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Abstract The apocritan Hymenoptera show extraordinary

features in mitochondrial genomes, but no complete

sequence has been reported for the basal lineage, Evanioi-

dea. Here, we sequenced the complete mitochondrial gen-

ome of Evania appendigaster. This genome is 17,817 bp

long; with low A?T content, 77.8%, compared with other

hymenopteran species. Four tRNA genes were rearranged,

among which remote inversion is the dominant gene rear-

rangement event. Gene shuffling is caused by tandem

duplication-random loss while remote inversion is best

explained by recombination. The start codon of nad1 was

found as TTG, which might be common across Hymenop-

tera. trnS2 and trnK use abnormal anticodons TCT and TTT,

respectively, and the D-stem pairings in trnS2 are absent.

The secondary structure of two rRNA genes are predicted

and compared with those in other insects. Five long inter-

genic spacers were present, including a long intergenic

spacer between atp8 and atp6, where these two genes

overlap in the previously reported animal genomes. A

conserved motif was found between trnS1 and nad1, which

is proposed to be associated with mtTERM. The A?T-rich

region is 2,325 bp long, among the longest in insects, and

contains a tandem repeat region.
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Introduction

Animal mitochondrial genomes are about 16 Kb in size

and contain 37 genes: 13 protein-coding genes, 22 transfer

RNA genes (tRNA) and two ribosomal RNA genes (rRNA)

[1, 2]. The genome is highly economized with few sections

of noncoding DNA, intergenic regions, or repetitive

sequences [3, 4], except for an A?T rich region, which

contains essential regulatory elements for transcription and

replication [5].

Gene arrangements are usually conserved within major

lineages [2], but may be highly rearranged in certain groups

[6–12]. Gene rearrangement events may serve as useful

phylogenetic markers and models for evolutionary studies

[13–16]. In apocritan Hymenoptera, frequent gene rear-

rangements have been observed from broad examinations of

gene segments [10, 17] and whole genome sequences

[18–22]. However, no informative arrangement pattern has

been identified to date, for which there are two possible

explanations: the one is that diversified gene arrangements

have arisen independently among different hymenopteran

lineages, and the other is that limited sampling is concealing

potentially synapomorphic rearrangements. The apocritan

lineage shows other extraordinary features in the mito-

chondrial genome, such as high A?T content [23, 24],

diversified gene rearrangement events, and the involvement

of recombination in gene rearrangement [17].

Evaniidae is proposed to be one of the most basal lin-

eages in Hymenoptera [25, 26]. Presently, no complete

mitochondrial genome has been sequenced from members

of this family or its presumed sister groups, the Aulacidae

and Gasteruptiidae. Here, we present the complete mito-

chondrial genome of Evania appendigaster (Hymenoptera:

Evaniidae) and give a thorough description of its genome

features in comparison to other hymenopteran species.
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Materials and methods

DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted using the DNeasy tissue

kit (Qiagen, Hilden, Germany) from a leg of an E. ap-

pendigaster adult.

A range of universal insect mitochondrial primers [27,

28] and hymenopteran mitochondrial primers were used to

amplify the regions of cox1-cox2, cob-rrnL, rrnL-rrnS.

Species-specific primers were designed based on sequenced

fragments and combined in various ways to bridge the gap

of cox2-cob and rrnS-cox1. Six fragments of 575–8626 bp

were amplified, covering the whole mitochondrial genome

(Table 1). The PCR and sequencing procedures followed

the methods in Wei et al. [23].

Genome annotation and secondary structure prediction

tRNA genes were initially identified using the tRNAscan-

SE search server [29] with default parameters. Sequences

longer than 100 bp between the identified tRNA genes were

used as queries in BLAST searches in GenBank for iden-

tification of protein-coding and rRNA genes. The exact

initiation and termination codons were identified in Clu-

stalX version 2.0 [30] using reference sequences from other

insects, following the criteria in Wei et al. [23]. Finally, the

tRNA search was carried out again for the large intergenic

regions using a reduced cutoff score. Twenty-one of the 22

typical animal mitochondrial tRNA genes were found using

the previous steps, except for trnS2, which was identified by

alignment. A?T content and codon usage were calculated

using MEGA version 4.0 [31].

All tRNA secondary structures were predicted using the

tRNAscan-SE search server [29] except for trnS2, which was

predicted manually. rRNA structures were predicted by

comparison and algorithm-based methods as in Wei et al. [23].

Results and discussion

Genome structure and base composition

The complete mitochondrial genome of E. appendigaster is

17,817 bp (GenBank accession No. FJ593187), which is

among the largest animal mitochondrial genomes yet

Table 1 Primers used in this

study
Region Primer position Product length (bp) Primer sequence

cox1-cox2 2127–3634 1508 TATTTTGATTYTTTGGHCAYCCWGAAGT

CCACAAATTTCTGAACATTG

cox2-cob 3339–11964 8626 TCAGGTCACCAATGATATTGA

ATTACACCTCCTAGTTTATTAGGGAT

cob-rrnL 11480–13593 2114 TATGTACTACCATGAGGACAAATATC

TTACCTTAGGGATAACAGCGTWA

rrnL-rrnS 13034–15118 2085 CCWGGTAAAATTAAAATATAAACTTC

AAACTAGGATTAGATACCCTATTAT

rrnS 14700–15275 576 GTATAYTTACTTTGTTACGACTT

GTGCCAGCAGYYGCGGTTANAC

rrnS-cox1 15096–2334 5057 ATTAGGGTATCTAATCCAACTTT

GCTCGTGTATCCACATCTATT
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Fig. 1 Organization of Evania appendigaster mitochondrial genome.

Gene abbreviations are as follows: cox1, cox2, and cox3 refer to the

cytochrome oxidase subunits, cob refers to cytochrome b, nad1-nad6
refer to NADH dehydrogenase components, and rrnL and rrnS refer

to ribosomal RNAs. Transfer RNA genes are denoted by one letter
symbol according to the IPUC-IUB single-letter amino acid codes.

L1, L2, S1 and S2 denote tRNALeu(CUN), tRNALeu(UUR), tRNASer(AGY)

and tRNASer(UCN), respectively. AT indicates A?T-rich region. Gene

names with lines indicate that the genes are coded on the minority

strand while those without lines are on the majority strand
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sequenced [1]. All of the 37 typical animal mitochondrial

genes were identified (Fig. 1; Table 2).

There are in total 31 overlapping nucleotides between

neighboring genes in nine locations and the length of

overlapping sequence is 1–7 bp, while there are in total

943 bp intergenic nucleotides in 13 locations and the

length of intergenic spacers is 1–534 bp, excluding the

A?T-rich region (Table 2).

The A?T content of E. appendigaster mitochondrial

genome are lower than all other sequenced hymenopteran

species, and there are more A and C than T and G in

the majority strand (Table 3). A higher A?T content

was found in parasitic wasps (Apocrita) compared with

nonparasitic wasps (Symphyta) in partial mitochon-

drial genes [24] and whole genome sequences [18–20,

22, 32, 33].

Table 2 Annotation of Evania
appendigaster mitochondrial

genome

? Indicates the gene coded on

the majority strand

- Indicates the gene coded on

the minority strand

– Indicates the strand or codon

not applicable; the abbreviations

are as in Fig. 1

Gene Strand Gene position Gene

length (bp)

Anti/Start

codon

Stop

codon

Intergenic

nucleotides

trnC ? 1–63 63 GCA – -2

trnM ? 64–129 66 CAT – 0

trnI ? 128–194 67 GAT – -1

trnS1 - 194–262 69 TGA – -2

trnQ - 261–330 70 TTG – 22

nad2 ? 353–1365 1013 ATG TA -2

trnY - 1364–1432 69 GTA – 3

cox1 ? 1436–2980 1545 ATG TAA -5

trnL2 ? 2976–3041 66 TAA – 0

cox2 ? 3042–3719 678 ATT TAA 8

trnK ? 3728–3797 70 TTT – 534

trnD ? 4332–4393 62 GTC – 0

atp8 ? 4394–4555 162 ATG TAA 244

atp6 ? 4800–5474 675 ATT TAA 1

cox3 ? 5476–6265 790 ATA T 0

trnG ? 6266–6332 67 TCC – 0

nad3 ? 6333–6683 351 ATT TAA 11

trnA ? 6695–6762 68 TGC – 20

trnR ? 6783–6848 66 TCG – -6

trnN ? 6843–6908 66 GTT – -3

trnS2 ? 6906–6966 61 TCT – 0

trnE ? 6967–7032 66 TTC – 2

trnF - 7035–7099 65 GAA – 0

nad5 - 7100–8747 1648 ATA TAA -3

trnH - 8745–8812 68 GTG – 0

nad4 - 8813–10148 1336 ATG T -7

nad4l - 10142–10414 273 ATT TAA 1

trnT ? 10416–10480 65 TGT – 0

trnP - 10481–10546 66 TGG – 2

nad6 ? 10549–11088 540 ATC TAA 1

cob ? 11090–12253 1164 ATG TAA 94

nad1 - 12348–13273 926 TTG TA 0

trnL1 - 13274–13342 69 TAG – 0

rrnL - 13343–14616 1274 – – 0

trnV - 14617–14680 64 TAC – 0

rrnS - 14681–15427 747 – – 0

trnW - 15428–15492 65 TCA – 0

A?T-rich region – 15493–17817 2325 – – 0
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Gene rearrangement

Gene arrangement of the E. appendigaster mitochondrial

genome is similar to other apocritan species. Gene rear-

rangement events have been classified as translocation,

local inversion (inverted in the local position), gene shuf-

fling (local translocation) and remote inversion (translo-

cated and inverted) [17]. Four tRNA genes are rearranged,

which are remote inversions of trnW, trnC and trnS1 and

gene shuffling of trnM (Fig. 1). Rearrangement of tRNA

genes is common in the hymenopteran mitochondrial

genome, especially those in tRNA clusters, such as in the

junctions of A?T-rich region-nad2, nad2-cox1, cox2-atp8

and nad3-nad5 [10, 17, 23]. However, the rearrangements

in the E. appendigaster mitochondrial genome are novel. In

vertebrates, gene shuffling is the dominant gene rear-

rangement event [34], while in Hymenoptera, equal num-

bers of gene shuffling, inversion and translocation events

have been observed at the cox2-atp8 junction [10]. In the

E. appendigaster mitochondrial genome, remote inversion

was found to be the dominant gene rearrangement event.

Gene shuffling is usually explained by the tandem

duplication-random loss (TDRL) model [17, 35]. Evidence

of the TDRL model includes a derived pattern of gene

order, pseudogene and the position of intergenic spacer, the

last two of which are the expected intermediate steps in

changing mitochondrial gene order under this model. In the

derived tRNA cluster between the A?T-rich region and

nad2, all neighboring genes are overlapped or directly

adjacent except for trnQ and nad2, where there is a 22 bp

intergenic spacer (Table 2). Under the TDRL model, it is

unlikely to randomly delete the duplicated or original genes

to produce a pattern in which remnant adjacent genes

overlap. Thus, it is unlikely that trnC and trnS1 were

rearranged by TDRL, while it is possible that trnM was

rearranged by tandem duplication of the trnI-trnQ-trnM

cluster followed by deletion of trnI-trnQ and trnM in the

two boundaries in an intermediate state before the insertion

of trnC and trnS1. This region is located to one side of the

A?T rich region that is thought to contain two replication

origins [36], so an illicit-primer may be responsible for the

duplication of the original tRNA cluster. The 22 bp

Table 3 Base composition of hymenopteran mitochondrial genomes

Species Whole genome All protein-coding genes

T% C% A% G% AT% AT skew GC skew T% C% A% G% AT% AT skew GC skew

Perga condeia 33.8 14.6 42.8 8.8 77.9 0.117 -0.248 43.2 11.6 33.3 12.0 76.5 -0.129 0.017

Vanhornia eucnemidaruma 36.0 14.8 42.2 7.1 80.1 0.079 -0.352 42.7 11.7 35.5 10.0 78.2 -0.092 -0.078

Evania appendigaster 37.9 15.0 39.9 7.2 77.8 0.026 -0.351 42.7 13.2 31.8 12.3 74.5 -0.146 -0.035

Diadegma semiclausum 41.5 9.6 42.1 6.7 87.4 0.007 -0.178 46.9 8.2 36.8 8.1 83.7 -0.121 -0.006

Abispa ephippium 39.5 14.6 39.1 6.7 80.6 -0.005 -0.371 43.5 11.2 35.2 10.1 78.7 -0.105 -0.052

Polistes humilisa 41.1 10.7 42.3 5.9 84.7 0.014 -0.289 46.6 8.5 36.8 8.1 83.4 -0.118 -0.024

Apis mellifera 41.2 10.5 42.1 6.3 84.9 0.011 -0.250 46.1 8.5 37.2 8.2 83.3 -0.107 -0.018

Bombus ignitus 42.3 9.4 42.8 5.6 86.8 0.006 -0.253 47.5 7.5 37.6 7.4 85.1 -0.116 -0.007

Melipona bicolora 42.5 8.5 43.8 5.2 86.7 0.015 -0.241 48.0 6.9 38.4 6.8 86.4 -0.111 -0.007

AT and GC skew are calculated for the majority strand
a Indicates that no complete mitochondrial genome is available from GenBank, and corresponding values are from partial genome sequences
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Perga condei

Vanhornia eucnemidarum

N.asonia longicornis  

N.asonia vitripennis 

Nasonia giraulti

Evania appendigaster

Diadegma semiclausum

Polistes humilis 

Abispa ephippium

Bombus ignitus

Melipona bicolor

Apis mellifera

Start codon nad1tRNA/rrnL/intergenic spacer

Fig. 2 Determination of nad1 start codons in Evania appendigaster
and other reported hymenopteran mitochondrial genomes. The box
indicates the newly assigned start codons, and the shaded regions the

previously assigned start codons. Sequences of tRNA are marked by

solid lines, intergenic spacers by dotted lines and rrnL by dashed lines
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intergenic spacer between trnQ and nad2 may be a remnant

region after deletion of the second copy of trnM. Recom-

bination may be involved in remote inversions and is the

most plausible explanation for local inversions in apocritan

mitochondrial genomes.

Protein-coding genes

The size of the protein-coding genes in the E. appendigaster

mitochondrial genome is similar to their corresponding

orthologs in other insects. The genes with the highest A?T

content in the hymenopteran mitochondrial genome are

usually nad6 or atp8. In E. appendigaster, the A?T content

of atp8 is 69.1%, amongst the lowest ones, and this is the

result of lower A?T content in the 30 sequence of atp8.

All protein-coding genes start with ATN codons (two

with ATA, four with ATT, one with ATC, and five with

ATG) except for nad1, which uses TTG as start codon

(Table 1). cox1 is usually found to use nonstandard start

codons in insects, such as TCG, ACC, CGA, CTA, CCG and

AAA [37, 38]. In E. appendigaster, cox1 uses the usual start

codon ATG, 3 bp after the end of trnY, and the translated

amino acid sequence aligned well with orthologs in other

Hymenoptera. All examined species in Lepidoptera have

been found to use R as the initial amino acid for cox1 [39],

whereas in Hymenoptera all species uses the ATN start

codon [18, 19, 21–23, 32] except for Vanhornia eucnemi-

darum [20]. In E. appendigaster, three ATA lying in or 6 bp

downstream from trnL1 are possible start codons for nad1.

However, we proposed TTG directly after trnL1 as the start

codon for nad1. This would minimize intergenic spacer and

avoid overlapping between trnL1 and nad1 [37, 40]. We

Table 4 Codon usage in Evania appendigaster mitochondrial

genome

Amino Acid Codon Number RSCU

Phe UUU 296 1.67

UUC 59 0.33

Leu UUA 304 3.41

UUG 46 0.52

CUU 105 1.18

CUC 10 0.11

CUA 61 0.68

CUG 9 0.10

Ile AUU 372 1.77

AUC 49 0.23

Met AUA 282 1.75

AUG 40 0.25

Val GUU 87 1.73

GUC 15 0.30

GUA 78 1.55

GUG 21 0.42

Ser UCU 98 2.03

UCC 44 0.91

UCA 110 2.28

UCG 7 0.15

Pro CCU 42 1.37

CCC 24 0.78

CCA 50 1.63

CCG 7 0.23

Thr ACU 65 1.69

ACC 22 0.57

ACA 63 1.64

ACG 4 0.10

Ala GCU 47 2.24

GCC 17 0.81

GCA 17 0.81

GCG 3 0.14

Tyr UAU 132 1.64

UAC 29 0.36

His CAU 52 1.55

CAC 15 0.45

Gln CAA 50 1.67

CAG 10 0.33

Asn AAU 162 1.62

AAC 38 0.38

Lys AAA 110 1.79

AAG 13 0.21

Asp GAU 50 1.64

GAC 11 0.36

Glu GAA 52 1.42

GAG 21 0.58

Cys UGU 36 1.60

UGC 9 0.40

Table 4 continued

Amino Acid Codon Number RSCU

Trp UGA 69 1.60

UGG 17 0.40

Arg CGU 12 1.14

CGC 6 0.57

CGA 16 1.52

CGG 8 0.76

Ser AGU 37 0.77

AGC 7 0.15

AGA 71 1.47

AGG 12 0.25

Gly GGU 51 1.06

GGC 10 0.21

GGA 86 1.78

GGG 46 0.95

RSCU refers to relative synonymous codon usage
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examined nad1 start codons in the 11 previously reported

hymenopteran species, and the results revealed that either

the intergenic spacers or the overlapping regions would be

reduced in Perga condei [32], Vanhornia eucnemidarum

[20] and three Nasonia species [21] if TTG is assigned as the

start codon (Fig. 2). In Diadegma semiclausum [23],
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Polistes humilis [22] and three bee species [18, 33], no TTG

codon is found near the initial region of nad1. In two vespid

species, Abispa ephippium and Polistes humilis, trnL1 is

rearranged and rrnL is left upstream nad1. In A. ephippium,

a TTG codon is present 3 bp downstream the identified start

codon ATA. Since there is no standard way to define the

exact boundaries of rRNAs, the criteria of reducing inter-

genic spacer and overlapping region could not be applied to

assign the start codon. In conclusion, our results suggest that

TTG is a possible start codon for nad1 in Hymenoptera [37,

40, 41].

Nine protein-coding genes use the termination codon

TAA. Four protein-coding genes use incomplete stop

codons: nad1 and nad2 use the truncated termination codon

TA, and cox3 and nad4 use T, which is commonly reported

in other invertebrates [18, 42]. The relative synonymous

codon usage values show a biased use of A and T nucle-

otides in E. appendigaster (Table 4).
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tRNA genes

The length of tRNAs ranges from 61 to 70 bp. All tRNA

genes have a typical cloverleaf structure except for trnS2

(Fig. 3). trnS2 could not be identified and folded using

conventional tRNA search methods such as tRNAscan-SE.

We manually found the location of trnS2 by comparisons

with those identified in other insects and then determined

the exact boundaries according to the secondary structure

folded by eye. The D-stem pairings in the DHU arm are

absent in E. appendigaster trnS2, which has also been

reported in other insects [6, 18, 37, 43] and the rest of

Metazoa [44, 45]. Since this atypical trnS2 is common in

Coleoptera, Sheffield et al. [37] built an updated covariance

model for automated annotation, which also performs well

in other insects.

A total of 28 unmatched base pairs exist in the E. ap-

pendigaster mitochondrial tRNA secondary structures, 19

of which are G–U pairs, eight U–U and one A–A. The

number of mismatches is relatively high in the E. appen-

digaster mitochondrial tRNAs compared with other insects,

and even within Metazoa [46]. Mismatches in regions where

the tRNA genes overlap with adjacent downstream genes

could be corrected by 30-RNA editing [47–50]. The 50-parts

of tRNA accepter stems are also found in Acanthamoeba

[51] and some fungi [52]. Of the 28 mismatches, only four in

trnQ, trnR and trnS1 are located in the overlapping regions

in the accepter stem, indicating that other mechanisms

might be involved to escape the effects of Muller’s ratchet

in the E. appendigaster mitochondrial genome [53].

trnS2 and trnK use abnormal anticodons TCT and TTT,

respectively, which have been found to be correlated with

gene rearrangement [23].

rRNA genes

rrnL has a length of 1274 bp, with an A?T content of

79.7%. rrnS has a length of 747 bp, with an A?T content

of 76.0%. The gene sizes are normal, but the A?T contents

are lower than their counterparts in other hymenopteran

species.

Both rrnL and rrnS conform to the secondary structure

models proposed for these genes from other insects [23, 39,

54–56]. Forty-nine helices are present in E. appendigaster

rrnL as in D. melanogaster [55] and A. mellifera [54],

belonging to six domains (Fig. 4). H837 usually forms a

long stem structure with a small loop in the terminal [23,

37, 54], but it forms a shorter stem and a larger loop in

E. appendigaster as that in D. melanogaster [55]. The

deduced structures of H2347 and H2520 are variable [54,

57, 58], but in E. appendigaster they are more similar to

those from A. mellifera by Gillespie et al. (2006) than those

from other insects [57, 58].

The secondary structure of rrnS contains 29 helices

present in D. virilis [56] and A. mellifera [54], belonging to

three domains (Fig. 5). Helix H39 could not be predicted,

where a circle was formed by H27, H47, H367 and H500,

and the sequences in between. Helix 47 is variable among

different lepidopteran species, but the terminal portion of

this stem is conserved [37], and in E. appendigaster, two

loops were formed similar to D. virilis but different from

two other hymenopteran species, D. semiclausum and A.

mellifera, where a larger loop is present. H673 is well

conserved in moths, where one stem with a bulge in the

terminal is present [39, 59], and in E. appendigaster, two

stem-loop structures are present as in D. virilis [56] and

D. semiclausum [23], but different from that in A. mellifera

[54], in which this structure is similar to moths. The

structure of H1074 has been discussed in honey bee [54,

60, 61], and our predicted structure in E. appendigaster is

consistent with that of Page (2000) and Gillespie et al.

(2006).

Non-coding regions

One of the most interesting features in the E. appendigaster

mitochondrial genome is the presence of five major non-

coding regions of more than 20 bp: spacer 1 is 22 bp

between trnQ and nad2, spacer 2 is 534 bp between trnK

and trnD, spacer 3 is 244 bp between atp8 and atp6, spacer

4 is 94 bp between cob and nad1, and spacer 5 is 2325 bp

between rrnS-trnW and trnC-trnM-trnI. Long intergenic

spacers have been identified in several insect mitochondrial

genomes [18, 20, 23, 40, 62, 63]. Although intergenic

spacers appeared to be unique to individual species [37],

conserved motifs have been found across all insects, and

are proposed to be associated with mtTERM [37, 39, 64].

C C U A
A U
A U
U
C
A U
U A
A A
A U
A U
U A
U A
A U
U A
A U
U A

A
U

U A U A

220 bp

atp8 (5’-3’) atp6 (5’-3’)

A A A U

Fig. 6 mRNA loops for genes atp8-atp6 in Evania appendigaster
mitochondrial genome. The box indicates start codon of atp6

Mol Biol Rep (2010) 37:1931–1942 1939

123



Spacer 1 shows limited conservation among hymenop-

teran species which possess it. In Hymenoptera, the tRNAs

directly upstream nad2 are variable because of frequent

gene rearrangements of the tRNAs between A?T-rich

region and nad2 [23], therefore this spacer is unlikely to

have any function in translation or transcription. However,

we suggested that it is the product of gene rearrangement as

in that in D. semiclausum [23]. Spacer 2 has an A?T con-

tent of 96.8%, composed of seven tandem repeat units

‘‘GTAATTTTAT’’, twelve ‘‘AATAATAATATT’’, eight

‘‘AATAATAATATTAAT’’, an initial sequence ‘‘TTATTA

ATAAACCTTAAATTAAAAATTAATTA’’, and a termi-

nal sequence ‘‘AATAATAATAT(TAA)8(TA)33AT’’. Spacer

3 has an A?T content of 76.2% and contains no repeat

sequence although it is 224 bp long. As far as we know, no

intergenic nucleotides between atp6 and atp8 have been

found in the previously reported insect mitochondrial gen-

omes, and furthermore, it is a common feature of metazoan

mitochondrial genomes that atp8 and atp6 overlap [65]. It

has been proposed that the secondary structure of the

transcribed mRNA may facilitate cleavage between the

abutting proteins [38, 66, 67]. We could map secondary

structure as those in other insects [38, 46] (Fig. 6), which

indicated that the presence of spacer 3 in E. appendigaster

would not affect the cleavage of atp6 and atp8. Spacer 4

was found in another six hymenopteran species (Fig. 7).

This intergenic spacer region may correspond to the binding

site of mtTERM, a transcription attenuation factor [64], as

evidenced by a 7 bp motif (ATACTAA) conserved across

Lepidoptera [39] and a 5 bp (TACTA) motif conserved

across Coleoptera [37]. In Hymenoptera, we found a 6 bp

conserved motif (THACWW), which shows high similarity

to those in Lepidoptera and Coleoptera. In P. condei and D.

semiclausum, although there is only a 2 bp intergenic spacer

and a 7 bp overlapping region between trnS1 and nad1,

respectively, we could still find conserved motifs in both

species nearby regions between trnS1 and nad1. This may

indicate wrong annotations of this region in both genomes,

or the existence of the motif within genes. Spacer 5 is

proposed as the A?T-rich region because of its location

between rrnS-trnW and trnC-trnM-trnI and high A?T

content (85.6%). It is one of the longest A?T-rich regions

in the sequenced insect mitochondrial genomes [23, 68].

Twenty-three tandemly arranged units of ‘‘GTCATTATT

TAATATAAAATA’’ are present in the middle of the A?T-

rich region. This region, characterized by five elements [2,

5], is believed to function in the initiation of replication and

control of transcription. However, these elements in the

E. appendigaster mitochondrial genome are not arranged in

the conserved pattern.
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