organelles and cytoplasm from the envi-
ronment. The ability of a molecule to cross the membrane 
depends on various factors including molecular weight, lipo-
philicity, ionisation state, the concentration on both sides 
of the barrier and protein binding [26, 27]. Low-molecular, 
lipid, unionised and unbound to plasma proteins molecules are 
reckoned as good penetrators through membranes, although 

(1)fu,p =
unbound drug concentration in plasma

total dose

(2)PPB% =
bound drug concentration in plasma

total dose
× 100%

extreme lipophilicity can cause accumulation in lipid environ-
ment [28, 29]. The mechanism of passive transport includes: 
simple diffusion (the undisturbed movement of small, lipo-
philic and unionized molecules across membrane) and facili-
tated diffusion, where specialized membrane proteins transport 
particles across barriers [30]. Active transport acts against the 
concentration gradient and as such requires energy, which is 
typically obtained by the hydrolysis of adenosine triphosphate 
(ATP). One such family of membrane proteins which actively 
transport drugs and other molecules across membranes is that 
of the ATP-binding cassette transporters (ABC transporters). 
They also contribute significantly to the passage of drugs 
through the blood–brain barrier or placenta [31]. Crossing bio-
logical barriers is a far more difficult matter. Their structure is 
more complex and there are additional mechanisms involved 
which prevent the passage of xenobiotics. Transfer across each 
barrier is explained in detail in the appropriate sections of this 
review. The most important, and the most difficult to pass, is 
the blood–brain barrier (BBB), which separates crucial organs 
from the environment.

Binding with HSA and AAG macromolecules affects the 
pharmacokinetic properties of pharmacologically-active 
compounds by decreasing their bioavailability and slow-
ing their passage across biological membranes and barriers 
[32–34]; proteins themselves hardly penetrate through the 
cell membranes [35–37]. On the contrary new approaches 
in target therapy also reveal that drug binding to the protein 
carrier improves the effectiveness of several pharmacothera-
pies [38], e.g. a simple but effective mechanism was used 
in anti-tumour pharmacotherapy. Drug-protein conjugates 
penetrate into tumour circulation easily, through fenestrated 
capillaries, and stay trapped inside [39]. Albumin is also 
used as a protein carrier in commonly used drugs such as 
levemir, methotrexate, doxorubicin or paclitaxel [40, 41].

The blood–brain barrier

The blood–brain barrier (BBB) protects the central nerv-
ous system (CNS), which controls the whole body. 
Blood vessels, which are part of the BBB, are lined with 

Table 1   Physicochemical properties of HSA and AAG​

Plasma protein Protein family Concentration in plasma Function

Human serum albumin, 
65 kDa, 585 amino acids

Albumins 3.5–5 g/dL Transport of compounds across the blood-
stream (mainly hydrophobic and acidic ones), 
maintenance of the blood oncotic pressure, 
antioxidant, anticoagulant and immunomodu-
lating properties

Alpha-1-acid glycoprotein, 
44 kDa, 183 amino acids

Globulins, acute phase 
proteins

Depends from physiological condi-
tion

Transport of compounds across the bloodstream 
(mainly ones with basic properties), AAG is 
produced during the inflammatory state
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tightly-connected endothelial cells. These unique connec-
tions between the endothelial cells are called tight junctions 
(TJs) and adherence junctions (AJs). The BBB is also com-
posed of a basement membrane, glial cells, pericytes and 
surrounding neurons [42]. The close cell connections, viz. 
TJs and AJs prevent the passage of molecules through the 
intercellular space: transport can only take place through the 
intracellular route, i.e. within the cells [43]. Further defence 
is provided by unique metabolic activity of the barrier, with 
enzymes such as γ-glutamyl transpeptidase (γ-GTP) or alka-
line phosphatase (AP) enabling chemical decomposition of 
compounds which can cross the BBB from the bloodstream 
[42, 44]. The CNS is also protected by the diversity of its 
routes of xenobiotic transport mechanisms [42, 43, 45]. Of 
the drug efflux transporters, i.e. those of ABC transport-
ers family P-glycoprotein (P-gp), breast cancer resistance 
protein (BCRP) and multidrug resistance protein (MRP) 
demonstrate the highest activity in the BBB [46]. These 
transporters are responsible for drug distribution into the 
CNS and they can remove compounds which cross the bar-
rier. Such efflux transporters have various substrates, includ-
ing anti-cancer drugs, such as doxorubicin or methotrexate, 
antiepileptics, such as phenytoin and carbamazepine, and 
antidepressants, such as venlafaxine and paroxetine. While 
some drugs are not intended to act on the CNS, many others 
have to penetrate the brain to reach the main site of their 
activity and achieve successful therapy [46]. Drug transport 
across the blood–brain barrier has been widely described by 
Pardridge et al., with a series of articles providing a clear 
review of various aspects of barrier structure, the transport 
of drugs across it and the development of drugs for use in 
the CNS [47–52]. New approaches to delivering CNS drugs 
are also mentioned in other recent articles [53, 54].

The blood–brain barrier protects the CNS from harm-
ful substances but its main role is to provide nutrients and 
oxygen, essential for the brain structures [42]. Oxygen mol-
ecules and drugs with low molecular weight and lipophilic 
properties can easily cross the BBB by simple diffusion 
[55]. Nutrition such as glucose, crucial for proper CNS 
function, or amino acids are carried by specific transport-
ers (e.g. GLUT1 glucose transporter); macromolecules with 
high molecular mass, such as insulin, are transported in the 
process of endocytosis [43, 56]. Drugs can pass through 
the BBB by transmembrane diffusion, especially those that 
are lightweight or with high lipophilicity, or are carried by 
transporters, as in the case of glucose [55]. Two parameters 
(Eqs. 3 and 4) describe the amount of a drug that is passed 
into the CNS: log BB and log PS [57, 58]. Log BB repre-
sents the ratio between drug concentration in the CNS and 
plasma, while log PS indicates the permeability of certain 
surface; while the former is easier to obtain and more intui-
tive to understand, the latter is currently receiving more 
research attention [57, 58]:

A number of studies have examined protein binding with 
drugs and their ability to cross the BBB [55, 59–61]. Albu-
min, like other proteins, does not readily pass through the 
barrier, and its drug-macromolecule complex, cannot cross. 
Based on this assumption, it appears that drugs which bind 
more readily to proteins are less able to pass into the CNS 
(‘free drug theory’ [34, 62]). This may be true for most 
drugs, but there are some exceptions to the rule. Several 
drugs which cross the BBB without difficulty, such as ben-
zodiazepines, steroids and a few hormones, demonstrate 
higher concentrations in the CNS than their unbound plasma 
fraction would indicate [63–66]. Similar observations were 
made by Videbæk et al. (1999) (Table 2) [67]. De Lange and 
Danhof [68] collected several papers which describe highly 
bound drugs (oxicams [69], imipramine and desimirpamine 
[70], isradipine, darodipine [71]) which also penetrate the 
BBB in surprisingly high extent (Table 2). There are several 
explanations of this phenomenon. Pardridge et al. claimed 
that the conformation of the protein changes while interact-
ing with capillary walls and a drug molecule is freed from 
a complex [64, 65, 72], Tanaka and Mizojiri ended up with 
similar conclusion [66]. Another idea was protein-mediated 
transport in which binding with protein (especially AAG) 
enhances the BBB penetration [62]. Several authors claimed 
that more permeable structure of capillary endothelium in 
some regions may be the reason of the increased extraction 
of a complex into the CNS [67, 68]. There is no doubt that 
protein binding has a significant role for penetrating BBB; it 
can either decrease the passage or affect it in the other way 
with mechanisms still to be discovered. Mentioned studies 
reveal that in vivo analyses seem to be more applicable in 
that case. The unique environment in the CNS or interac-
tions between proteins and brain capillaries apparently have 
a high impact on the matter, therefore there is a substantial 
difference between in vitro and in vivo results.

The placental barrier

The placenta is a unique connection between mother and 
fetus. It is formed during the sixth week of pregnancy and 
exists until the time of birth. Its main function is to deliver 
nutrients and oxygen to the foetus and to remove waste and 
metabolites. Throughout the pregnancy, the placenta also 
adopts other roles: from the tenth week, it also produces 

(3)logBB =
drug concentration in CNS

drug concentration in plasma

(4)

log PS =
observed permeability across BBB

[
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hormones such as chorionic gonadotropin (CG), human pla-
cental lactogen (HPL), relaxin, progesterone, testosterone, 
oestrogens etc. and it manifests metabolic activity [73, 74]. 
Inside the placenta the blood vessels from a mother and a 
child are tangled together but the blood itself does not mix; 
despite this, sufficient exchange of substances is maintained 
between the organisms [73]. Due to its high permeability, 
the placenta acts more as a filter than an actual barrier [75]. 
Bacterial cells are retained within the placenta as are macro-
molecules, such as insulin or heparin, and immunoglobulins, 
except IgG. Most drugs pass through the placental barrier, 
including barbiturates, antibiotics, sulphonamides and alco-
hol [75]. Small molecules cross the barrier by simple diffu-
sion, while drugs also cross by facilitated diffusion or active 
transport [75] or by endocytosis [73, 76–78]. It is assumed 
that the penetration of drugs through the placenta is limited 
mainly by protein binding rather than lipophilicity [79]. A 
significant role in the active transport of drugs is played by 
the ATP-binding cassette transporters, with the main ones 
being glycoprotein P and breast cancer resistance protein. 
They can either transport drug molecules to the fetal side 
or return them into maternal circulation; of these, the latter 
function is assumed to be more important, and plays a sig-
nificant role in forming the placental barrier [77].

During pregnancy, it is difficult to avoid pharmacother-
apy, and drug usage has increased in recent years. Drugs 
are administered in the treatment of chronic diseases such 
as epilepsy, diabetes, hypertension or they are prescribed 

temporally to treat infections such as the common cold. 
Additionally pregnant women often take over-the-counter 
drugs and dietary supplements, without medical advice [80, 
81]. The amount of a drug which crosses the placental bar-
rier is dependent on various factors: its physicochemical 
properties, pharmacokinetics, the concentration gradient on 
both sides of the barrier, the differences in pH in between 
maternal and foetal plasma and the levels of protein binding 
in both organisms [80, 81]. Protein binding is considered the 
important property in determining drug transport through 
the placenta, influencing both the speed and the extent of 
this process [16, 74].

The distribution of a drug between mother and child is 
limited also by the concentration of main plasma proteins. 
These change continually over the course of pregnancy: 
while the concentration of foetal albumin (alpha-fetopro-
tein, AFP) is lower than the maternal HSA level during the 
initial stages of pregnancy, it can be up to 20% higher than 
maternal HSA at childbirth [16]. The amount of foetal alpha-
1-acid glycoprotein also increases with the development of 
the foetus; however, it never exceeds adult levels, remain-
ing about 30–40% lower [16]. There are also differences in 
affinities to protein binding sites, with AFP attracting fewer 
molecules than HSA in adult plasma [82]. Protein binding 
can also occur in both maternal and foetal tissues; drug mol-
ecules can also form a repository in the placenta, from which 
it can be released in uncontrolled way into the maternal or 
foetal plasma [16].

Table 2   Influence of protein binding on drug penetration into the CNS

* Calculated from unbound fraction data available in the reference paper
** Not available
*** Bovine serum albumin, used as a replacement for HSA

Drug Pharmacological activity Plasma protein binding* CNS penetration Reference

Isoxicam Non-steroidal anti-inflammatory drugs 96,5% in human serum Increased (in the presence of HSA and 
AAG)

[69]

Meloxicam 99,7% in human serum Increased (in the presence of AAG)
Imipramine Antidepressants  − 52% to HSA − 67% to AAG​ Higher than predicted from the unbound 

fraction (for both proteins)
[70]

Desimipramine  − 61% to AAG​ Higher than predicted from the unbound 
fraction (for both proteins)

Isradipine Calcium channel antagonists  − 91% to HSA − 92% to AAG​ Higher than predicted from the unbound 
fraction (for both proteins)

[71]

Darodipine  − 86% to HSA − 96% to AAG​ Higher than predicted from the unbound 
fraction (for both proteins)

Propranolol Beta blocker NA** Low, compatible with the prediction (in 
the presence of BSA***) Higher than 
predicted from the unbound fraction (in 
the presence of aag)

[62]

Flumazenil GABA receptor antagonists  − 39% to HSA Higher than predicted from the unbound 
fraction (HSA)

[67]

Iomazenil  − 58% to HSA Higher than predicted from the unbound 
fraction (HSA)
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In vitro experiments with propofol using a human pla-
centa model by He et al. [79, 83] found propofol clearance to 
correlate with the concentration of fetal albumin. It appears 
that the potential to cross into the placenta is significantly 
dependent on binding with alpha-fetoprotein: an increase 
of alpha-fetoprotein concentration results in greater drug 
penetration. It was also found that infiltration across the 
placental barrier diminishes as the concentration of mater-
nal HSA rises. Elsewhere, [84] it was found that HSA has 
a great influence on citalopram and fluoxetine placental 
transport, with its presence in the perfusion solute increased 
the degree of penetration; this effect was correlated with 
the affinity of the drugs to HSA: the passage of fluoxetine 
(PPB% = 94%) was significantly lower than that of citalo-
pram (PPB% = 50%).

The placenta is considered a very weak barrier against 
xenobiotics and most of the administered drugs can easily 
cross it. Plasma protein binding appears to affect this process 
because it significantly limits placental transit, but alpha-
fetoprotein concentration increase which can enhance the 
passage is also an important matter. The accumulation of 
drugs in the placenta is still underestimated and it needs to 
be studied in detail to get a clearer picture of the processes 
that can affect fetal safety during pharmacotherapy.

Skin barrier

The skin is the largest human organ, and one which separates 
the internal environment from the surroundings and protects 
it from various pathogens. As a barrier, the skin also pre-
vents the penetration of many chemical compounds. This 
poses a challenge for the design of dermatological prepara-
tions, which are quite common in modern pharmacotherapy, 
mainly due to their easy and convenient application and lack 
of side effects typical for the oral administration. Dermato-
logical application can also enhance the systemic activity 
of a drug [85]. It has previously been assumed that most of 
the administered drug particles are absorbed into the skin 
circulation, thus allowing them to pass into the bloodstream, 
and that the process was regulated by the skin structure and 
condition, the structure of the drug and the type of pharma-
ceutical formulation [85, 86]. However, later studies suggest 
that the most important factors determining skin penetration 

are the structure and properties of the drug [85]. The per-
meability of the skin varies across its surface in response to 
changes in its structure, for example, variation in the num-
bers of follicles or the thickness of the stratum corneum [87].

Externally administered drugs can bind with the proteins 
within the skin layers, which can be desirable if only local 
action is intended: the drug will accumulate at its site of 
activity and will not cause any adverse systemic effects. 
However, in the case of transdermal drugs such skin pro-
tein binding will disturb their flow into the circulation, slow 
the passage through the skin and reduce the overall amount 
of active molecules in the system. Previously, it was found 
that highly protein binding drugs achieved lower concentra-
tion in plasma and the time of skin penetration was longer 
[88]. A 2008 study [89] examining the different pharmaco-
dynamics of tacrolimus and pimecrolimus with regard to 
their ability to penetrate the skin found that pimecrolimus is 
more likely to bind non-specifically with various skin pro-
tein than tacrolimus, thus yielding a lower systemic con-
centration (Table 3). Similarly, benzocaine has also been 
found to accumulate in the skin through non-specific binding 
(Table 3) [90].

These results suggest that protein binding in the skin 
should be carefully studied in case of dermatological for-
mulations, especially for highly protein binding drugs. Albu-
min is present in the skin [91] so the correlation between 
binding to HSA in plasma and skin could be a useful tool 
in pharmaceutical design. Nowadays, only the process of 
skin sensitisation is widely examined, which is supposed to 
be the result of non-covalent, reversible binding of various 
compound with skin proteins, including albumin [92, 93].

Drug penetration into breast milk

During lactation, similarly to pregnancy, it can be difficult 
to avoid the use of any medicines. Many women abandon 
breastfeeding when they take drugs, but often unnecessarily. 
The penetration of most xenobiotics into milk is quite low 
and only a fraction is typically ingested by an infant [94, 
95]. The amount of a drug in breast milk is estimated using 
the M/P ratio for a particular drug (Eq. 5): this represents 
the ratio between concentration of the drug in milk and in 
maternal plasma:

Table 3   Influence of protein binding on skin penetration

Drug Pharmacological activity Protein binding in skin Skin permeability Reference

Pimecrolimus Calcineurin inhibitors High, non-specific binding to human skin proteins Lower penetration than in 
the case of tacrolimus

[89]

Tacrolimus Low, non-specific binding to human skin proteins –
Benzocaine Local anaesthetic Accumulation of significant amount of benzocaine in skin Low penetration [90]
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This parameter should be calculated for each drug indi-
vidually and can be obtained from clinical studies, observa-
tions of single, medical cases or derived mathematically, 
using chemometric methods [96–101]. Drugs with M/P 
value lower than 1 are considered as safe for breast-feeding 
child.

Breast milk is regarded as the best nourishment for a new-
born infant, and for first six months of life, it can be its only 
food. Milk is produced in the mammary glands by special-
ised cells called lactocytes [102]. It is composed of a mixture 
of water and carbohydrates, proteins, lipids, vitamins and 
various other nutrients [103], with the composition changing 
over the course of lactation [104, 105]. During the first stage 
of lactation, breast milk, colostrum, is composed mainly of 
structural proteins and proteins which support the immune 
system e.g. lactoferrin or immunoglobulins [106, 107]. This 
is later replaced by transitional milk, which has higher levels 
of carbohydrates and lipids and it is more nutritious than 
colostrum. Mature milk is produced around the third week 
after birth, and it consists of around 7% carbohydrates, 4% 
lipids and less than 1% proteins [102, 106, 108]. This is 
later replaced by transitional milk, which has higher levels 
of carbohydrates and lipids and it is more nutritious than 
colostrum. Mature milk is produced around the third week 
after birth, and it consists of around 7% carbohydrates, 4% 
lipids and less than 1% proteins [109].

Drugs mostly penetrate into breast milk by simple dif-
fusion along a concentration gradient. This process is also 
limited by various factors connected with the compound 
structure: molecular weight, lipophilicity, protein binding 
or pKa [94, 110]. The pKa of a drug plays an important role 
on its accumulation in milk: the mean pH of breast milk 
ranges from 7.1–7.2 while that of plasma is around 7.4 [102, 
105]. Weak bases become ionized in breast milk, trapping 
them inside the mammary gland and preventing their return 
to maternal plasma [111]. In addition, drugs with high lipo-
philicity can also accumulate in the lipid phase of breast 
milk, and while protein binding can prevent the passage of 
molecules into milk, drugs also bind with the breast milk 
proteins themselves [112]. The composition of the protein 
phase consists of alpha-S1, alpha-S2, beta- and kappa- 
caseins, alpha-lactoalbumin, beta-lactoglobulin, plasma 
albumin and lactoferrin, as well as immunoglobulins A, M, 
G and lysozyme and alpha-1-acid glycoprotein [104, 113]. 
However, drug binding is typically weaker in breast milk 
than in plasma [111].

Drug transfer into breast milk is still a difficult subject 
for in vivo study. Although clinical studies have been per-
formed, they are usually based on very small groups of sub-
jects or describe individual cases. Short-term use of drugs, 

(5)M/P =
drug concentration inmilk

drug concentration in plasma

during infection for example, seems to be less problematic 
than in the case of long-term pharmacotherapy. Women 
suffering from chronic conditions such as multiple sclero-
sis, epilepsy or psychiatric disorders, or those undergoing 
anticancer therapy, often want to maintain breast-feeding. 
A review by Constantinescu et al. [114] examined the usage 
of various immunosuppressive drugs, including azathio-
prine, belatacept, corticosteroids, cyclosporine A, everoli-
mus, sirolimus and tacrolimus, during lactation. A study of 
methylprednisolone levels in the breast milk of two lactating 
women, one of them after renal transplantation and the other 
with multiple sclerosis [115, 116] found that methylpredni-
solone passes poorly into milk, which could be related with 
its high PPB%, estimated to be around 79% (Table 4) [116].

A 2013 study of antiepileptic drugs by Davanzo et al. 
[117] reviewed a body of pharmacokinetic and clinical data, 
including relevant infant dose (RID), and toxicity guidelines 
taken from LactMed [118] and Hale [119]. Older-generation 
drugs such as carbamazepine, phenobarbital, phenytoin and 
valproic acid were found to be relatively safe, even pheno-
barbital, which weakly binds with plasma proteins in mater-
nal plasma (20–45% [120]). The overall conclusion was that 
neither pharmacokinetic or literature toxicity parameters are 
good predictors of the drug penetration into breast milk. The 
penetration of cisplatin across the placenta [121] and into 
breast milk (Table 4) [121, 122] was also studied. The drug 
was found to demonstrate poor penetration into milk as its 
platinum ion binds strongly with plasma proteins [120, 122]. 
However, cisplatin is contraindicated during lactation, prob-
ably due to the fact that that it accumulates during repeated 
dosage.

Postpartum depression or anxiety also requires a long-
term treatment. SSRIs (selective serotonin reuptake inhibi-
tors) are believed to be the safest drugs for lactating women 
because their high PPB% values, among other factors, pre-
vent them from crossing readily into milk (Table 4) [123]. 
One exception is paroxetine, as it has been linked with an 
increased risk of heart dysfunction [124]. A detailed reviews 
about CNS drugs usage during lactation by Eberhard-Gran 
et al. and by Weissman et al. [125, 126]. They provide data 
regarding drug secretion into breast milk and recommenda-
tions for use. The latter study also points out the negative 
correlation between PB and M/P values [125]. Further infor-
mation about the use of antidepressants is also given in a 
review by Lanza di Scalea and Wisner [127].

In most of the cases described, where the excretion of the 
drug into milk is very low, one of the main reasons men-
tioned is high plasma protein binding. This may indicate that 
milk penetration may be the most PPB dependent of all the 
barriers described in this review. Another issue to consider 
is milk protein binding, which further reduces the amount of 
medicine an infant ingests. Experts claim that breastfeeding 
should not be interrupted during pharmacotherapy unless it 
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is necessary, which seems to be a reasonable solution. How-
ever, there should be sufficient evidence that the medicine is 
safe for breastfed infants or wouldn’t interrupt the lactation.

Summary

Drug-protein binding has a significant influence on the phar-
macokinetic properties of most compounds. It can limit the 
bioavailability of active compounds by controlling their 
passage through biological membranes; however, binding 
to plasma proteins allows hydrophobic drugs to be trans-
ported in the aqueous environment of the human organism. 
The drug-protein complex is less likely to cross the placental 
barrier or to enter breast milk, which decreases the nega-
tive effect of medicines on breastfeeding infants; however, 
some drugs can accumulate in placental tissues or in milk 
by binding with proteins in these regions, and upon their 
later release, enter the foetus or infant in uncontrolled way. 
Passage through the blood–brain barrier is more complicated 
by mechanisms which protect the central nervous system, 
such as active efflux and the use of strong protein binding 
mechanisms. Additional unknown mechanisms that lead to 
the penetration of several protein-bounded drugs make this 
matter even more complex. Skin penetration is an impor-
tant issue for transdermal drugs because they have a strong 
impact on their bioavailability and protein-binding interacts 
with this process.

Protein binding is relatively simple to study in vitro, but 
its effect on crossing biological barriers in a living organ-
ism could be difficult to grasp with these methods. This is 
probably due to the complexity of the entire barrier-crossing 
process and additional side-effects that simply cannot be 
obtained in the laboratory.
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