Skip to main content
Log in

Cloning and expression characterization of the chicken Piwil1 gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Piwi gene involves in the germline stem cells self-renewal, transposon silencing and post-transcriptional gene regulation in the majority of organisms; however, the biological function of Piwi gene in poultry remains unclear. Here we cloned the Piwi-like 1 (Piwil1) gene and characterized its expression in the Langshan chickens during the development. The results showed that the PIWIL1 protein was the homolog of mice MIWI and human HIWI proteins (100 % identity), and encoded a cytoplasmic protein including the two conserved domains PAZ and PIWI. In males, the expression of Piwil1 gene showed a bimodal distribution in the gonads during embryogenesis with peaks at embryonic 14.5 and 17.5–18.5 days respectively. After puberty, the expression of Piwil1 gene increased sharply and reached a high level at the sexual maturity. The mRNA expression of Piwil1 gene at 27 weeks of age is 35–40 times that of 0 week of age, indicating that the high expression of Piwil1 gene was essential to maintain the spermatogenesis. In females, the expression of Piwil1 gene showed a unimodal distribution in the embryonic gonads. A strong peak appeared at E16.5–17.5d when the primary oocytes have entered the prophase I of meiosis. Subsequently, the expression of Piwil1 gene decreased gradually and kept at the low level during the embryogenesis. So Piwil1 gene was likely to play an important role during the meiosis I. This report filled in partly the gap of the Piwi gene researches in poultry and defined our research directions in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476

    PubMed  CAS  Google Scholar 

  2. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12:3715–3727

    Article  PubMed  CAS  Google Scholar 

  3. Cox DN, Chao A, Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514

    PubMed  CAS  Google Scholar 

  4. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43

    Article  PubMed  CAS  Google Scholar 

  5. Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26:603–609

    Article  PubMed  CAS  Google Scholar 

  6. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623

    Article  PubMed  CAS  Google Scholar 

  7. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027

    Article  PubMed  CAS  Google Scholar 

  8. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  9. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764

    Article  PubMed  CAS  Google Scholar 

  10. Deng W, Lin H (2002) Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  PubMed  CAS  Google Scholar 

  11. Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849

    Article  PubMed  CAS  Google Scholar 

  12. Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  PubMed  CAS  Google Scholar 

  13. Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799

    Article  PubMed  CAS  Google Scholar 

  14. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Lonino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju JY, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207

    PubMed  CAS  Google Scholar 

  15. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  16. Grivna ST, Beyret E, Wang Z, Lin HF (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714

    Article  PubMed  CAS  Google Scholar 

  17. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    Article  PubMed  CAS  Google Scholar 

  18. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:970–975

    Article  Google Scholar 

  19. Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the argonaute family in the human genome. Genomics 82:323–330

    Article  PubMed  CAS  Google Scholar 

  20. Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, Jin G, Zhang J, Wu J, Meng L, Shou C (2006) Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 118:1922–1929

    Article  PubMed  CAS  Google Scholar 

  21. Lee JH, Schütte D, Wulf G, Füzesi L, Radzun HJ, Schweyer S, Engel W, Nayernia K (2006) Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl2XL pathway. Hum Mol Genet 15:201–211

    Article  PubMed  CAS  Google Scholar 

  22. Chang GB, Chen R, Zhang Y, Dai AQ, Ma T, Chen GH (2011) Cloning and analysis of piRNAs from testes of three species. Thai J Vet Med 41:193–197

    Google Scholar 

  23. Chen R, Chang GB, Zhang Y, Chen GH, Hu GS, Luan DQ, Liu Y, Dai AQ (2011) Cloning and expression analysis of piRNAs and Piwill gene in quail. Sci Agric Sin 44:1727–1735 (in Chinese)

    CAS  Google Scholar 

  24. Zhang Y, Chang GB, Chen R, Dai AQ, Luan DQ, Li JC, Ma T, Hua DK, Chen GH (2012) Cloning and expression profiling of piRNA-like RNAs in chicken. Acta Vet Zootech Sin 43:857–866 (in Chinese)

    CAS  Google Scholar 

  25. Yang H, Wang XB, Liu XJ, Liu XF, Li LX, Hu XX, Li N (2012) Cloning and expression analysis of piRNA-like RNAs: adult testis-specific small RNAs in chicken. Mol Cell Biochem 360:347–352

    Article  PubMed  CAS  Google Scholar 

  26. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  27. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD, and COMPEL. Nucleic Acids Res 26:364–370

    Article  Google Scholar 

  28. Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894

    Article  PubMed  CAS  Google Scholar 

  29. Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128:2823–2832

    PubMed  CAS  Google Scholar 

  30. Kim TH, Yun TW, Rengaraj D, Lee SI, Lim SM, Seo HW, Park TS, Han JY (2012) Conserved functional characteristics of the PIWI family members in chicken germ cell lineage. Theriogenology 78:1948–1959

    Article  PubMed  CAS  Google Scholar 

  31. Li BC, Chen GH, Wang KH, Qian JF (2001) Study on the origin and development of the chicken embryonic gonad. China Poult 23:58–61 (in Chinese)

    Google Scholar 

  32. Smith CA, Roeszler KN, Bowles J, Koopman P, Sinclair AH (2008) Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Dev Biol 8:85

    Article  PubMed  Google Scholar 

  33. Castañeda J, Genzor P, Bortvin A (2011) piRNAs, transposon silencing, and germline genome integrity. Mutat Res 714:95–104

    Article  PubMed  Google Scholar 

  34. Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R (2012) DNA demethylation and USF regulate the meiosis-specific expression of the mouse Miwi. PLoS Genet 8:e1002716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance to the antibody generation by Invitrogen Inc. (Shanghai, China) is gratefully acknowledged. This study was supported by the National Key Technology R&D Program (2011BAD28B03), National Natural Science Fund (31172199 & 31372297) and the Key Technology R&D Program of Jiangsu Province, China (BE2013392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Chen.

Additional information

Rong Chen and Guobin Chang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Chang, G., Dai, A. et al. Cloning and expression characterization of the chicken Piwil1 gene. Mol Biol Rep 40, 7083–7091 (2013). https://doi.org/10.1007/s11033-013-2831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2831-9

Keywords

Navigation