
The complete mitochondrial genome of the oriental fruit moth
Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

Ya-jun Gong • Bao-cai Shi • Zong-jiang Kang •

Fan Zhang • Shu-jun Wei

Received: 24 October 2010 / Accepted: 6 June 2011 / Published online: 14 June 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The oriental fruit moth, Grapholita molesta

(Busck) (Lepidoptera: Tortricidae) currently is one of the

economically most destructive pest species of stone and

pome fruits worldwide. Here we sequenced the complete

mitochondrial genome of this pest. This genome is

15,776 bp long, with an A ? T content of 81.24%, con-

taining 37 typical animal mitochondrial genes and an

A ? T-rich region. All gene are arranged as hypothesized

ancestral gene order of insects except for trnM, which was

shuffled from 30 downstream of trnQ to 50 upstream of trnI.

cox1 gene uses unusual CGA start codon, as that in all

other sequenced lepidopteran mitochondrial genome. The

secondary structures for the two rRNA genes were pre-

dicted. All helices typically present in insect mitochondrial

rRNA genes are generated. A microsatellite sequence was

inserted into the region of H2347 in rrnL in G. molesta and

two other sequenced tortricid mitochondrial genomes,

indicating that the insertion event in this helix might

occurred anciently in family Tortricidae. All of the 22

typical animal tRNA genes have a typical cloverleaf

structure except for trnS2, in which the D-stem pairings in

the DHU arm are absent. An intergenic sequence is present

between trnQ and nad2 as well as in other sequenced

lepidopteran mitochondrial genomes, which was presumed

to be a remnant of trnM gene and its boundary sequences

after the duplication of trnM to the upstream of trnI in

Lepidoptera. The A ? T-rich region is 836 bp, containing

six repeat sequences of ‘‘TTATTATTATTATTAAATA

(G)TTT.’’

Keywords Oriental fruit moth � Mitochondrial DNA �
Gene rearrangement � Secondary structure � Intergenic

region

Introduction

The oriental fruit moth, Grapholita molesta (Busck)

(Lepidoptera: Tortricidae), originated from East Asia,

currently is one of the economically most destructive pest

species of stone and pome fruits worldwide [1, 2].

G. molesta larvae bore in fruits, causing direct damage, or

feed on twigs, causing shoot dieback. Management of this

pest is mainly based on the use of the insecticides and

pheromone-based mating disruption [3]. In addition to

controlling methods, recently, ecological strategies and

evolutionary patterns were studied, that might facilitate the

managements of this pest. Molecular markers, i.e. ampli-

fied fragment length polymorphism (AFLP) and microsat-

ellite (SSR) have been used to investigate the population

genetic structure of G. molesta [4, 5], however, both are

length-based markers from nuclear genome.

Insect mitochondrial genomes are about 16 Kb in size

with 37 genes, including 13 protein-coding genes, two

ribosomal RNA genes (large and small ribosomal RNAs),

and 22 tRNA genes [6]. Additionally, an A ? T-rich

region is present, functioning on the regulation of tran-

scription and replication [7]. Mitochondrial genomes con-

tain abundant molecular markers, such as sequences, gene

arrangement patterns and RNA secondary structures, which
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were frequently used for studies of population genetics,

species identification, and phylogeny at different hierar-

chical levels [8, 9].

Presently, twenty-six complete or nearly complete

mitochondrial genomes sequences are available in Gen-

Bank for lepidopteran species. However, the number of

sequenced lepidopteran mitochondrial genomes is very

limited relative to the species-richness of Lepidoptera.

In this study, we describe the complete mitochondrial

genome sequence of the oriental fruit moth, G. molesta,

and compare its features with other available lepidopteran

mitochondrial genomes.

Materials and methods

Insects and DNA extraction

Grapholita molesta larvae were collected on the peach

trees and kept in absolute alcohol at -80�. Total genomic

DNA was extracted from individual larva using a DNeasy

tissue kit (Qiagen, Hilden, Germany) following manufac-

turer protocols.

PCR amplification and sequencing

The G. molesta mitochondrial genome was amplified

through nine overlapping fragments by PCR amplification

using modified universal primers [10, 11] according to the

determined lepidopteran mitochondrial genome sequences

and specific primers designed in this study.

PCRs were done using Takara LA Taq (Takara Bio-

medical, Japan) under the following conditions: initial

denaturation for 2 min at 94� followed by 35 cycles of 10 s

at 96�, 15 s at 45–55�, and 1–4 min at 60� and a subsequent

final extension for 8 min at 60�. PCR components were

added as recommended by Takara LA Taq, the manufac-

turer. PCR products were sequenced directly by primer

walking from both directions after purification. Sequencing

reactions were performed using a BigDye Terminator v3.1

Cycle Sequencing Kit (Applied Biosystems, USA) and run

on an ABI 3730 capillary sequencer.

Genome annotation and secondary structure prediction

tRNA genes were initially identified using the tRNAscan-

SE search server with default parameters [12]. Sequences

longer than 100 bp between the identified tRNA genes

were used as queries in Blast searches in GenBank for

identification of protein-coding and rRNA genes. Nucleo-

tide sequences of protein-coding gene were translated

using the invertebrate mitochondrial genetic code. The

exact initiation and termination codons were identified in

ClustalX version 2.0 [13] using reference sequences from

other insects. The stop codon of these genes was inferred to

be the first in-frame stop codon or, when necessary to avoid

overlap with the downstream gene, an abbreviated stop

codon corresponding well to the stop codon of other insect

genes.

The secondary structure of large and small rRNAs (rrnL

and rrnS) were derived from Drosophila melanogaster [14]

and Drosophila virilis [15] with modifications made based
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Fig. 1 Structure of Grapholita
molesta mitochondrial genome.

cox1, cox2, and cox3 refer to the

cytochrome oxidase subunits,

cob refers to cytochrome b,

nad1–nad6 refer to NADH

dehydrogenase components, and

rrnL and rrnS refer to ribosomal

RNAs. Transfer RNA genes are

denoted by one letter symbol

according to the IPUC-IUB

single-letter amino acid codes.

L1, L2, S1 and S2 denote

tRNALeu(CUN), tRNALeu(UUR),

tRNASer(AGY) and

tRNASer(UCN), respectively. AT

indicates A ? T-rich region.

Gene names with lines indicate

that the genes are coded on the

minority strand while those

without lines are on the majority

strand

2894 Mol Biol Rep (2012) 39:2893–2900

123



on other predicted mitochondrial rRNA secondary structure

[16]. Helix numbering follows the convention established

at the CRW site [14] and Apis mellifera rRNA secondary

structure [16] with minor modification. All structures were

drawn in XRNA (developed by B. Weiser and available at

http://rna.ucsc.edu/rnacenter/xrna/xrna.html).

All tRNA secondary structures were predicted using the

tRNAscan-SE search server except for trnS2, which was

predicted manually according to that predicted in other

insects.

Results and discussions

Genome structure and base composition

The complete mitochondrial genome of G. molesta is

15,776 bp long, containing 37 typical animal mitochon-

drial genes and an A ? T-rich region (GenBank accession

No. HQ116416). All gene are arranged as hypothesized

ancestral gene order of insects except for trnM [17], which

was shuffled from 30 downstream of trnQ to 50 upstream of

trnI (Fig. 1). This arrangement pattern of trnM was pre-

sumed be an synapomorphic character in lepidopteran

mitochondrial genomes [18, 19], however, the presently

sequenced lepidopteran mitochondrial genomes used for

comparative studies are all from the lineage of Ditrysia,

representing limited group of Lepidoptera. Thus, more

mitochondrial genomes are needed from other groups to

prove the universality of trnM shuffling in this Order.

The entire mitochondrial genome of G. molesta is biased

to use A and T, with an A ? T content of 81.24%, as that

of other insects. The AT skew for the majority strand is

-0.064, while GC skew is -0.175, referring to the

occurrence of more Ts than As and more Cs than Gs.

Protein-coding genes

All protein-coding genes start with ATN codons (one with

ATA, three with ATT, one with ATC, and seven with

ATG) except for cox1 (Table S1). In G. molesta mito-

chondrial genome, cox1 gene uses unusual CGA start

codon, as that in all other sequenced lepidopteran mito-

chondrial genome. Annotated cox1 gene in G. molesta

could be aligned well with its orthologous genes in other

lepidopteran mitochondrial genome, confirmed the atypical

start site of cox1 in Lepidoptera.

Seven of 13 protein-coding genes in G. molesta harbor the

usual termination codon TAA, but cox1, cox2, cob, nad2,

nad4 and nad5 use the incomplete termination codon T

(Table S1). The assignment of incomplete stop codon on

these genes could avoid overlapping nucleotides between

their adjacent genes. These incomplete stop codons are

commonly found in metazoan mitochondrial genes [18, 20].

The relative synonymous codon usage was analyzed,

indicating a biased usage of A and T nucleotides (Table

S2). UUA(Leu), AUU(Ile), UUU(Phe), AUA(Met) were

the most frequently used codons as in other insects

[18, 21]. All protein-coding genes show more T than A,

while genes coded on the majority strand show more C

than G and genes coded on the minority strand show less C

than G (Table S3). This is congruent with the observation

of skew values in insect mitochondrial genomes [22].

Saturnia boisduvalii 
Eriogyna pyretorum 
Antheraea pernyi 
Ochrogaster lunifer 
Grapholita molesta 
Coreana raphaelis 
Spilonota lechriaspis 
Adoxophyes honmai 
Teinopalpus aureus 
Papilio maraho 
Parnassius_bremeri 
Ostrinia nubilalis 
Lymantria dispar 
Diatraea saccharalis 
Artogeia melete 
Manduca sexta 
Antheraea yamamai 
Bombyx mandarina1 
Bombyx mandarina 
Phthonandria atrilineata 
Sasakia charonda 
Bombyx mori 
Acraea issoria 
Hyphantria cunea 
Ostrinia furnacalis 

Fig. 2 Alignment of the

homologous regions including

Helix 2347 of rrnL in all

sequenced lepidopteran

mitochondrial genomes

Sequences were downloaded

from GenBank, and the

accession numbers are as in

Table 1
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rRNA structure

Both rRNA genes are present in G. molesta mitochondrial

genome, located between trnL1 and trnV for rrnL and

between trnV and the A ? T-rich region for rrnS. The

length of the rrnL is 1382 bp, and the length of rrnS is

775 bp.

Both rrnL and rrnS conform to the secondary structure

models proposed for these genes from other insects [20, 23,

24]. Forty-nine helices are present in G. molesta rrnL as in

M. sexta [23], D. melanogaster [15] and A. mellifera [16],

belonging to six domains (Fig. S1). The stem region of

H991 was difficult to fold under the criteria of Watson–

Crick pairs, and the structure of H991 with a large internal

loop among H991, H1057 and H1087 is different from

that of M. sexta. A 23 bp insertion was present in the

loop region between H1664 and H1764 in M. sexta. In

G. molesta, a microsatellite sequence of (TA)12 was

inserted into the loop region of H2347. Alignment of the

homologous regions in other sequenced lepidopteran

mitochondrial genomes showed that similar microsatellite

sequence of (TA)14 was also present in the stem region of

H2347 in Spilonota lechriaspis [25] and Adoxophyes

honmai (Lepidoptera: Tortricidae) [26] (Fig. 2), indicating
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that the insertion event in the region of H2347 in rrnL

might be an synapomorphic character in family

Tortricidae.

The secondary structure of rrnS contains 29 helices

present in Manduca sexta [23] and A. mellifera [16],

belonging to three domains (Fig. 3). The structures of

Helix H47, H673, H1047, H1241 and H1303 are different

from those in M. sexta. H47 has a small loop in G. molesta

compared to that in M. sexta. This region was variable

within species [16, 23, 24], and has been used to predict the

phylogenetic relationships among subfamilies of Braconi-

dae (Insecta: Hymenoptera) combined with H39 and H367

[9]. H673 in G. molesta was more similar to that in some

species of Hymenoptera [20, 24] and Diptera [15] than in

species of Lepidoptera [23, 27]. The region of H673 is

long, which could yields multiple possible secondary

structures. The presently predicted structures of rRNA are

mainly based on sequence comparison and mathematical

methods, so it is not clear which structures are utilized in

situ. The region composed of H1047, H1068, H1074 and

H1113 in G. molesta was different in length especially in

loop regions from that in M. sexta, indicating it is another

variable region in rrnS within species [16, 23].

tRNA structure

All of the 22 typical animal tRNA genes were present in

G. molesta mitochondrial genome, ranging from 65 to

71 bp. All tRNA genes have a typical cloverleaf structure

except for trnS2 (Fig. S2). The D-stem pairings in the DHU

arm are absent in trnS2, which has also been reported in

other insects [24], and is common in Coleoptera [28]. The

structure of trnS2 could not be identified and folded using

conventional tRNA search methods such as tRNAscan-SE.

We found the location of trnS2 by comparisons with those

identified in other insects and then determined the exact

boundaries according to the secondary structure folded

manually. The anticodons for all tRNA genes are identical

to their counterparts in most other published insect mito-

chondrial genomes.

In mitochondrial tRNA genes, noncanonical pairs were

common in secondary structures. There are 16 wobble G–U

pairs and four U–U pairs present in tRNA secondary

structures in G. molesta.

Non-coding region

There are 14 non-coding regions ranging from 1 to 62 bp

except for the A ? T-rich region in G. molesta mito-

chondrial genome. A 62 bp intergenic sequence is present

between trnQ and nad2, from where trnM was translocated

to the upstream of trnI. In all other sequenced lepidopteran

mitochondrial genomes, the same trnM rearrangementT
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event occurred with a similar intergenic sequence ranging

from 47 to 87 bp left in this region (Table 1). Additionally,

the length of this intergenic sequence covers that of typical

tRNA genes, thus, we presume that this region might be a

remnant of trnM gene and its boundary sequences after the

duplication of trnM to the upstream of trnI.

Intergenic spacer region between trnS1 and nad1 may

correspond to the binding site of mtTERM, a transcription

attenuation factor [29], which was evidenced by a 7 bp

motif (ATACTAA) conserved across Lepidoptera [23],

5 bp (TACTA) motif conserved across Coleoptera [28] and

a 6 bp conserved motif (THACWW) in Hymenoptera [24].

The ATACTA motif is also present in G. molesta mito-

chondrial genome between trnS1 and nad1.

The longest intergenic region in G. molesta is the

A ? T-rich region, between rrnS and trnM. The length of

A ? T-rich region is 836 bp, and the A ? T content is

95.9%. This region usually contains replication origins in

both vertebrates and invertebrates [7, 30]. The sequence of

‘‘TTATTATTATTATTAAATA(G)TTT’’ was repeated six

times in the A ? T-rich region in G. molesta. However, the

set of elements that may function in the initiation of gen-

ome replication could not be identified [7].
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