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Abstract Infarction irreversibly damages the heart, with

formation of an akinetic scar that may lead to heart failure.

Endogenous cardiac stem cells (CSCs) are a promising

candidate cell source for restoring lost tissue and thereby

preventing heart failure. CSCs may be isolated in vitro, via

the formation of cardiospheres, to give cardiosphere-

derived cells (CDCs). Although qRT-PCR analyses of

CDCs have been performed, no justification for the selec-

tion of the housekeeping gene has been published. Here,

we evaluated the most suitable housekeeping gene for

RNA expression analysis in CDCs cultured under nor-

moxia, hypoxia or with prolyl-4-hydroxylase inhibitors

(PHDIs), from both neonatal and adult rats, to determine

the effects of ageing and different culture conditions on the

stability of the housekeeping gene for CDCs. Six candidate

housekeeping genes, [glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH), beta-actin (Actb), hypoxanthine

phosphoribosyltransferase 1 (HPRT-1), beta-2-microtubu-

lin (b2M), 60S acidic ribosomal protein large P1 (RPLP-1)

and TATA box binding protein (Tbp)] were evaluated in

this study. Analysis using geNorm and NormFinder

revealed that GAPDH was the most constant housekeeping

gene among all genes tested under normoxia for both

neonatal and adult CDCs, whereas Actb was the most

stable housekeeping gene under hypoxia. For the PHDI-

treated CDCs, overall, GADPH, Actb and b2M were more

consistently expressed, whereas HPRT-1, RPLP-1 and Tbp

showed unstable expression. The ranking for b2M, HPRT-1

and RPLP-1 stability was different for neonatal and adult

cells, indicating that expression of these genes was age-

dependent. Lastly, independent of age or culture condi-

tions, Tbp was the least stable housekeeping gene. In

conclusion, a combination of Actb and GADPH gave the

most reliable normalization for comparative analyses of

gene transcription in neonatal and adult rat CDCs precon-

ditioned by hypoxia or PHDIs.

Keywords Housekeeping genes � Cardiosphere-derived

cells � Hypoxia � Prolyl-4-hydroxylase inhibitors

Introduction

Stem cells were first identified within the heart in 2003 [1],

challenging the generally accepted paradigm that the heart

is a post mitotic organ [2, 3]. In 2004, Messina et al. [4]

developed a method to isolate stem cells from human and

murine heart, expanding them as cardiospheres (CSp).
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Such CSp were clonogenic, expressed stem and endothelial

progenitor cell antigens/markers, and appeared to have the

properties of adult cardiac stem cells. The CSp were

expanded to obtain a reasonable number of cardiosphere-

derived cells (CDC) for transplantation [5]. CSp and CDCs

derived from heart explant culture in vitro caused myo-

cardial regeneration and functional improvement when

injected into the infarcted mouse heart in vivo [4, 5].

Preconditioning of stem cells to enable survival in the

hypoxic environment has been postulated to improve cell

production efficiency and potency for myocardial repair

[6]. The implantation of hypoxic (5% O2) CDCs into

infarcted hearts of mice in vivo resulted in greater cell

engraftment and better functional recovery than with con-

ventionally cultured (normoxic) CDCs [6]. Hypoxia trig-

gers a number of physiological and cellular adaptations to

reduced oxygen, with many processes involved in oxygen

homeostasis being mediated by the hypoxia-inducible

factor (HIF) transcriptional complex, which is negatively

regulated by the prolyl-4-hydroxylase (PHD) enzyme. The

PHD enzyme is a conserved subfamily of dioxygenases

that uses oxygen and 2-oxoglutarate as a co-substrate and

iron as a co-factor to catalyse the post-translational

hydroxylation of specific prolyl residues of HIF-a subunits

[7–9]. Upon hydroxylation, the HIF-1a subunit is recog-

nized by the von Hippel–Lindau protein which targets the

subunit to proteasomal degradation [9]. The sensitivity of

PHD hydroxylase capacity depends on its co-substrate and

co-factor. Thus, limited oxygen supply or inhibition of the

2-oxoglutarate or iron could inhibit PHD activity and thus

potently activate the HIF response [10–13].

Here, we cultured CDCs under hypoxia (2% oxygen)

or used three different prolyl-4-hydroxylase inhibitors

(PHDIs) for CDC HIF stabilization. The PHDIs used in this

study included dimethyloxaloylglycine (DMOG) – a cell

permeable, competitive inhibitor of 2-oxoglutarate [11],

ethyl 2-(2,3-dihydroxybenzamido) acetate (EDBA) – an

aspirin metabolite that activates the HIF system via generic

2-oxoglutarate oxygenase inhibition [14], and 2-(1-chloro-

4-hydroxyisoquinoline-3-carboxamido) acetic acid (BIC) –

a specific PHD inhibitor patented by FibroGen Inc.

(FG2216), which has been used in clinical trials as a pro-

angiogenic compound acting via the HIF-1a system [12].

Gene expression analyses are useful to investigate

changes in the CDC phenotype after hypoxic and PHDI

treatment. The most commonly used technique for gene

expression analysis is quantitative (real-time) reverse

transcriptase polymerase chain reaction (qRT-PCR), in

which expression magnitude is normalized to a reference

gene. This gene, referred to as a housekeeping gene, is

typically a constitutive gene that is expressed at relatively

constant levels in all cells independent of experimental

conditions. Selection of the housekeeping gene is crucial

because it directly influences the interpretation of qRT-

PCR data. However, no one housekeeping gene is universal

under all experimental conditions. Many papers have been

published using qRT-PCR analysis of CDCs [15–17],

hypoxic CDCs [6] or other cells treated with PHDIs [18–

21], but none have described the background for selecting a

suitable housekeeping gene for quantification. Therefore,

in this study, we evaluated the most suitable housekeeping

gene for RNA expression analysis in normoxic, hypoxic

and PHDI-preconditioned CDCs isolated from both neo-

natal and adult rat hearts, using a panel of 6 housekeeping

genes, glyceraldehyde-3-phosphate dehydrogenase (GAP-

DH), beta-actin (Actb), hypoxanthine phosphoribosyl-

transferase 1 (HPRT-1), beta-2-microtubulin (b2M), 60S

acidic ribosomal protein large P1 (RPLP-1) and TATA box

binding protein (Tbp) (Table 1). These genes were chosen

as they are most commonly used as reference genes in rat

qRT-PCR studies [16, 22–32] (Additional file 1).

Results

Hypoxic response

Western blot analysis showed that CDCs cultured under

hypoxia or treated with PHDIs had significantly increased

HIF-1a protein levels, compared to normoxic CDCs

(Fig. 1). This indicated that the hypoxic challenge to the

cells and the PHDI treatments successfully elevated

HIF-1a.

RNA and cDNA quality

RNA was isolated from neonatal and adult CDCs subjected

to five different culture conditions (Table 2). The RNA

purity was measured using a NanoDrop� Spectrophotometer

(NanoDrop Technologies). On average, the A260/280 ratio of

RNA samples was 2.01 ± 0.04, indicating protein-free pure

RNA, and the ratio of A260/230 was 1.98 ± 0.21, indicating

that the RNA was phenol and ethanol free. cDNA was

synthesized from the pure RNA template and cDNA purity

was verified with the mean ratio of A260/280 = 1.81 ± 0.01.

Primer efficiency

Primers for GAPDH, Actb, HPRT-1, b2M, RPLP-1, Tbp

and HIF-1a were designed using Primer3 software. A pri-

mer efficiency test using serial dilution curves gave effi-

ciencies for all primers from 92 to 99% with a correlation

coefficient (R2) ranging from 0.92 to 0.99 (Table 3), indi-

cating that all the designed primers worked successfully

and gave consistent results throughout efficiency testing.
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The expression profiles of candidate housekeeping

genes

qRT-PCR was performed and the cycle threshold (Ct) val-

ues were plotted directly, assuming the same threshold for

all genes. Ct is defined as the number of cycles needed for

fluorescence to reach a specific threshold level of detection

and is inversely related to the amount of initial RNA tem-

plate present in the sample. The six candidate housekeeping

genes showed a wide Ct expression range, with values

between 14 and 28 cycles (Fig. 2). These genes had dif-

ferent expression levels, with RPLP-1 being the most

abundantly expressed gene, presenting average Ct values

below 16 cycles. Actb, b2M and GAPDH were moderately

expressed in these samples, with average Ct values between

16 and 22 cycles, while Tbp and HPRT-1 were the least

expressed housekeeping genes, with Ct values above 24

cycles. For qRT-PCR normalization, a moderately expres-

sed housekeeping gene is preferred because extremely high

or low expression of a housekeeping gene could introduce

variability to the data analysis.

HKGs stability test using geNorm and Normfinder

To identify the housekeeping gene with the most stable

expression in the CDC samples, two software-based

methods were used: geNorm and NormFinder.

Table 3 List of reference genes and target gene used in the present

study

Gene name Primer efficiency Correlation coefficient (R2)

GAPDH 99.3 0.99

b2M 91.6 0.97

HPRT-1 92.3 0.99

Actb 92.7 0.99

RPLP-1 94.9 0.92

Tbp 93.8 0.93

HIF-1a 98.2 0.92

Gene name, primer efficiency and the correlation coefficient are

shown

Fig. 1 Western blot analysis of

HIF-1a protein levels in

neonatal and adult P2 CDCs

cultured under hypoxia or with

DMOG, EDBA and BIC. In

each group, all values were

normalized to levels in

normoxic CDCs (control).

Culture under hypoxia or with

PHDIs increased expression of

HIF-1a. *P \ 0.05 vs. control,

n = 3

Table 2 CDC sample groups

Age of animals Culture conditions

(a) Neonatal (1–3 days) (i) Normoxia (21% O2) (control)

(b) Adult (4 months) (ii) Hypoxia (2% O2)

(iii) Normoxia ? 1 mM DMOG for 24 h

(iv) Normoxia ? 0.5 mM EDBA for 24 h

(v) Normoxia ? 30 lM BIC for 24 h

CDCs were cultured from (a) neonatal and (b) adult rat hearts. CDCs

from each group were subjected to five different culture conditions

(i)–(v)

DMOG dimethyloxalyl glycine, EDBA Ethyl 2-(2,3-dihydroxyben-

zamido) acetate, BIC 2-(1-chloro-4-hydroxyisoquinoline-3-carbox-

amido) acetic acid

Fig. 2 Expression levels of candidate housekeeping genes in norm-

oxic, hypoxic and PHDI-treated CDCs cultured from neonatal and

adult rat hearts. Boxes represents lower and upper quartiles of cycle

thresholds range with the median indicated, whiskers represent the

10th and 90th percentiles. Grey boxes correspond to neonatal CDCs

and hatched boxes correspond to adult CDCs. In both groups, RPLP-1

was the most highly expressed gene (least Ct value), followed by

Actb, b2M, GAPDH and lastly the HPRT-1 and Tbp as the least

expressed genes (highest Ct values)
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geNorm analysis

geNorm is a well published Microsoft Excel based program

designed to validate stability of housekeeping gene

expression. The underlying principles and calculations are

described in Vandesompele et al. [33]. In brief, geNorm

ranks gene stability by an average expression stability

value (M), which is the average pairwise variation of a

single candidate housekeeping gene with all other candi-

date housekeeping genes. More stable gene expression is

indicated by lower M values.

To investigate the effects of ageing on the ranking of

candidate genes, housekeeping gene stability was deter-

mined in neonatal and adult CDCs (Fig. 3a, b). In the neo-

natal cells, both Actb and GAPDH genes had the lowest M

value, followed by RPLP-1, b2M, HPRT-1 and Tbp. This

indicated that in neonatal CDCs preconditioned with either

hypoxia or PHDI, Actb and GAPDH were most stable genes

and Tbp was the least stable gene (Fig. 3a). In the adult cells,

a combination of Actb and GAPDH genes was found to be

the most stable housekeeping genes, compared to other

candidate genes. However, the ranking for b2M, HPRT-1

and RPLP-1 was different from that found in the neonatal

group (Fig. 3b), indicating that expression of b2M, HPRT-1

and RPLP-1 was age-dependent. Independent of age, Tbp

was the least stable housekeeping gene. When neonatal and

adult CDCs were analyzed in combination, a similar ranking

of candidate genes was observed (Fig. 3c).

In addition, geNorm analysis revealed the optimal

number of housekeeping genes required for reliable and

accurate normalization of qRT-PCR expression data, based

on the average pairwise variation Vn/Vn?1 calculated

between n and n ? 1 housekeeping genes (recommended

cut-off threshold of Vn/Vn?1 = 0.15) [33]. In both neonatal

and adult groups, the pairwise variation V2/3 \ 0.15 indi-

cated there was no need to include a third gene to calculate

the normalization factor. Therefore, the two best perform-

ing housekeeping genes, GAPDH and Actb, could accu-

rately normalize qRT-PCR expression (Fig. 4).

However, a limitation of this software is that the M

value measured is the expression of a single gene as a ratio

of the other genes tested. Thus, we could not resolve the

best gene out of the two best performing genes, GADPH

and Actb. In addition, geNorm analysis relies on the

principle that the two best performing genes are identical in

all samples, regardless of the experimental conditions or

treatments, which is not necessarily true. To address this

problem, NormFinder software was also used.

Fig. 3 geNorm analysis of the candidate housekeeping genes average

expression stability, M. Genes with highest M value represents the

least stable gene. Samples were analyzed separately according to the

age group. a neonatal. b adult or c were analyzed in a combined set

(results obtained from three sets of biological replicates)

Fig. 4 geNorm analysis of the optimal number of housekeeping

genes required for data normalization. A variation coefficient, V,

value below 0.15 was accepted as indicating the optimal number of

genes required for the data normalization. V2/3 \ 0.15 indicated that

2 genes were required for the data normalization (results obtained

from three sets of biological replicates)
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NormFinder analysis

NormFinder, introduced by Andersen et al. [34], assesses

the expression stability of a gene by evaluating the varia-

tion of expression within groups or between groups. Genes

with the lowest variation values (V) have the most stable

expression and are therefore ideal reference genes. This

program allows not only the estimation of overall expres-

sion variation of the candidate housekeeping genes across a

group of samples, but also of the variation between sub-

groups of a sample, e.g., normoxic CDCs versus hypoxic

CDCs or non-treated CDCs versus PHDI-treated CDCs.

Using NormFinder, we found that GADPH was the most

stable gene expressed in both neonatal and adult normoxic

cells, while Actb was the most stable gene expressed in

both neonatal and adult hypoxic cell groups. For DMOG

and EDBA-treated samples, GADPH was the best house-

keeping gene for neonatal cells and Actb was best for adult

cells. For BIC-treated samples, GADPH was the best

housekeeping gene for neonatal cells and b2M was the best

for adult cells (Table 4a, b). Overall, GADPH, Actb and

b2M were the most consistently expressed housekeeping

genes, always ranked in the first three places, while HPRT-

1, RPLP-1 and Tbp were unstable, ranked in the last three

places (Table 4c). Intergroup stability showed that a

combination of GAPDH and Actb were the best house-

keeping genes (Fig. 5) (Additional information as given in

Additional file 2).

HIF-1a mRNA expression normalized by different

HKGs

We used normalization to different housekeeping genes to

compare the gene expression of HIF-1a in CDCs precon-

ditioned under normoxia or hypoxia or with PHDIs, for

CDCs from both neonatal and adult rat hearts. Normaliza-

tion was performed using GAPDH, Actb, HPRT-1, RPLP-1,

b2M, Tbp and a combination of GAPDH and Actb as ref-

erence genes. As shown in Fig. 6, when expression levels

were normalized to the non-stable housekeeping genes,

HPRT-1, RPLP-1 or Tbp, HIF-1a expression was the same

for the normoxic, hypoxic and PHDI-treated samples for

either neonatal or adult groups. Normalization to GADPH,

Actb or b2M gave significantly different results in some,

but not all, samples. All hypoxic and PHDI-treated samples

from both neonatal and adult groups showed significant

increases in HIF-1a expression, compared with the norm-

oxic control, only when the qRT-PCR data were normalized

to the combination of GAPDH and Actb, the optimal HKGs

combination validated using geNorm and NormFinder,

demonstrating that the simultaneous use of two optimal

housekeeping genes (GAPDH and Actb) is required to

generate valid normalized qRT-PCR data.

Discussion

This study clearly illustrates the differences in stability of

housekeeping genes in rat CDCs cultured under normoxia

(21% O2), hypoxia (2% O2) or with the PHDIs: DMOG,

EDBA or BIC.

Preconditioning of cells under hypoxia or in the presence

of an iron chelator (EDBA), a 2-oxoglutarate analogue

(DMOG) or a specific prolyl hydroxylation inhibitor (BIC),

inhibits PHD enzyme activity and subsequently activates the

HIF transcriptional complex [10–13]. Analysis of protein

levels in hypoxic and PHDI-treated CDCs revealed a sig-

nificant increase in HIF-a expression, compared to normoxic

CDCs, in both the neonatal and adult group, indicating that

the hypoxic challenge to the cells was successful. Analysis of

mRNA levels in hypoxic and PHDI-treated CDCs using

qRT-PCR is, however, not as straightforward as the protein

analysis. The analysis of qRT-PCR data required normali-

zation using a consistently expressed housekeeping gene.

RPLP-1, which plays a role in the elongation step of

protein synthesis [35], was the most abundantly expressed

gene in the rat CDCs, whereas HPRT-1 (an enzyme which

recycles purine in cells) [36] and Tbp (a transcription factor

which binds to the TATA-box DNA sequence) [37], were

the least expressed genes. Genes with extensive or low

expression are not suitable reference genes for qRT-PCR

due to their extreme transcription expression. Our conclu-

sions were validated by the geNorm and Normfinder

analysis, which showed that these three genes were rela-

tively unstable, compared to GAPDH, b2M and Actb,

which showed moderate expression in rat CDC.

To evaluate the effect of ageing on HKG stability, we

grouped the samples into neonatal and adult groups and

analyzed the data either separately or as a combined set

using geNorm. In both approaches, we found that a com-

bination of GAPDH and Actb were best to be used as

housekeeping gene, while the Tbp was the least stable

among all the candidate genes. The instability of b2M,

HPRT-1 and RPLP-1 at different stages of heart develop-

ment is a drawback in their use as housekeeping genes.

Normalization with multiple reference genes is becom-

ing more prevalent, but studies that apply this normaliza-

tion approach are limited. Based on geNorm analysis, we

found that an optimum of two housekeeping genes was

needed to perform a valid normalization. To confirm this,

we evaluated the expression of HIF-1a mRNA in the study

samples normalized to only one housekeeping gene or to a

combination of the two best housekeeping genes as selec-

ted by geNorm analysis. Interestingly, only the data set

normalized to the geometric mean of GADPH and Actb

genes showed a significant increase in HIF-1a expression

in every sample. Thus, two housekeeping genes seemed

optimal for accurate normalization in this study.
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In our experiments, the sample sets included different

stages of heart development (neonatal versus adult rat

hearts), different oxygen tensions (normoxic versus hyp-

oxic) and three different PHDI drug treatments (DMOG,

EDBA or BIC). For NormFinder analysis, we grouped the

samples within each experiment, taking into account the

genes associated with cardiac progenitor cells in normoxic

and hypoxic CDCs or between physiologically-induced

hypoxia using hypoxic culture and pharmaceutically-

induced hypoxia using PHDIs. We found that GADPH was

the most stable gene expressed in the normoxic cell group.

However, the expression of this gene was unstable in

hypoxic CDCs where Actb was the most stable gene

expressed. For the PHDI-treated samples, there were dif-

ferent best housekeeping genes selected for each inhibitor,

yet overall, GADPH, Actb and b2M were the most stable

reference genes. Although different housekeeping genes

were selected for the different experimental conditions,

when the stability of housekeeping genes were considered

over all groups, the best housekeeping genes revealed by

NormFinder analysis was GADPH and Actb combined.

Conclusions

In conclusion, both geNorm and NormFinder analysis

revealed that GAPDH and Actb were the best housekeep-

ing genes for this study. geNorm also indicated that two

housekeeping genes were required for valid qRT-PCR data

normalization. In most cases, using multiple housekeeping

genes resulted in more accurate and reliable normalization

compared with the use of only one reference gene. Thus,

we suggest that Actb and GADPH genes should be both

used as the housekeeping genes in qRT-PCR involving

normoxia, hypoxic and PHDI-treated neonatal and adult rat

CDCs.

Methods

Animals

Sprague–Dawley (SD) rats were used for all experiments.

All experiments were performed with approval from The

Table 4 Ranking of candidate HKGs and their expression stability, V in the different sample groups of the study evaluated using NormFinder

Normoxia Hypoxia DMOG 1 mM EDBA 0.5 mM BIC 30 lM

Ranking Stability

value

Ranking Stability

value

Ranking Stability

value

Ranking Stability

value

Ranking Stability

value

(a) Neonatal CDCs

1) GAPDH 0.053 1) Actb 0.139 1) GAPDH 0.087 1) GAPDH 0.051 1) GAPDH 0.092

2) Actb 0.113 2) GAPDH 0.160 2) Actb 0.362 2) Actb 0.121 2) Actb 0.192

3) b2M 0.158 3) b2M 0.189 3) b2M 2.224 3) b2M 0.152 3) b2M 0.591

4) RPLP–1 4.606 4) Tbp 1.910 4) HPRT–1 3.215 4) HPRT–1 2.951 4) RPLP–1 1.757

5) Tbp 14.744 5) RPLP–1 3.068 5) RPLP–1 4.935 5) RPLP–1 5.014 5) HPRT–1 3.055

6) HPRT–1 15.586 6) HPRT–1 17.241 6) Tbp 20.389 6) Tbp 11.328 6) Tbp 14.794

(b) Adult CDCs

1) GAPDH 0.233 1)Actb 0.200 1) Actb 0.216 1) Actb 0.333 1) b2M 0.040

2) Actb 0.747 2) b2M 0.388 2) GAPDH 0.414 2) GAPDH 0.447 2) Actb 0.156

3) b2M 1.077 3) GAPDH 0.419 3) b2M 1.498 3) b2M 0.542 3) GAPDH 0.275

4) RPLP–1 2.502 4) RPLP–1 4.592 4) HPRT–1 4.380 4) Tbp 1.482 4) RPLP–1 1.495

5) HPRT–1 10.524 5) HPRT–1 8.784 5) RPLP–1 4.682 5) RPLP–1 2.106 5) Tbp 1.608

6) Tbp 13.181 6) Tbp 15.939 6) Tbp 6.490 6) HPRT–1 10.410 6) HPRT–1 3.381

(c) Combined (neonatal and adult CDCs)

1) GAPDH 0.002 1) GAPDH 0.315 1) Actb 0.359 1) Actb 0.263 1) b2M 0.072

2) Actb 0.161 2) Actb 1.059 2) GAPDH 1.215 2) b2M 0.718 2) Actb 0.248

3) b2M 0.298 3) b2M 1.793 3) b2M 2.201 3) GAPDH 1.491 3) GAPDH 1.105

4) RPLP–1 3.981 4) RPLP–1 2.188 4) HPRT–1 3.160 4) RPLP–1 2.519 4) RPLP–1 1.263

5) HPRT–1 12.482 5) Tbp 4.208 5) RPLP–1 3.844 5) Tbp 4.834 5) HPRT–1 2.520

6) Tbp 25.530 6) HPRT–1 6.658 6) Tbp 16.492 6) HPRT–1 6.447 6) Tbp 9.298

Bold type indicates the reference genes that were consistently ranked the top places, and thus can be categorized as stable HKGs in this study as

compared to other three candidate genes

Samples were analyzed separately according to age group, (a) neonatal and (b) adult or were analyzed in a (c) combined set of neonatal and adult.

Gene with the lowest stability value has the most stable expression. Stability values are listed from most stable to least stable
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University of Oxford Animal Ethics Review Committees

and the Home Office (London, UK).

Primary cardiac stem cell culture

CDCs were isolated and expanded according to a protocol

described previously [5]. In brief, neonatal (1–3 days) and

adult (4 months) SD rat hearts were isolated, and minced into

small explants in 0.05% trypsin–EDTA (Invitrogen).

Explants were plated on fibronectin-coated petri dishes with

1.5 ml of complete explant medium (CEM, Additional file 3)

to generate explant-derived cells (EDCs). EDC, once con-

fluent, were isolated and seeded onto poly-D-lysine coated

24-well plates with cardiosphere growth medium (CGM,

Additional file 3) to form spherical cell clusters, known as

Csp. Loosely attached Csp were harvested and plated onto

fibronectin-coated T75 flasks with CEM, at a density of

1 9 104 cells/flask for expansion into cardiosphere derived

cells (CDCs). All the cells were cultured in incubator under

21% O2 and 5% CO2, at 37�C, unless otherwise stated.

Fig. 5 NormFinder analysis of

the candidate housekeeping

genes average stability values

(V). Genes with highest V value

represent the least stable gene

(results obtained from three sets

of biological replicates)

Fig. 6 Expression level of

HIF-1a mRNA in a neonatal

and b adult CDCs upon

normalization to different

housekeeping gene. All data are

relative to the normoxic sample

(control). Normalization to the

best combination of GAPDH/

Actb validated by geNorm and

NormFinder showed

significantly increased

expression of HIF-1a mRNA in

both neonatal and adult groups

under all experimental

conditions. *P \ 0.05,
#P \ 0.01
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CDC preconditioned with hypoxia and PHDIs

For hypoxic-preconditioned cells, CDCs were cultured

under 2% O2 (hypoxia) and 5% CO2 at 37�C using an

incubator (Wolf Laboratories, UK) adjustable to different

oxygen concentrations by infusion of nitrogen (N2). The O2

concentration was monitored continuously using an O2

sensor. For PHDI-preconditioning, normoxic CDCs (cul-

tured under 21% O2 and 5% CO2, at 37�C) were treated

with 1 mM of DMOG, 0.5 mM of EDBA or 30 lM of BIC

for 24 h at 80% cell confluency.

Western blot analysis for HIF-1a protein

Normoxic, hypoxic and PHDI-preconditioned CDCs were

lysed in cell lysis buffer containing protease inhibitor. The

homogenate was boiled and centrifuged for 5 min, the super-

natant frozen and stored at -80�C. The lysate (50 lg/ll)

was subjected to SDS–polyacrylamide gel (10%) electro-

phoresis, and protein was subsequently transferred to a

nitrocellulose membrane (Pall Life Science, Mexico). The

membrane was incubated overnight with rat HIF-1a pri-

mary antibody diluted (1:2000) in 5% milk in TBS-Tween

(Novus, NB100–479). The secondary antibody used was

goat anti-rabbit conjugated to horseradish peroxidase

(1:2000) (Santa Cruz Biotechnology, Santa Cruz, CA). The

immunoreactive protein signal was visualized by an ECL

plus detection kit (Perkin Elmer). Protein bands were

quantified using Un-Scan-It, Version 6.1 (Silk Scientific,

USA).

Primer design and optimization

Primers were designed using Primer3 software based on

interpretation of GenBank or Ensembl Genome Browser

search results (Table 2). Primer specificity was enhanced

by designing a primer pair that flanked the exon–exon

border of the gene of interest, to avoid the primers

amplifying genomic DNA that may be contained in sam-

ples. Primer specificity was confirmed by blasting the pri-

mer sequence against genomic databases available at

NCBI. No significant homology sequence should be found,

to ensure gene specific amplification rather than amplifi-

cation of several transcripts with one primer pair.

RNA extraction and DNase treatment

Total RNA was extracted from cultured CDCs using Trizol

reagent (Sigma) according to the manufacturer’s instruc-

tions. DNase treatment was performed using Turbo DNA-

free (Ambion) to degrade any DNA present. The concen-

tration and purity of RNA was determined by measuring

the absorbance at 260 nm (A260) and 280 nm (A280)

using a Nanodrop ND-1000 Spectrophotometer (Nanodrop

Technologies Inc., USA). A ratio of A260/A280 & 2.0 is

generally accepted as pure RNA.

cDNA synthesis

cDNA was synthesized from the RNA template using AB high

capacity transcriptase kit (Applied Biosystem). Every 1 lg

RNA sample was reverse transcribed using 1 ll reverse

transcriptase, 2 ll random primer, 0.8 ll dNTPs (10 mM

each), 2 ll buffer and topped up by RNase free water to a total

volume of 20 ll. The reaction mixture was subjected to incu-

bation for 10 min at 25�C, 120 min at 37�C and 5 s at 85�C.

Quantitative RT-PCR (qRT-PCR)

qRT-PCR amplification was performed using Applied

Biosystems StepOnePlus Real-Time PCR System (AB

International, CA). The qRT-PCR mastermix was prepared

by adding 10 ll AB Sybrgreen PCR mastermix (AB

International, CA), 1 ll reverse primer, 1 ll forward pri-

mer, 1 ll cDNA and 7 ll distilled water. The total volume

for each real-time PCR reaction was 20 ll. The PCR pro-

gram was set up with an initial heat activation step at 95�C

for 10 min. Then, 40 cycles of thermocycling were per-

formed with a denaturation step at 95�C for 15 s, an

annealing step at 60�C for 30 s and an extension step at

72�C for 30 s. Fluorescence was measured at the end of

each extension step. After amplification, a melting curve

was acquired by heating the product at 4�C/s to 95�C,

cooling it at 4�C/s to 70�C, keeping it at 70�C for 20 s, and

then slowly heating it at 4�C/s to 95�C. Fluorescence was

measured through the slow heating phase. Melting curves

were used to determine the specificity of PCR products.

Analysis of housekeeping gene expression stability

Raw Ct values of housekeeping genes were converted to

linear values compatible with the geNorm and NormFinder

programs. For comparison of housekeeping gene stability

between groups, the software geNorm, version 3.4 (Visual

Basic application tool for Microsoft Excel) [33] was used,

while for housekeeping genes stability comparison within

group, NormFinder (a Microsoft Excel Add-in) [34] was

used. Both programs were used according to developer’s

recommendations as published.

Analysis of target gene expression

Raw Ct values of the target gene (HIF-1a) were analyzed

using two different methods to determine the importance of

normalization to different housekeeping gene(s) in qRT-

PCR data analysis.

Mol Biol Rep (2012) 39:4857–4867 4865

123



Data analysis using 2-DDCt method

Simple relative quantification of target gene expression

normalized to one housekeeping gene was performed using

the 2-DDCt method. Derivation of the equation, including

assumptions, experimental design and validation test, have

been described in Applied Biosystem User Bulletin No. 2

(P/N 4303859). Analyses of gene expression data using this

method have appeared in the literature [38–40].

Data analysis using geNorm method

Relative quantification of target gene expression normal-

ized to more than one housekeeping gene was performed

using the geNorm method. In this method, target gene

expression was normalized to the geometric mean expres-

sion of the best combination of housekeeping genes sub-

jected to expression stability analysis using geNorm

software. Analyses of gene expression data using this

method have appeared in the literature [23, 41–43].

Statistical analysis

The software program, SPSS version 18 was used for

further statistical analysis of gene and protein expression

among experimental groups. In all cases expression data

were compared by one-way analysis of variance (ANOVA)

(statistical significance \ 0.05). The significance level (a)

was set at 0.05.
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