Skip to main content

Advertisement

Log in

cDNA cloning, characterization and expression analysis of catalase in swimming crab Portunus trituberculatus

cDNA cloning and expression analysis of catalase gene of Portunus trituberculatus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. In the present study, a full-length cDNA sequence of catalase was cloned from the haemocytes of swimming crab Portunus trituberculatus by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end method. The catalase cDNA sequence contained 1,851 bp with an open reading frame of 1,551 bp encoding 516 amino acid residues. The conserved catalytic active residues His-71, Asn-144 and Tyr-354 were predicted in the amino acid sequence of P. trituberculatus catalase. The deduced catalase protein had a calculated molecular mass of 58.5 kDa with an estimated isoelectric point of 6.90. Multiple alignment analysis revealed that the deduced amino acid sequence of catalase shared high identity of 68–95 % with those of other species. Quantitative real-time RT-PCR analysis revealed that P. trituberculatus catalase transcript was strongly detected in haemocytes, hepatopancreas, heart, stomach, intestine, gill, ovary and muscle. The expression level of catalase transcripts both in haemocytes and hepatopancreas changed rapidly and dynamically after Vibrio alginolyticus challenging. These facts indicate that catalase was perhaps involved in the acute response against invading bacteria and was an inducible protein involved in the host innate immune response through elimination of H2O2 in crab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  PubMed  CAS  Google Scholar 

  2. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    Article  PubMed  CAS  Google Scholar 

  3. Smith VJ, Brown JH, Hauton C (2003) Immunostimulation in crustaceans: does it really protect against infection? Fish Shellfish Immunol 15:71–90

    Article  PubMed  Google Scholar 

  4. Lee KS, Kim SR, Park NS, Kim I, Kang PD, Sohn BH, Choi KH, Kang SW, Je YH, Lee SM, Sohn HD, Jin BR (2005) Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem Mol Biol 35:73–84

    Article  PubMed  CAS  Google Scholar 

  5. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Google Scholar 

  6. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  7. Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto K, Banno Y, Fujii H, Miake F, Kashige N, Aso Y (2005) Catalase from the silkworm, Bombyx mori: gene sequence, distribution, and overexpression. Insect Biochem Mol Biol 35:277–283

    Article  PubMed  CAS  Google Scholar 

  9. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  PubMed  CAS  Google Scholar 

  10. David M, Munaswamy V, Halappa R, Marigoudar SR (2008) Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pestic Biochem Physiol 92:15–18

    Article  CAS  Google Scholar 

  11. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Biochem Mol Biol 296:295–309

    CAS  Google Scholar 

  12. Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183:1434–1440

    Article  PubMed  CAS  Google Scholar 

  13. Manduzio H, Monsinjon T, Galap C, Leboulenger F, Rocher B (2004) Seasonal variations in antioxidant defences in blue mussels Mytilus edulis collected from a polluted area: major contributions in gills of an inducible isoform of Cu/Zn-superoxide dismutase and of glutathione S-transferase. Aquat Toxicol 7:83–93

    Article  Google Scholar 

  14. Kashiwagi A, Kashiwagi K, Takase M, Hanada H, Nakamura M (1997) Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp Biochem Physiol B 118:499–503

    Article  PubMed  CAS  Google Scholar 

  15. Klotz MG, Klassen GR, Loewen PC (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14:951–958

    Article  PubMed  CAS  Google Scholar 

  16. Storz G, Tartaglia LA (1992) OxyR: a regulator of antioxidant genes. J Nutr 122:627–630

    PubMed  CAS  Google Scholar 

  17. McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med 23:489–496

    Article  PubMed  CAS  Google Scholar 

  18. Bryant DD, Wilson GN (1995) Differential evolution and expression of murine peroxisomal membrane protein genes. Biochem Mol Med 55:22–30

    Article  PubMed  CAS  Google Scholar 

  19. Arun S, Thirumurugan R, Visakan R, Balamurugan S, Arunachalam V, Subramanian P (2003) Optimal analytical conditions for catalase in fresh water prawn, Macrobrachium malcolmsonii. Biotech Histochem 78:1–4

    Article  PubMed  CAS  Google Scholar 

  20. Tavares-Sánchez OL, Gómez-Anduro GA, Felipe-Ortega X, Islas-Osuna MA, Sotelo-Mundo RR, Barillas-Mury C, Yepiz-Plascencia G (2004) Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection. Comp Biochem Physiol B 138:331–337

    Article  PubMed  Google Scholar 

  21. Zhang QL, Li FH, Zhang XJ, Dong B, Xie YS, Xiang JH, Zhang JQ (2008) cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 24:584–591

    Article  PubMed  CAS  Google Scholar 

  22. Liu HP, Chen FY, Gopalakrishnan S, Qiao K, Bo J, Wang KJ (2010) Antioxidant enzymes from the crab Scylla paramamosain: gene cloning and gene/protein expression profiles against LPS challenge. Fish Shellfish Immunol 28:862–871

    Article  PubMed  CAS  Google Scholar 

  23. Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151:142–151

    Google Scholar 

  24. Campa-Cordova AI, Hernandez-Saavedra NY, De Philippis R, Ascencio F (2002) Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to beta-glucan and sulphated polysaccharide. Fish Shellfish Immunol 12:353–366

    Article  PubMed  CAS  Google Scholar 

  25. Mohankumar K, Ramasamy P (2006) White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Res 115:69–75

    Article  PubMed  CAS  Google Scholar 

  26. Mathew S, Kumar KA, Anandan R, Viswanathan Nair PG, Devadasan K (2007) Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comp Biochem Physiol C Toxicol Pharmacol 145:315–320

    Article  PubMed  Google Scholar 

  27. Chongsatja PO, Bourchookarn A, Lo CF, Thongboonkerd V, Krittanai C (2007) Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7:3592–3601

    Article  PubMed  CAS  Google Scholar 

  28. Ji PF, Yao CL, Wang ZY (2009) Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen associated molecular patterns. Fish Shellfish Immunol 27:563–570

    Article  PubMed  CAS  Google Scholar 

  29. Chen LL, Lo CF, Chiu YL, Chang CF, Kou GH (2000) Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab Scylla serrata. Dis Aquat Organ 40:157–161

    Article  PubMed  CAS  Google Scholar 

  30. Nogami K, Maeda M (1992) Bacteria as biocontrol agents for rearing larvae of the crab, Portunus trituberculatus. Can J Fish Aquat Sci 49:2373–2376

    Article  Google Scholar 

  31. Bachère E, Chagot D, Grizel H (1988) Separation of Crassostrea gigas hemocytes by density gradient centrifugation and counterflow centrifugal elutriation. Dev Comp Immunol 12:549–559

    Article  PubMed  Google Scholar 

  32. Li JT, Chen P, Liu P, Gao BQ, Wang QY, Li J (2011) Molecular characterization and expression analysis of extracellular copper–zinc superoxide dismutase gene from swimming crab Portunus trituberculatus. Mol Biol Rep 38:2107–2115

    Article  PubMed  CAS  Google Scholar 

  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  35. Liu Q, Li HY, Wang Q, Liu P, Dai FY, Li J (2007) Identification and phylogenetic analysis of a strain of Vibrio alginolyticus, a pathogen in Portunus trituberculatus with Emulsification disease. Mar Fish Res 28:9–13

    Google Scholar 

  36. Garcia MX, Foote C, Van SE, Devreotes P, Alexander S, Alexander H (2000) Differential development expression and cell type specificity of Dictyostelium catalases and the irresponse to oxidative stress and UV-light. Biochim Biophys Acta 1492:295–310

    Article  PubMed  CAS  Google Scholar 

  37. Orbea A, Ortiz-Zarragoitia M, Sole M, Porte C, Cajaraville MP (2002) Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat Toxicol 58:75–98

    Article  PubMed  CAS  Google Scholar 

  38. Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188

    PubMed  CAS  Google Scholar 

  39. Cajaraville MP, Cancio I, Ibabe A, Orbea A (2003) Peroxisome proliferation as a biomarker in environmental pollution assessment. Microsc Res Tech 61:191–202

    Article  PubMed  CAS  Google Scholar 

  40. Pipe RK, Livingstone DR (1993) Antioxidant enzymes associated with the blood cell and haemolymph of the mussel Mytilus galloprovincialis. Fish Shellfish Immunol 3:221–233

    Article  Google Scholar 

  41. Miguel NCO, Wajsenzon IJR, Allodi S (2005) The expression of catalase in the visual system of the crab Ucides cordatus. Nauplius 13:159–166

    Google Scholar 

  42. Kim BY, Kim HJ, Lee KS, Seo SJ, Jin BR (2008) Catalase from the white-spotted flower chafer, Protaetia brevitarsis: cDNA sequence, expression, and functional characterization. Comp Biochem Physiol B 149:183–190

    Article  PubMed  Google Scholar 

  43. Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, L. setiferus. Dev Comp Immunol 25:565–577

    Article  PubMed  CAS  Google Scholar 

  44. Johnson PT (1987) A review of fixed phagocytic and pinocytic cells of decapod crustaceans with remark on hemocytes. Dev Comp Immunol 19:679–704

    Article  Google Scholar 

  45. Vogt G (1996) Cytopathology of Bay of Piran shrimp virus (BPSV), a new crustacean virus from the Mediterranean Sea. J Invertebr Pathol 68:239–245

    Article  PubMed  CAS  Google Scholar 

  46. Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132

    Article  PubMed  CAS  Google Scholar 

  47. Ryu JH, Ha EM, Oh CT, Seol JH, Brey PT, Jin I, Lee DG, Kim J, Lee D, Lee WJ (2006) An essential complementary role of NF-kappa B pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J 25:3693–3701

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 30871933 and No. 40806067), Agricultural Science and Technology Achievements Transformation Fund Programs (No. 2010GB23260589) and National “863” Project of China (No. 2012AA10A409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Li, J., Liu, P. et al. cDNA cloning, characterization and expression analysis of catalase in swimming crab Portunus trituberculatus . Mol Biol Rep 39, 9979–9987 (2012). https://doi.org/10.1007/s11033-012-1826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1826-2

Keywords

Navigation