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Abstract
Overexpression of ATP-binding cassette (ABC) transporters causing multidrug resistance (MDR) in cancer cells is one of 
the major obstacles in cancer chemotherapy. The 5-FU resistant subclone (HL-60/5FU) of the human HL-60 promyelocytic 
leukemia cell line was selected by the conventional method of continuous exposure of the cells to the drug up to 0.08 mmol/L 
concentration. HL-60/5FU cells exhibited six-fold enhanced resistance to 5-FU than HL-60 cells. RT-PCR and ELISA assay 
showed significant overexpression of MDR-related ABC transporters, ABCB1, ABCG2 but especially ABCC1 in the HL-
60/5FU as compared with the parental cell line. Three novel synthetic 5-methylidenedihydrouracil analogs, U-236, U-332 
and U-359, selected as highly cytotoxic for HL-60 cells in MTT test, showed similar cytotoxicity in the resistant cell line. 
When co-incubated with 5-FU, these analogs were found to down-regulate the expression of all three transporters. However, 
the most pronounced effect was caused by U-332 which almost completely abolished ABCC1 expression in the resistant 
HL-60/5FU cells. Additionally, U-332 inhibited the activity of ATPase, an enzyme which catalyzes hydrolysis of ATP, pro-
viding energy to efflux drugs from the cells through the cellular membranes. Taken together, the obtained data suggest that 
acquired 5-FU resistance in HL-60/5FU cells results from overexpression of ABCC1 and that targeting ABCC1 expression 
could be a potential approach to re-sensitize resistant leukemia cells to 5-FU. The synthetic uracil analog U-332, which can 
potently down-regulate ABC transporter expression and therefore disturb drug efflux, can be considered an efficient ABCC1 
regulator in cancer cells.
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Introduction

Acute myeloid leukemia (AML), characterized as a hetero-
geneous clonal disorder of hematopoietic progenitor cells, 
is known to be a frequent cause of cancer-related deaths [1]. 
Therapies offered for patients with AML are not very suc-
cessful and survival after relapse remains poor. The main 
reason of this poor therapeutic outcome is the resistance to 
anticancer drugs [2]. Neoplastic cells can develop several 
mechanisms of multidrug resistance (MDR), such as DNA 
mutations, metabolic changes leading to drug degradation 

or drug target alteration, inhibition of cell death and, quite 
often, overexpression of ATP-binding cassette (ABC) trans-
porters [3–5].

The ABC transporter family consists of transmembrane 
proteins that use the energy from ATP hydrolysis to efflux 
various potentially dangerous compounds of diverse struc-
ture across a cell membrane [3–5]. While such efflux is a 
normal physiological process, it is also a known mechanism 
of drug resistance in cancer cells. Up to now 49 ABC trans-
porters have been identified in human cells [6]. Among them 
P-glycoprotein (ABCB1), multidrug resistance-associated 
protein 1 (ABCC1) and breast cancer resistance protein 
(ABCG2) are three best known transmembrane proteins 
from the ABC family that in many cases reduce the cellu-
lar uptake of drugs into cancer cells, defending them from 
medical interventions [7, 8].

In leukemic cells, both ABCB1 and ABCG2 are the most 
extensively characterized ABC transporters causing MDR 
[9–11]. However, many studies demonstrated that ABCC1 
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may also be responsible for anticancer drug insensitivity in 
leukemic cells [12–15]. ABCC1 can confer resistance to 
many commonly used anticancer drugs, including 5-fluoro-
uracil (5-FU) [16, 17]. 5-FU, was the first synthetic analog 
of the pyrimidine base uracil which showed pharmacological 
activity [18–21]. At the molecular level, 5-FU is an antineo-
plastic antimetabolite that interferes with DNA synthesis 
by blocking the thymidylate synthase-catalyzed conver-
sion of deoxyuridylic acid to thymidylic acid [18]. In the 
in vitro studies 5-FU was shown to induce apoptosis and 
cell cycle arrest and inhibit proliferation in numerous can-
cer cell lines [19–21]. Since 1957 5-FU has been a widely 
administered anticancer drug and it still plays an important 
role in the treatment of several cancers, including colon 
and breast cancers [22]. But despite its many advantages, 
clinical usefulness of 5-FU today has been greatly limited 
due to drug resistance. Therefore, novel drug candidates for 
chemotherapy and reversal of resistance are urgently needed. 
In the search for better anticancer drugs, uracil can serve 
as a useful tool for manipulating lipophilicity, polarity, and 
hydrogen bonding capacity of molecules, which may result 
in improved pharmacological, pharmacokinetic, toxicologi-
cal, and physicochemical properties of such agents [23, 24]. 
To this end, great attention has been given to 5-methyliden-
edihydrouracils which contain a conjugated exo-methylidene 
double bond incorporated onto the dihydrouracyl ring [25] 
(Fig. 1). Such structures, which may act as pyrimidine anti-
metabolites and/or as alkylating agents, raise the possibil-
ity of enhanced cytotoxic activity. Alkylation can decrease 
the activity of glutathione S-transferase (GST), the enzyme 
whose high level is observed in various types of cancer cells. 

Moreover, GST in some tumor cells is typically associated 
with elevated level of glutathione (GSH), one of the major 
factors contributing to MDR by reducing reactive oxygen 
species (ROS) and disturbing DNA repair processes [26, 
27]. Modulation of GST activity is therefore considered a 
potentially useful approach to overcome resistance to certain 
anticancer drugs [27].

Continuing the search for novel anticancer compounds 
containing an exo-cyclic methylidene group conjugated 
with a carbonyl function, we have synthesized a series of 
1,3-disubstituted or 1,3,6-trisubstituted 5-methylidenedihy-
drouracils [28], which all showed significant cytotoxicity 
against HL-60 leukemia cells (unpublished data). Three 
most potent analogs from this series, designated U-236, 
U-332 and U-359 (Fig. 2) have been chosen for further bio-
logical evaluation as possible inhibitors/downregulators of 
the major ABC transporters, ABCB1, ABCC1 and ABCG2, 
using 5-FU-selected multidrug-resistant human leukemia 
HL-60 cell line.

Materials and methods

Synthetic uracil analogs

Synthesis of 5-methylidenedihydrouracils U-236, U-332 and 
U-359 was performed using Horner–Wadsworth–Emmons 
methodology according to the described procedure. The 
purity of compounds established by NMR and analytical 
HPLC was over 96% [28].

Cell culture

The promyelocytic leukemia cell line (HL-60) was pur-
chased from the European Collection of Cell Cultures 
(ECACC). HL-60 cells were cultured in RPMI 1640 plus 
GlutaMax I medium (Invitrogen, Grand Island, NY, USA), 
supplemented with antibiotics (100 U/mL penicillin and 
100 μg/mL streptomycin) and 10% fetal bovine serum (FBS). 
Cells were maintained at 37 °C in a 5% CO2 atmosphere and 
were grown until 80% confluence. Cells not treated with 
the tested compounds were used as control. Both, untreated Fig. 1   Structures of biologically active compounds containing uracil 

skeleton

Fig. 2   Chemical structures of 
novel 5-methylidenedihydroura-
cils used in this study
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cells and cells incubated with the analogs were cultured in 
the same way.

Selection of 5‑FU‑resistant HL‑60 cells (HL‑60/5FU)

Selection of 5-FU-resistant cells was performed by the 
3 months exposure of HL-60 cells to increasing 5-FU con-
centrations (0.001–0.08 mmol/L).

MTT-based toxicity assay was used to analyze the meta-
bolically active cells. When the proliferation was similar 
to parental HL-60 cells, the concentration of 5-FU was 
increased. The procedure was repeated until the cells were 
able to tolerate up to 0.08 mmol/L of 5-FU. 5-FU-resistant 
HL-60 cells, designated HL-60/5FU, were than evaluated 
in other tests.

MTT‑based toxicity assay

The cytotoxicity of novel analogs was determined by MTT 
colorimetric assay which measures the activity of cellular 
dehydrogenases [29].

Briefly, cancer cells (104/well) were seeded into 24-well 
plates (in 100 µL) and left for 24 h. Various concentrations 
of the tested compounds were added and after another 24 h 
the MTT solution was added to each well. The plates were 
incubated for 2 h at 37 °C, then the medium was removed 
and 100 µL of dimethyl sulfoxide (DMSO) was added to 
each well. The absorbance of the blue formazone product 
was measured at 560 nm using the iMark Bio-Rad micro-
plate reader (Hercules, CA, USA).

Quantitative real‑time PCR assay

The mRNA levels of ABC transporter genes were analyzed 
by quantitative RT-PCR. Briefly, the HL-60 and HL-60/5FU 
cells were seeded on the 6-well plates at the appropriate cell 
density (4.0 × 105 cells/well) and left to grow. Then, the cells 
were treated with the tested compounds or co-incubated with 
the tested compounds and 5-FU (at IC50 concentration each) 
for 24 h. The effects of the combination treatment were com-
pared with those produced by the tested compounds alone.

Total RNA was extracted using the Total RNA Mini 
Kit (A&A Biotechnology, Gdynia, Poland) according to 
the manufacturer protocol. The concentration of RNA was 

measured using sensitive single-tube fluorimeter for fluo-
rescence-based quantitation of nucleic acids and proteins. 
The concentration used for further experiments was always 
150 ng/µL. cDNA was synthesized using Transcriba Kit 
(A&A Biotechnology, Gdynia, Poland).

Amplification of gene specific primers (ABCB1, ABCC1, 
ABCG2; Table 1) was performed using Real-Time 2x-PCR 
SYBR Master Mix (A&A Biotechnology, Gdynia, Poland) 
in Stratagene MX3005P QPCR System (Agilent Technolo-
gies, Inc. Santa Clara, CA, USA) according to the manufac-
turer’s instructions. GAPDH was used as an internal refer-
ence gene to normalize the expression of investigated genes. 
The expression levels of the tested genes were determined 
by the 2−∆∆CT method [30].

Assessment of ABCB1, ABCC1 and ABCG2 protein 
levels by ELISA‑based method

The ABCB1, ABCC1 and ABCG2 protein levels in HL-60 
and HL-60/5FU cells incubated with the tested compounds 
were measured by the ELISA-based method using ABCB1, 
ABCC1 and ABCG2 ELISA Kits. Briefly, cells were seeded 
on 6-well plates (4 x 105 cells/well) and incubated with the 
tested compounds at IC50 concentration each for 24 h. The 
cells were washed with phosphate-buffered saline (PBS) 
and collected by centrifugation (200×g, 5 min). Cellular 
protein extracts were prepared using Protein Extract Kit 
(Active Motif, Carlsbad, CA, USA). Properly diluted cel-
lular protein extracts (25 μg) and standards were added into 
each well of 96-well plates pre-coated with ABCB1, ABCC1 
and ABCG2 specific antibodies. ABC transporter proteins 
present in the tested samples specifically bound to the wells 
by immobilized antibodies. Addition of a secondary anti-
body conjugated to horseradish peroxidase (HRP) provided 
sensitive colorimetric readout. Finally, the stop solution was 
added to each well. The optical density (OD) of the yellow 
solution was measured spectrometrically at the wavelength 
of 450 nm.

ATPase assay

The ATPase activity was measured using the ATP/ADP 
Luminescent Detection Assay, according to the manufac-
turer guidelines. Briefly, HL-60 and HL-60/5FU cells were 

Table 1   Primer sequences for 
RT-PCR reaction

Gene Primer sequences

Forward primer Reverse primer

GAPDH GTC​GCT​GTT​GAA​GTC​AGA​GGAG​ CGT​GTC​AGT​GGT​GGA​CCT​GAC​
ABCB1 GTG​GGG​CAA​GTC​AGT​TCA​TT TCT​TCA​CCT​CCA​GGC​TCA​GT
ABCC1 AAC​AGG​GCA​GCA​AAC​AGA​AC CAT​TCG​AGC​CTT​CGA​GGA​G
ABCG2 GCT​TTC​TAC​CTG​CAC​GAA​AAC​CAG​TTGAG​ ATG​GCG​TTG​AGA​CCAG​
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seeded on 96-well plates at the density 1.0 × 104/mL in 
100 μL of standard growth medium and incubated with the 
tested compounds (at IC50 concentration) for 24 h. To assess 
ATPase inhibition, HL-60/5FU cells were co-incubated with 
the tested compounds and 5-FU (at IC50 concentration each).

After incubation, 100 μL of ADP-Glo day reagent was 
added. Each plate was shaken for 2 min on an orbital shaker 
and left at room temperature for 40 min for stabilization. 
Then, the detection reagent was added to each well. The 
luminescence signal was quantified using Flexstation 3. The 
effects of the combination treatment were compared with 
those produced by the tested compounds alone.

Results

Establishment of 5FU‑resistant HL‑60 cell line

HL-60 cells were selected for 5-FU-resistant phenotype by 
a long-time exposure (3 months) of cells to increasing 5-FU 
concentrations, until the cells were able to tolerate the drug 
up to 0.08 mmol/L and proliferate normally.

The development of the drug resistant phenotype is 
always accompanied by changes in various biological fea-
tures of the malignant cells, including morphological ones. 
When compared with HL-60, HL-60/5FU cells were larger 
with less defined irregular, rounded shape and contained 
multiple nucleoli in the cytoplasm. HL-60/5FU cells treated 

with 5-FU had more elongated shape as compared with the 
untreated ones but preserved membrane integrity (Fig. 3). 
It was also observed that HL-60/5FU showed faster growth 
rate (proliferation) than HL-60.

Sensitivity of HL‑60/5FU cells to 5FU

According to the MTT assay results, the HL-60/5FU cells 
exhibited considerable resistance to 5-FU as compared with 
HL-60 cells, with the IC50 values 505 μM and 82.5 μM, 
respectively (Fig. 4). The degree of resistance is usually 
evaluated in terms of resistance index (R) which is calculated 
as R = IC50 resistant cells/IC50 sensitive cells. Therefore, the 

Fig. 3   Morphological changes in 5-FU-resistant cells. Morphological 
changes were examined by light microscopy in: a, b sensitive HL-60 
cells; c, d HL-60/5FU cells; e, f HL-60/5FU cells incubated with the 

5-FU at IC50 concentration for 24 h. Cells were stained with Wright–
Giemsa stain (original magnification, × 1000)
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Fig. 4   The cytotoxic effect of 5-FU in HL-60 and HL-60/5FU cells 
analyzed by MTT assay
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HL-60/5FU cells were approximately sixfold more resistant 
to 5-FU than the original cell line.

Sensitivity of HL‑60/5FU cells to uracil analogs

Cytotoxic activity of uracil analogs U-236, U-332 and U-359 
in HL-60 and HL-60/5FU cells was compared in the MTT 
assay. As shown in Table 2 cytotoxic activities expressed as 
IC50 values were almost identical for U-332 and U-359 in 
both cell lines and differed only slightly for U-236, reveal-
ing that all three analogs were almost equally cytotoxic for 
HL-60 and HL-60/5FU cells.

Gene expression alterations in 5FU resistant cells 
treated with uracil analogs

The expression levels and the −∆∆Ct log-fold-change of ABC 
transporters were analyzed by quantitative RT-PCR.

In HL-60/5FU cells tolerant to 5-FU, relative ABCB1, 
ABCC1, ABCG2 mRNA expression levels were 8.9-, 13.9- 
and 8.6-fold higher than in sensitive HL-60 cells, respec-
tively, as determined by RT-PCR (Table  3). 5FU only 
slightly up-regulated expression of these transporter genes 
in the sensitive HL-60 cells (1.2-, 1.7- and 3.7-fold, respec-
tively) as compared with controls. In the resistant cells 
treated with 5-FU moderate enhancement of ABCB1 and 
ABCG2 expression was observed (6.68 and 5.09, respec-
tively), while the mRNA level of ABCC1 increased over 
31-fold.

In the sensitive and resistant cell lines uracil analogs 
U-236, U-332, 359 (used at IC50 concentration each) mod-
erately and similarly (1.2- to 5-fold) down-regulated trans-
porter gene levels. Then, resistant cells were co-incubated 
with 5-FU and each of the analogs. U-332 in combination 
with 5-FU drastically down-regulated mRNA expression of 
ABCC1, while the effect produced by the other two analogs 
was less pronounced.

Assessment of ABCB1, ABCC1 and ABCG2 protein 
level in HL‑60 and HL‑60/5FU cell lines

To measure ABCB1, ABCC1 and ABCG2 protein concen-
tration in cancer cell lysates, human ABC ELISA kits were 
used. Cancer cell lysates were prepared after 24 h exposure 

of cells to uracil analogs alone or with 5-FU (at IC50 con-
centration each). The effects of the concomitant treatments 
were compared with those produced by 5-FU or with the 
analogs alone.

Consistent with enhanced gene expression, 5-FU signifi-
cantly up-regulated protein levels of all three transporters 
in both cell lines (Fig. 5). On the other hand, uracil analogs 
down-regulated the level of ABCB1, ABCC1 and ABCG2 
in HL-60, as well as in HL-60/5FU cells, with the strongest 
effect observed for U-332. Co-incubation of U-236, U-332 
or U-359 with 5-FU potently decreased protein levels of 
ABCB1, ABCC1 and ABCG2 in the resistant cells, with 
the strongest change observed for ABCC1. The effect pro-
duced by U-332 was even below the value obtained for the 
untreated cells and was close to zero. U-332 can be there-
fore considered a new efficient inhibitor/downregulator of 
ABCC1 transporter.

Table 2   Cytotoxic activity of 1, 3-disubstituted 5-methylidenedihyd-
rouracil analogs and 5-FU in HL-60/5FU cell line

Cancer cell 
line

IC50 values (µM)

U-236 U-332 U-259 5-FU

HL-60 7.21 ± 0.11 0.94 ± 0.01 3.81 ± 0.81 82.54 ± 0.91
HL-60/5FU 10.12 ± 0.21 1.11 ± 0.01 4.31 ± 0.91 505.12 ± 9.01

Table 3   Expression of ABC transporter genes involved in multidrug 
resistance in HL-60 and HL-60/5FU cells treated with uracil analogs 
or 5-FU

Data are presented as mean ± SEM. Statistical significance was 
assessed by the test t *p < 0.05; **p < 0.01; ***p < 0.001 in compari-
son with control and +++p < 0.001 in comparison with 5-FU (in HL-
60/5FU cells), ##p < 0.01; ###p < 0.001 in comparison with 5-FU (in 
HL-60 cells)

Gene ABCB1 ABCC1 ABCG2

HL-60
 Control 1.0 ± 0.011 1.0 ± 0.01 1.0 ± 0.01
 5-FU 1.2 ± 0.03 1.7 ± 0.05*** 3.7 ± 0.01***
 Control 1.0 ± 0.02 1.0 ± 0.01 1.0 ± 0.01
 U-236 0.7 ± 0.01** 0.2 ± 0.01 0.8 ± 0.08
 Control
 U-332

1.0 ± 0.25 1.0 ± 0.33 1.0 ± 0.22
0.2 ± 0.002*** 0.1 ± 0.001*** 0.4 ± 0.001**

 Control 1.0 ± 0.011 1.0 ± 0.01 1.0 ± 0.01
 U-359 0.2 ± 0.008* 0.6 ± 0.009** 0.3 ± 0.009**

HL-60/5FU
 Control 1.0 ± 0.22 1.0 ± 0.03 1.0 ± 0.003
  5-FU 6.68 ± 1.04**,## 31.02 ± 4.23***,### 5.09 ± 0.01***
 Control 1.0 ± 0.001 1.0 ± 0.01 1.0 ± 0.01
 U-236 0.8 ± 0.01*,+++ 0.1 ± 0.02***,+++ 0.8 ± 0.02*,+++

 Control 1.0 ± 0.01 1.0 ± 0.01 1.0 ± 0.01
 U-332 0.2 ± 0.01**,+++ 0.1 ± 0.01***,+++ 0.3 ± 0.01** +++

 Control 1.0 ± 0.02 1.0 ± 0.01 1.0 ± 0.07
 U-359 0.2 ± 0.003**,+++ 0.6 ± 0.001***,+++ 0.3 ± 0.002**,+++

HL-60/5FU (co-incubation with 5-FU)
 Control 1.0 ± 0.02 1.0 ± 0.03 1.0 ± 0.02
 U-236 1.1 ± 0.01 0.7 ± 0.01 0.9 ± 0.01***
 Control 1.0 ± 0.01 1.0 ± 0.08 1.0 ± 0.23
 U-332 0.4 ± 0.01** 0.1 ± 0.01*** 0.6 ± 0.01**
 Control 1.0 ± 0.02 1.0 ± 0.22 1.0 ± 0.07
 U-359 0.5 ± 0.03** 0.4 ± 0.01*** 0.9 ± 0.01
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Modulation of ABC transporter‑mediated ATP 
hydrolysis by uracil analogs

ABC transporters mediate the transport of substrates against 
a concentration gradient using energy derived from ATP 
hydrolysis, which is proportional to the transporter activ-
ity and could easily be detected by a luminescence method. 
Measuring ATPase activity allows for the assessment of 
ABC transporter levels [31–33].

The ATP/ADP Luminescent Detection Assay was used 
to determine the level of ATPase activity in HL-60 and HL-
60/5FU cells incubated with uracil analogs alone or in com-
bination with 5-FU.

In HL-60 cells U-332 decreased the relative activity of 
ATPase to 36%, while the results obtained for U-236 and 
U-359 were non-significant (Fig. 6). The inhibition of ATP 
hydrolysis was much stronger in HL-60/5FU cells. The 
incubation of these cells with U-236, U-332 and U-359 
caused a decrease of ATPase activity to 20%, 17% and 93%, 
respectively, as compared with control. By contrast, both 
HL-60 and HL-60/5FU cells treated with 5-FU had signifi-
cantly increased ATPase activity, up to 117% and 134%, 
respectively.

Co-incubation of cells with U-236, U-332 or U-359 and 
5-FU powerfully decreased the relative activity of ATPase, 
to 29% (for U-236 and U-359) and 24% (for U-332), com-
pared with the effects produced by 5-FU alone.

Discussion

The appearance of the MDR phenotype is a major and still 
unresolved problem in the therapy of leukemia. Cancer cells 
may either possess inherent resistance to some drugs or can 
become resistant after cycles of chemotherapy (acquired 
resistance). Numerous studies have shown that drug-resist-
ance can be linked to enhanced efflux of various drugs from 
cancer cells by ABC transporters [34]. The major anticancer 
drugs such as doxorubicin, mitoxantrone, etoposide, topote-
can, 5-FU are all substrates for the ABC transporters, usually 

Fig. 5   Influence of U-236, U-332, U-359 and 5-FU on ABCB1 (a), 
ABCC1 (b) and ABCG2 (c) protein concentration in HL-60 and HL-
60/5FU cells. Human ABC ELISA kits and extracts from cancer cells 
treated with the analogs and 5-FU (at IC50 concentration each) were 
used. Data are expressed as mean ± SEM. Statistical significance was 
assessed using one-way ANOVA and a post hoc multiple comparison 
Student–Newman–Keuls test. *p < 0.05; ***p < 0.001 in comparison 
with control; +++p < 0.001 in comparison with 5-FU (in HL-60/5FU); 
###p < 0.001 in comparison with U-236 or U-332 or U-359 (in HL-60)
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Fig. 6   Relative activity of ATPase in HL-60 and HL-60/5FU cells 
incubated with uracil analogs alone or in combination with 5-FU. 
Data are expressed as mean ± SEM. Statistical significance was 
assessed using one-way ANOVA and a post hoc multiple compari-
son Student–Newman–Keuls test ***p < 0.001 in comparison with 
control; ###p < 0.001 in comparison with 5-FU (in HL-60/5FU); 
+p<0.05; +++p < 0.001 in comparison with U-236 or U-332 or U-359 
(in HL-60)
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overexpressed in tumor cells and the delivery of these drugs 
to the site of action is often very limited if not impossible 
[35–37].

For this reason, a lot of research have been focused on 
identifying inhibitors/downregulators of ABC transporters 
[38–40]. Such compounds may affect drug transport in sev-
eral ways. They can directly interact with ABC transporter 
proteins, decrease the level of intracellular ATP which is 
the source of energy for the ABC pumps, they can influence 
membrane phospholipids, increasing membrane permeabil-
ity for ions that reduce activity of these transporters [41]. 
Such inhibitors/downregulators, used in combination with 
known anticancer drugs can improve drugs’ efficacy and 
suppress resistance.

The first generation of inhibitors, also referred to as che-
mosensitizers, such as verapamil, calmodulin antagonists 
or indol alkaloids, was characterized by low activity which 
required the use of high doses and therefore resulted in ele-
vated toxicity [38, 42]. Agents of the second generation, such 
as cyclosporin A, GF120918 (elacridar) and dexverapamil 
had less side effects but still low affinity for ABC transport-
ers, as they were also substrates for cytochrome P450 and 
were quickly metabolized by this enzyme [43]. Inhibitors 
of the third-generation were designed to specifically inhibit 
activity of only one transporter, in most cases ABCB1, and 
some of them are currently in various stages of clinical trials 
[44, 45]. Examples of such agents are laniquidar, anthranila-
mide derivative tariquidar and pipecolinate analog biricodar 
[46]. Despite their diverse chemical structures they all have 
high potency and specificity for ABCB1 transporter. The 
fourth-generation inhibitors include various classes of natu-
ral compounds belonging to many chemical families, such 
as alkaloids, flavonoids, coumarins, terpenoids. These com-
pounds offer a potential for semi-synthetic modifications to 
produce new scaffolds which may evade the toxicities shown 
by currently used inhibitors [46, 47]. Some of these com-
pounds are inhibitors of ABCC1 and ABCG2 (hydrophobic 
flavones, acridones, chromanones) but they are still in the 
phase of in vitro studies [48].

In this report we tested three novel synthetic 5-methyl-
idenedihydrouracil analogs which significantly inhibited 
proliferation in HL-60 cells, as potential expression modu-
lators of ABCB1, ABCC1 and ABCG2 proteins, considered 
responsible for anticancer drug insensitivity in leukemic 
cells.

The 5-FU resistant subline was obtained from the HL-60 
cell line by the conventional method of intermittent and con-
tinuous exposure of the cells to 5-FU. This subclone was 
reproducible and the cells were sixfold more resistant to 
5-FU in the MTT assay compared with the parental cells.

In the resistant cells treated with 5-FU expression of the 
three mentioned above transporters was up-regulated but the 
highest increase (over 30-fold) was observed for ABCC1. We 

have also shown that in the HL-60/5FU cells relative ABCB1, 
ABCC1 and ABCG2 protein levels were twofold higher than 
in the sensitive HL-60 cells, indicating that 5-FU was probably 
a substrate for these transporters.

Three new synthetic 5-methylidenedihydrouracil analogs, 
U-236, U-332 and U-359, highly cytotoxic for HL-60 cells in 
MTT test, showed similar cytotoxicity also in the resistant cell 
line. These analogs were then evaluated as possible inhibitors/
downregulators of ABCB1, ABCC1 and ABCG2 transporters 
in HL-60/5FU cell line. All three compounds, but most signifi-
cantly U-332, were able to reverse resistance of HL-60/5FU 
cells to 5-FU treatment.

To confirm the substrate or inhibitor nature of 5-FU and 
the analogs, their influence on the ATPase activity was then 
investigated. As opposed to 5-FU which stimulated ATPase 
activity, being therefore a substrate for the transporters, U-332 
significantly inhibited the ATP hydrolysis in both tested cell 
lines. Co-incubation of HL-60/5FU cells with U-332 and 5-FU 
powerfully down-regulated the relative activity of ATPase, 
confirming that this analog could decrease the activity of ABC 
transporters in HL-6-/5FU cells.

In conclusion, in the present study the leukemia 5-FU-
selected HL-60 cell line with multidrug resistance character-
istics was established. These characteristics included over-
expression of ABCB1, ABCG2 and ABCC1 transporters, 
indicating that their high level is responsible for drug resist-
ance. Out of these three transporters, ABCC1 was found to be 
the most overexpressed. The synthetic uracil analog U-332 
potently decreased the level of ABCC1 protein in the resistant 
cells and can be considered an efficient inhibitor/downregula-
tor of this transporter in cancer cells.
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