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Abstract
With abundant available genomic data, genomic selection has become routine in 
many plant breeding programs. Multispectral data captured by UAVs showed poten-
tial for grain yield (GY) prediction in many plant species using machine learning; 
however, the possibilities of utilizing this data to augment genomic prediction mod-
els still need to be explored. We collected high-throughput phenotyping (HTP) mul-
tispectral data in a genotyped multi-environment large-scale field trial using two 
cost-effective cameras to fill this gap. We tested back to back the prediction ability 
of GY prediction models, including genomic (G matrix), multispectral-derived (M 
matrix), and environmental (E matrix) relationships using best linear unbiased pre-
dictor (BLUP) methodology in single and multi-environment scenarios. We discov-
ered that M allows for GY prediction comparable to the G matrix and that models 
using both G and M matrices show superior accuracies and errors compared with G 
or M alone, both in single and multi-environment scenarios. We showed that the M 
matrix is not entirely environment-specific, and the genotypic relationships become 
more robust with more data capture sessions over the season. We discovered that 
the optimal time for data capture occurs during grain filling and that camera bands 
with the highest heritability are important for GY prediction using the M matrix. 

Core ideas  1. Genotypic relationships derived using budget high-throughput multispectral data (the 
M matrix) allow for grain yield prediction in wheat.
2. Using BLUP, the M matrix yields comparable prediction ability in grain yield prediction to the G 
matrix.
3. Adding the M matrix to the GBLUP genomic prediction protocol increases its prediction ability 
and reduces the error.
4. Genotypic relationships derived using multispectral data (the M matrix) are not environment-
specific, and the relationships become more robust with more data capture sessions.
5. Data capture during the grain filling stage yields the best prediction ability using the M matrix.
6. Grain yield prediction using the M matrix is also possible using a simple RGB camera, with a 
slight drop in prediction ability compared to a multispectral camera.
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We showcased that GY prediction can be performed using only an RGB camera, 
and even a single data capture session can yield valuable data for GY prediction. 
This study contributes to a better understanding of multispectral data and its rela-
tionships. It provides a flexible framework for improving GS protocols without sig-
nificant investments or software customization.

Keywords Spring wheat · Grain yield · Grain yield prediction · Genomic 
prediction · Multispectral imaging · High-throughput phenotyping

Abbreviations
BLUE  Best linear unbiased estimator
BLUP  Best linear unbiased predictor
G (matrix)  Genomic relationship matrix
GBLUP  Genomic best linear unbiased predictor
GEBV  Genomically estimated breeding value
GS  Genomic selection
GY  Grain yield
HTP  High-throughput phenotyping
M (matrix)  Multispectrally derived relationship matrix
MAF  Minor allele frequency
MS  Multispectral (in relation to cameras)
NDVI  Normalized differential vegetation index
NIR  Near infrared
PS  Phenomic selection
RGB  Red, green, blue (camera bands)
UAV  Unmanned aerial vehicle, aka drone
UV  Ultra-violet
VI  Vegetation index

Introduction

To develop new plant varieties and cultivars, breeders initially relied solely on 
recorded phenotypes of candidates paired with “the breeder’s eye.” With increasing 
pressure caused by the climate change, increasing world population, and diminish-
ing arable land, developing new and adapted germplasm is more urgent than ever 
(Hickey et al. 2019). Nowadays, plant breeders have an abundance of new and inno-
vative tools at their disposal to aid their quest for better-adapted germplasm, focus-
ing on selection accuracy, breeding cycle shortening, and maximizing the genetic 
pool to be screened—therefore effectively accelerating genetic gains in all aspects of 
the breeder’s equation (Houchmandzadeh 2014).

Genomic selection (GS), first proposed by Meuwissen et al. (2001), aims to esti-
mate breeding values (GEBVs) of individuals that have been genotyped-but not phe-
notyped—based on prediction equations developed from a collection of phenotyped 
and genotyped individuals. New parents for crossing are then selected based on the 
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GEBVs, which shortens the breeding cycle since late filial generations do not need 
to be phenotyped for quantitative traits such as grain yield (GY) (Bassi et al. 2015). 
Due to the cost reduction of genotyping and well-elaborated methodologies, GS has 
become routine in many breeding programs (Bhat et al. 2016).

With abundant genomic data, plant phenotype registering became a bottleneck in 
plant research and breeding, stimulating the development of high-throughput pheno-
typing (HTP) methodologies. HTP involves automating the evaluation of plant phe-
notypes and was enabled by recent advancements and the popularization of sensor 
and computing technologies paired with data analytics (White et al. 2012); it allows 
to cover large numbers of genotypes in a fraction of the time needed for manual 
measurements (Araus & Cairns 2014; Burud et al. 2017). HTP has shown consid-
erable potential by enabling GY prediction using machine learning, as reviewed 
by van Klompenburg et al. (2020). HTP data has proven useful also in predicting 
above-ground biomass (Han et al. 2019; Lu et al. 2019; Li et al. 2020), plant height 
(Hu et al. 2018; Hassan et al. 2019; Tirado et al. 2020), earliness (Zhou et al. 2019; 
Trevisan et al. 2020), and crop emergence (Li et al. 2019) to name just a few.

A specific branch of HTP uses unmanned aerial vehicles (UAVs) equipped with 
multispectral or hyperspectral cameras, which record light spectrum above and 
beyond the visible spectrum. The usefulness of recording wavelengths outside the 
visible spectrum lies in their link with various aspects of crop physiology or chem-
istry. For instance, near-infrared (NIR, 760–1400 nm) is linked to crop water status; 
RedEdge (around 730 nm) is arguably a proxy of chlorophyll content (Peñuelas & 
Filella 1998); and ultra-violet A (UV-A, 200–380 nm) can be used to monitor stress 
in plants (Brugger et al. 2019). This extra information can help to construct vegeta-
tion indices (VIs), which are linear combinations of reflectance values such as NDVI 
(normalized difference vegetation index, Beisel et al. 2018) and, in turn, can be used 
for primary trait prediction (Montesinos-López et al. 2017; Shafiee et al. 2021).

HTP data gathered using multispectral and hyperspectral cameras has also been 
used to improve the accuracy of GS, as first demonstrated by Rutkoski et al. (2016), 
where secondary VIs increased GY prediction accuracy by 70%. HTP can help 
measure genetically correlated secondary traits, which can be introduced into mul-
tivariate prediction models (Sun et  al. 2017; Sakurai et  al. 2022). Likewise, HTP 
data was also discovered to help evaluate genetic resources for the expression of 
complex traits (Reynolds & Langridge 2016). In a recent study, NIR spectra of grain 
samples were used to construct spectral relationship matrices to enable phenomic 
selection (PS) and to aid GS, showing that the hyperspectral matrix-aided best lin-
ear unbiased prediction (H-BLUP) model performed at least as well as the standard 
genomic best linear unbiased prediction (G-BLUP) model. A model combining both 
spectral and genomic information (GH-BLUP) was superior to both G and H-BLUP 
alone (Robert et al. 2022a), showing similar results to Krause et al. (2019). Time-
series drone multispectral data allowed also for tree growth parameter prediction in 
slash pine using a linear kernel constructed based on vegetation indexes and band 
values (Li et al. 2023). The PS based on the NIR spectra was also a promising, low-
cost alternative to genotyping and a viable approach for predicting complex traits 
in perennial species such as grapevine (Brault et  al. 2022). NIR spectra are usu-
ally acquired in most breeding programs for seed composition estimation and are 
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therefore available without additional costs. However, their usefulness in predicting 
seemingly unrelated traits like GY must be questioned (Dallinger et  al. 2023). To 
the authors’ knowledge, no attempt has been made to utilize genetic relationships 
derived from low-cost multispectral imagery for GY prediction in wheat and aug-
menting GS protocols.

To fill this gap, we deployed HTP in a multi-environment spring wheat trial using 
two cost-effective multispectral cameras mounted on commercial UAVs. We tested 
various back-to-back GY prediction models using genomic (G) and multispectral 
(M) relationships combined with environment-specific phenotypical covariates. We 
investigated the applicability and flexibility of environment-specific M relationships 
in single and multi-environment scenarios and their synergy with the GS-GBLUP 
model. As such, the main objectives of this study were to.

1. Investigate the prediction ability of multispectral-derived genetic relationships 
for GY in single and multi-environment scenarios.

2. Verify the possibility of augmenting GS with multispectral-derived genetic rela-
tionships.

3. Study which multispectral band(s) are the most important for GY prediction.
4. Examine the most informative data capture time for GY prediction under Norwe-

gian growing conditions.

Materials and methods

Plant material

The Norwegian University of Life Sciences (NMBU) spring wheat panel, consisting 
of 301 hexaploid spring wheat (Triticum aestivum L.) cultivars and breeding lines, 
was used for the study. The same panel was recently used for genetic analyses of GY 
(Mróz et al. 2023), Fusarium head blight (Nannuru et al. 2022), and Septoria nodo-
rum blotch (Lin et al. 2022) resistance. The collection encompasses 186 Norwegian, 
40 Swedish, and 37 lines from CIMMYT, with several additional lines from Aus-
tralia, Brazil, Canada, Czech Republic, Denmark, Finland, France, Germany, Neth-
erlands, Poland, Russia, Slovakia, South Africa, Switzerland, UK, and the USA. The 
whole set presents a broad genetic and phenotypic diversity.

Field trials

Trials were carried out during field seasons 2015–2022 between April and August 
in Vollebekk Research Station (Norway, Ås, 59° 39′ N, 10° 45′ E) and Staur Farm 
(Norway, Stange, 60° 43′ N, 11° 06′ E), which represent the two principal economi-
cally important wheat-growing areas in Norway due to the somewhat warmer and 
milder climate of south-eastern Norway and the slightly colder and temperate cli-
mate of inland Norway.



1 3

Molecular Breeding (2024) 44:5 Page 5 of 31 5

The trials were fertilized at sowing with 120 kg∙ha−1 of compound NPK fertilizer 
(YaraMila 22–3-10) and planted each season in both locations in late April or early 
May (exact planting dates in Table  S1). Following germination, trials were kept 
disease- and weed-free according to local management practices using herbicides 
(Tripali [active ingredients: florasulam + metsulfuron-methyl + tribenuron-methyl] 
and Duplosan Meko [mekoprop]) and fungicides (Proline [prothioconazole], Aviator 
Xpro [bixafen + prothioconazole], Forbel [fenpropimorph] and Comet Pro [pyraclos-
trobin]) in doses tailored to the needs. Irrigation was applied in case of drought that 
could affect the growth of the plants. Alleys within the trials were created by spray-
ing glyphosate shortly after seedling emergence. The trials were harvested each sea-
son towards the end of August after all varieties had reached full ripeness.

Field trial design

The trials were designed as an alpha-lattice with two replicates per genotype and a 
block size of 6 with positions of every accession randomized each year. Each col-
umn was planted with buffer variety at its start and end to eliminate border effects. 
Each field trial plot was 5 × 1.5 m in size at harvest, with gaps between the plots of 
30 cm and a central alley of 1 m. For the main panel, not every variety was tested in 
each year/location, and the number of genotypes tested varied from 100 to 295 per 
year/location.

GY and phenology data

GY was measured in two locations over seven field seasons (a total of 11 environ-
ments–year/location combinations): Vollebekk Research Station in 2015, 2016, 
2017, 2019, 2020, 2021, and 2022; Staur Farm: 2016, 2017, 2019, and 2020.

GY was measured by harvesting and threshing the trial plots, drying the yield 
until approximately 13.5% moisture, weighing it, and recalculating it to grams per 
square meter. The occurrence of two phenological stages (heading and maturity) 
was also recorded in each environment to localize the flight missions in the growing 
season. Heading was defined as the moment when approximately 50% of the tillers 
unveiled their heads. Maturity was assessed based on discoloration and ripening of 
peduncles and was defined as the moment when approximately 50% of the pedun-
cles were ripe.

Data for plots lodged early was removed due to the heavy impact on their devel-
opment. If lodging occurred late in the season (close to maturity), data were double-
checked for consistency and possible impact on the traits.

Statistical analysis of the field trial data

For GY, three types of adjusted genotypic means (BLUEs, best linear unbiased esti-
mators) were calculated: year/location (environment) mean, location mean (all years 
from one location), and a global mean (where all the environments were combined).
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As it was not uncommon to observe extra spatial variability within the tri-
als (due to soil gradients) that was not fully captured by blocking, an additional 
covariate was introduced (columns) into the models to correct for it. The BLUEs 
were calculated using packages “lme4” and “lmerTEST” and custom scripts in R, 
version 4.2.1 (R Core Team 2021).

Environment (field trial) BLUEs were calculated using the mixed model (1):

where Pilmn denotes the response variable measured in the i th genotype, l th replica-
tion, m th block and n th column; � denotes a general mean or intercept; gi denotes 
the fixed effect of genotype i , with i = 1,… , I ; Rl denotes the random effect of rep-
lication effect; R ∶ Blm denotes the random effect of block m nested in replication l ; 
Cn denotes the random effect of column effect; and eilmn is the error random term. 
All random effects are assumed to be normally distributed with zero mean and the 
respective variances.

BLUEs for each location were calculated using the mixed model (2):

where Piklmn denotes the response variable measured in the i th genotype, k th 
year, l th replication, m th block, and n th column. Yk denotes the random effect 
of year effect, Y ∶ Rkl denotes the random effect of replication  l nested in year k , 
Y ∶ R ∶ Bklm denotes the random effect of block m nested in replication l nested in 
year, Y ∶ Ckn denotes the random effect of column n nested in year k , and eiklmn is 
the error term. All random effects are assumed to be normally distributed with zero 
mean and the respective variances.

Global BLUEs (cross-year, cross-location) were calculated using the mixed 
model (3):

where Pijklmn denotes the response variable measured in the i th genotype, j th loca-
tion, k th year, l th replication, m th block, and n th column. Lj denotes the random 
effect of location; Y ∶ Ljk denotes the random effect of location j nested in year k ; 
Y ∶ L ∶ Rjkl denotes the random effect of replication l nested in location j nested in 
year k ; Y ∶ L ∶ R ∶ Bjklm denotes the random effect of block m , nested in replication 
l nested in location j nested in year k ; Y ∶ L ∶ Cjkn denotes the random effect of 
column n nested in location j nested in year k ; and eijklmn is the random error term. 
All random effects are assumed to be normally distributed with zero mean and the 
respective variances.

In the single-environment scenario (“Model performance assessment”), envi-
ronment, location, and global BLUEs were used. In the multi-environment sce-
nario (“Model performance assessment”), only environment BLUEs were used. 
Broad-sense heritability (H2) was calculated for individual trials using Eq.  (4) 
(Falconer & Mackay 1996):

(1)Pilmn = � + gi + Rl + R ∶ Blm + Cn + eilmn

(2)Piklmn = � + gi + Yk + Y ∶ Rkl + Y ∶ R ∶ Bklm + Y ∶ Ckn + eiklmn

(3)
Pijklmn = � + gi + Lj + Y ∶ Ljk + Y ∶ L ∶ Rjkl + Y ∶ L ∶ R ∶ Bjklm + Y ∶ L ∶ Cjkn + eijklmn
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where �2
g
 is the genotypic variance, r is the number of replicates, and �2

e
 is the error 

variance. Variance components for Eq.  (4) were estimated using package “lme4” 
using the just described models but assuming the lines (genotypes) as normally dis-
tributed with mean zero and variance �2

G
.

Genotyping data

Samples were prepared and genotyped as described in Nannuru et al. (2022).
Physical positions of the markers were determined using the chip’s documen-

tation, and markers which were not mapped to any physical chromosome position 
were placed on a fictional chromosome Un.

Markers were filtered, leaving only those with less than 10% missing data and 
minor allele frequency (MAF) larger than 0.05. Heterozygous markers were treated 
as missing data. After the quality check, the dataset contained 19,874 high-qual-
ity markers mapped to sub-genomes A (7999), B (7905), and D (2111) on chro-
mosomes 1A (1156), 1B (1147), 1D (391), 2A (1232), 2B (1377), 2D (437) 3A 
(1074), 3B (1336), 3D (256), 4A (699), 4B (602), 4D (111), 5A (1340), 5B (1406), 
5D (311), 6A (1126), 6B (1082), 6D (319), 7A (1372), 7B (955), 7D (285), and Un 
(1859).

High‑throughput phenotyping data

High-throughput phenotyping data were captured using two cameras: Micasense 
RedEdge M (https:// micas ense. com) and DJI Phantom 4 Multispectral camera 
(https:// www. dji. com/ p4- multi spect ral). In both locations, the RedEdge M camera 
was used during field seasons 2019–2021, whereas the Phantom 4 Multispectral was 
used during field season 2021 in Vollebekk Research Farm.

Detailed UAV specifications and the HTP data capture and processing descrip-
tion can be found in the Supplementary material.

High-throughput phenotyping data consisting of five color bands (red, green, 
blue, NIR, and RedEdge) was available for three field seasons in the two locations 
throughout the vegetation period, however, with varying temporal resolution: from 4 
to 22 missions (Table 1).

The two cameras are fundamentally different regarding resolution and band-
widths/central bands (Fig.  1), so they were analyzed separately. Only raw canopy 
reflectance values (red, green, blue, NIR, and RedEdge) were used for every part of 
the analysis, without calculating multispectral indices.

Raw reflectance values in each of the environments and cameras are shown in 
Fig. S1. Correlation coefficients of raw reflectance values with GY in each of the 
environments are displayed on Fig. S2.

(4)H2 =
�
2
G

�
2
G
+

�2
e

r

https://micasense.com
https://www.dji.com/p4-multispectral
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Table 1  HTP mission overview: 
number of data capture sessions 
for each year, camera, and 
location

Year Camera and location

Micasense RedEdge M Phantom 4 Multispec-
tral

Vollebekk Staur Vollebekk Staur

2019 7 4 - -
2020 12 - - -
2021 8 - 22 -

Fig. 1  a Typical plant canopy reflectance spectrum with graphical interpretation of light spectrum wave-
lengths. b Visual interpretation and numeric values of central bands and bandwidths for the two tested 
cameras: Micasense RedEdge M, and Phantom 4 Multispectral
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Analyzed models

Several models described below were developed and tested using R package 
“lme4GS” (Caamal-Pat et al. 2021) in R version 4.2.1.

G‑single‑environment genomic prediction

To benchmark single-environment analysis, genomic prediction using G (genomic 
kinship) matrix (G-BLUP, according to VanRaden, 2008) was performed in single-
environment scenario (“Model performance assessment”). G was calculated accord-
ing to Eq. (5):

where n is the number of genotypes; G is the square genomic relationship matrix 
with n rows and n columns corresponding to the genotypes; W is a scaled (mean = 0, 
standard deviation = 1) matrix of SNP marker data with n rows and m columns 
(which equals number of quality-checked markers, coded as 0s and 2s); and W′ is its 
transpose.

For every environment (year/location combination), a random effect model was 
fitted using G as the definition of variance/covariance structure among the geno-
types according to Model 1:

where y is the vector of BLUEs for a trait for n genotypes, � is the intercept, 1 
is a vector of ones, g is the vector of random genotypes effects distributed as 
g ∼ N(0,G�2

g
) , and e is the vector of residual effects distributed as e ∼ N(0, �2).

Model 1 was trained and tested on environment (field trial), location, and global 
BLUEs.

G‑multi‑environment genomic prediction

To benchmark multi-environment prediction using the G matrix, Model 1 was used 
in the multi-environment scenario (“Model performance assessment”), using only 
environment (trial) BLUEs.

G + E‑multi‑environment genomic prediction with environment covariance (E) 
matrix

To benchmark multi-environment predictions using the G matrix coupled with 
the environmental (phenotypical) variance/covariance matrix  KE, genomic predic-
tion supplemented with  KE matrix was analyzed in a multi-environment scenario 
(“Model performance assessment”). For this purpose, only environment (trial) 
BLUEs were used.

(5)G =
WW�

n

(Model 1)y = �1 + g + e
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The  KE matrix was computed for GY according to Eq. (6):

where n is the number of environments (environment/season combinations), KE 
is the square environmental (phenotypical) variance/covariance matrix for GY 
of dimensions n × n, P is a scaled rectangular matrix with n rows and m columns 
(representing scaled phenotype values for every genotype for every environment in 
rows), and P′ is its transpose.

Using G and E, Model 2 was fitted:

All the terms of Model 2 are equal to Model 1 except for E—vector of random envi-
ronment effects, E ∼ N(0,KE�

2
E
).

M‑single‑environment prediction using image‑derived M matrix

For every environment, based on BLUE values for every available raw band for each 
flight date and each genotype (“Statistical analysis of the field trial data”), a multispec-
tral relationship matrix was computed according to Eq. (7) and analogically to G and E 
matrices and similar to the work of Krause et al. (2019):

where n is the number of genotypes, KM is the multispectral variance/covariance 
matrix of dimensions n × n in a particular season, C is a scaled rectangular matrix 
with n rows and number of columns corresponding to genotypic BLUE reflectance 
values for each multispectral band at every flight within the season, and C′ is its 
transpose.

As the reflectance values are assumably environment-specific, the KM matrix was 
computed for each environment (year/location combination) separately, with no attempt 
to calculate a cross-environment KM matrix.

Using the derived KM matrix, an analogical analysis to single-environment genomic 
prediction was conducted by replacing G with KM matrix in a single-environment sce-
nario (“Model performance assessment”) and fitting Model 3:

where g∗ is the vector of random genotype effects distributed as g ∼ N
(

0,KM�
2
g∗

)

. 
Each KM matrix (developed based on different environment data) was trained and 
tested on environment, location, and global BLUEs.

(6)KE =
PP�

n

(Model 2)y = �1 + E + g + e

(7)KM =
CC�

n

(Model 3)y = �1 + g∗ + e
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Multi‑environment prediction using M matrix

To assess whether KM matrix derived based on data from a single season pos-
sesses prediction ability in other environments (if it is environment-specific), an 
analogical analysis was carried out in a multi-environment scenario (“Model per-
formance assessment”) by replacing G with KM in Model 1. Each environment’s 
KM matrix was tested for its multi-environment prediction ability using only envi-
ronment (trial) BLUEs. There was no attempt to calculate a cross-environment 
KM because of the assumed environment-specificity of multispectral data.

Multi‑environment prediction using M and E matrices

An analogical model to Model 2 was tested in a multi-environment scenario 
(“Model performance assessment”) by replacing G with the KM matrix. For this 
purpose, only environment (trial) BLUEs were used.

G + M‑single‑season genomic prediction supplemented with M matrix

To assess the prospect of supplementing genomic prediction models with multi-
spectral data, Model 4 combining both G and KM matrices was fitted for a single-
environment scenario (“Model performance assessment”):

with terms identical as in Models 1 and 3. For the purpose, BLUEs over environ-
ments were used.

G + M‑multi‑environment genomic prediction supplemented with M matrix

To evaluate the combined prediction ability of the G and KM matrices, Model 4 
was tested in the multi-environment scenario (“Model performance assessment”) 
using only environment (trial) BLUEs.

G + M + E‑multi‑environment genomic prediction supplemented with M and E 
matrices

To further evaluate the combined prediction ability of G and KM matrices in 
multi-environmental scenario (“Model performance assessment”), Model 5 was 
developed using G, M, and E matrices simultaneously:

(Model 4)y = �1 + g + g∗ + e

(Model 5)y = �1 + E + g + g∗ + e
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with terms identical as in the previous models. For this purpose, only environment 
(trial) BLUEs were used.

Model performance assessment

The models’ performance was analyzed under two scenarios (described below): 
single (G, M, and G + M) and multi-environment (G, M, G + E, G + M, M + E, 
and G + M + E). The assessment was performed using the following metrics:

rTRN—prediction ability in the training set (in the dataset used to develop 
the model), defined as the Pearson correlation coefficient between predicted and 
observed values.

rTST—prediction ability in the testing set (the dataset not seen previously by 
the model), defined as the Pearson correlation coefficient between predicted and 
observed values.

rmseTRN—root mean squared error in the training set, defined as

where  obsTRN are observed (ground truth) phenotypes,  predTRN are predicted pheno-
types (output from the models), and N is the number of records (genotypes) in the 
training set.

rmseTST is root mean squared error in the test set (previously unseen data), 
defined as

where  obsTST are observed (ground truth) phenotypes,  predTST are predicted pheno-
types (output from the models), and N is the number of records (genotypes) in the 
testing set.

The models were tested using cross-validation with 200 iterations in two 
scenarios:

Single environment: the training set consisted of 80% of genotypes available 
in the respective environment/mean (20% as testing set). Genotypes were ran-
domly assigned to training/test sets at every iteration.

Multi-environment: the testing set consisted of 20% of all the available geno-
types in two environments not used for training the model. The training set com-
prised 80% of all the available genotypes in the remaining environments (9). 
Therefore, the testing set was double-blind: comprised of both environments and 
genotypes not used for model training. Both genotypes and environments were 
randomly assigned to training/testing sets at every iteration.

rmseTRN =

�

∑N

n=1
(obsTRN − predTRN)

2

N

rmseTST =

�

∑N

n=1
(obsTST − predTST)

2

N
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The importance of camera bands for GY prediction

Model 3 was tested in a single-environment scenario with M matrices constructed 
based on all flight times with only a single camera band at a time (red, green, blue, 
RedEdge, and NIR) to verify the importance of camera bands for GY prediction 
using the M matrix.

The importance of timing of data capture

Model 3 was tested in a single-environment scenario with M matrices constructed 
on all camera bands but with only one date at a time to verify the effect of time of 
data capture on GY prediction ability.

Minimal setup for GY prediction

Based on the results mentioned in the previous paragraphs, a concept of minimal 
setup for GY prediction was formed: a single flight mission taken during July (grain 
filling stage). This concept was developed for multispectral cameras (with five 
bands) and a simple RGB camera (3 bands, red, green, and blue). The RGB camera 
was “simulated” using only three bands (out of the five available bands) for con-
structing M matrices.

Model 3 was tested in the single-environment scenario, constructing M matrices 
based on a random flight date in July in each environment with five (multispectral 
camera) or three (RGB camera) bands.

Results

Phenotypic data evaluation—GY

Mean genotypic GY values across all environments (year and location combina-
tions) are similar (approximately 520 g  m−2), except for a field experiment in Staur 
in 2017 when the average GY value reached 789 g  m−2. The global mean is influ-
enced mainly by trials conducted in Vollebekk and resembles the distribution of the 
Vollebekk environment mean. The environment mean in Staur is higher than the 
Vollebekk means by 70 g  m−2. In all environments and means, a long left tail can be 
observed in the distributions (Fig. 2).

Across the field trials (environments), broad-sense heritability for GY ranged 
from 0.63 (2017 Vollebekk) to 0.92 (Vollebekk 2015) and the number of tested gen-
otypes varied between 98 and 296 (Table 2).

Field trials (environments) and means were, on average, highly correlated 
(r = 0.77). The field trial from Vollebekk in 2015 is the most different from the 
remaining trials and means, with r ranging from 0.32 (with Staur 2019) to 0.64 
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(with Vollebekk 2019) and 0.67 with the Vollebekk environmental mean. The 
location means resemble more recent trials (2019 onwards), which can also be 
observed for the global mean (Fig. 3).

Fig. 2  Violin plot of distributions of GY genotypical means in each of the studied environments and 
means: global means (across all studied environments) and location specific means (across all environ-
ments within one location: Staur or Vollebekk). Black dots indicate mean values

Table 2  Broad sense heritability 
(H2) of GY in each environment 
and number of genotypes 
(n genotypes) tested in each 
environment (field trial)

Environment n genotypes H2

2015 Vollebekk 157 0.92
2016 Staur 100 0.71
2016 Vollebekk 98 0.73
2017 Staur 240 0.83
2017 Vollebekk 240 0.63
2019 Staur 220 0.83
2019 Vollebekk 220 0.81
2020 Staur 288 0.68
2020 Vollebekk 288 0.73
2021 Vollebekk 293 0.84
2022 Vollebekk 296 0.90
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High‑throughput phenotyping data evaluation

Raw reflectance values for each band over field seasons in each environment are 
shown on Fig. S1.

Broad-sense heritability of each band changed during the season with no appar-
ent consistent trend; however, heritability values tended to be more stable later in 
the growing season (from July onwards). NIR and red were the least heritable bands, 
while RedEdge, green, and blue had higher heritability values. It was not uncommon 
to observe that during the same mission, different bands had very different herit-
abilities (Fig. 4).

Evaluation of single environment prediction using G matrix

GY prediction using the G matrix in single-environment scenarios (model 
trained and validated on a single season) consistently showed high prediction 

Fig. 3  Genotypic Pearson correlations for GY values among field trials (environments), their means, and 
the global mean
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ability in the training set (on average 0.99). In contrast, accuracies in testing 
sets ranged from 0.59 to 0.81 in individual field trials, averaging to 0.75. In both 
location and the global BLUEs, where the genetic signal is stronger, testing 
accuracies (rTST) were higher than in the individual trials. Root mean squared 
error (rmse) in the testing set was approximately four times higher than in the 
training set (53.0 and 13.9 for testing and training sets, respectively, Table 3).

Fig. 4  Broad-sense heritability estimates for each band, in each environment, and for each flight and 
camera. The X axis, data capture date (flight date); Y axis, broad sense heritability. Line colors corre-
spond to the bands they represent (RGB); gray, NIR; dark red, RedEdge
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Evaluation of single environment prediction using M matrix

M matrices showed the highest prediction ability on the environment they origi-
nated from; however, they often retained prediction ability when tested on other 
environments, especially those highly correlated with their environment of origin. 
M matrices developed in seasons 2019 and 2020 showed poor prediction ability in 
2015 Vollebekk, 2016 Vollebekk, and 2017 Vollebekk due to low correlations with 

Table 3  Comparison of GY 
prediction ability and root mean 
squared error for G matrix 
in a single season scenario 
(models built and verified on 
a single environment) using 
cross-validation with 200 
iterations. rTRN prediction 
ability in the training set, 
rTST prediction ability in the 
testing set, rmseTRN root mean 
squared error in the training set, 
rmseTST root mean squared 
error in the testing set

Environment/mean G matrix

rTRN rTST rmseTRN rmseTST

2015 Vollebekk 0.99 0.69 15.7 64.9
2016 Staur 0.99 0.75 14.9 73.6
2016 Vollebekk 0.98 0.72 14.7 52.0
2017 Staur 0.99 0.81 19.7 69.7
2017 Vollebekk 0.98 0.70 16.2 52.4
2019 Staur 0.95 0.59 23.6 51.9
2019 Vollebekk 0.98 0.63 11.1 40.7
2020 Staur 0.99 0.77 12.6 51.9
2020 Vollebekk 0.98 0.75 17.9 53.5
2021 Vollebekk 0.99 0.75 9.9 46.0
2022 Vollebekk 0.99 0.79 14.4 51.5
Mean global 1.00 0.86 6.3 40.2
Mean Staur 0.99 0.83 14.5 54.4
Mean Vollebekk 1.00 0.85 3.6 39.1
Avg 0.99 0.75 13.9 53.0

Fig. 5  Prediction abilities achieved in single-environment scenarios by using M matrix constructed on 
multispectral data from each environment with multispectral data available. The Y axis indicates from 
where the environment multispectral data originated, while the X axis indicates the environment on 
which the model was trained and tested. Numbers and colors indicate the prediction ability in the testing 
set defined as Pearson correlation between predicted and actual values. *Data gathered using Micasense 
RedEdge camera; **data gathered using Phantom 4 Multispectral camera. Abbreviated location names: S 
Staur, V Vollebekk
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those environments. M matrices developed with data from 2021 Vollebekk (using 
both cameras) showed decent prediction abilities across all the tested environments, 
even in environments not strongly correlated with the M matrix’s origin (Fig.  3). 
Prediction abilities were high (> 0.5) for the global and location means for all the M 
matrices (Fig. 5).

Evaluation of G, M, and G + M models in single‑environment scenarios

Genomic prediction accuracies in testing sets ranged from 0.59 to 0.75, averaging 
0.68 in the chosen environments, while training set accuracies reached nearly perfect 
(0.98). Predictions using the M matrix in the single-environment scenario showed, 
on average, lower training set prediction abilities than predictions using the G matrix 
(0.79 and 0.98, respectively); however, testing set prediction abilities were higher 
than those of the G matrix (0.71 and 0.68, respectively). By comparing the differ-
ence between training and testing set prediction abilities, the M matrix model was 
less prone to overfitting than the model using the G matrix (difference of 0.08 and 
0.30 for M and G matrices, respectively) (Table 4).

Supplementing genomic prediction (G matrix) with the M matrix in a single-
environment scenario yielded similar prediction ability (0.71 for M versus 0.68 for 
G). The G + M model exhibited traits of both individual matrix models and per-
formed better than either G or M alone: very high training prediction ability, high 
testing prediction ability, low training set error, and low testing set error (Table 4).

Table 4  Comparison among prediction abilities of M matrices originating from different seasons, predic-
tion using only the G matrix (genomic prediction), and a combined model utilizing both G and M matri-
ces in the same model in the single-environment scenario. Models were developed and tested on single 
environment (trial) BLUEs. Abbreviated location names: S Staur, V Vollebekk, rTRN prediction ability in 
the training set, rTST prediction ability in the testing set, rmseTRN root mean squared error in the train-
ing set, rmseTST root mean squared error in the testing set. *M matrix developed using Micasense Red-
Edge M camera data; **M matrix developed using Phantom 4 Multispectral camera data

Model Metric Season/M matrix origin (if M present) Avg

2019 S 2019 V 2020 V 2021 V* 2021 V**

G rTRN 0.95 0.98 0.98 0.99 0.98
rTST 0.59 0.63 0.75 0.75 0.68
rmseTRN 23.61 11.06 17.87 9.88 15.61
rmseTST 51.88 40.72 53.51 45.95 48.02

M rTRN 0.74 0.81 0.75 0.81 0.84 0.79
rTST 0.66 0.73 0.69 0.71 0.75 0.71
rmseTRN 43.20 31.37 53.62 40.24 38.07 41.30
rmseTST 48.84 37.03 58.13 49.11 45.90 47.80

G + M rTRN 0.96 0.98 0.99 1.00 1.00 0.99
rTST 0.74 0.79 0.83 0.80 0.81 0.79
rmseTRN 19.51 11.02 11.23 6.87 6.19 10.96
rmseTST 42.54 32.33 45.76 41.00 40.96 40.52
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Evaluation of G, M, G + M, G + E, and G + M + E models in multi‑environment 
scenarios

GY prediction using the G matrix alone in multi-environmental scenarios 
achieved accuracies of 0.57 and 0.49 in training and testing sets, respectively. 
Prediction ability in testing sets using M matrices originating from different 
environments ranged from 0.27 to 0.44, averaging 0.36. Replacing G with the 
M matrix resulted in a considerable reduction of prediction ability (difference 

Table 5  Comparison of prediction ability of different models including combinations of G, E, and M 
matrices in the multi-environmental scenarios (two environments as testing sets, drawn randomly at 
every iteration). M matrices were developed based on data originating from different environments, and 
each M matrix has been tested individually on randomly selected test environments over 200 iterations. 
Abbreviated location names: S Staur, V Vollebekk, rTRN prediction ability in the training set, rTST pre-
diction ability in the testing set, rmseTRN root mean squared error in the training set, rmseTST root mean 
squared error in the testing set. *M matrix developed using Micasense RedEdge M camera data; ** M 
matrix developed using Phantom 4 Multispectral camera data

Model Metric If M present, M matrix developed on data from Avg

2019 S 2019 V 2020 V 2021 V* 2021 V**

G rTRN 0.57 -
rTST 0.49 -
rmseTRN 111.1 -
rmseTST 117.0 -

M rTRN 0.43 0.40 0.54 0.52 0.52 0.48
rTST 0.27 0.32 0.36 0.42 0.44 0.36
rmseTRN 110.6 111.6 112.2 113.4 113.5 112.3
rmseTST 117.0 115.0 124.2 121.7 119.7 119.5

G + E rTRN 0.95 -
rTST 0.83 -
rmseTRN 40.59 -
rmseTST 58.16 -

G + M rTRN 0.46 0.46 0.56 0.57 0.57 0.52
rTST 0.44 0.46 0.62 0.57 0.63 0.56
rmseTRN 107.0 107.0 110.0 108.0 109.0 108.0
rmseTST 121.0 121.0 117.0 124.0 121.0 120.8

M + E rTRN 0.90 0.92 0.90 0.91 0.93 0.91
rTST 0.70 0.78 0.73 0.77 0.79 0.75
rmseTRN 50.8 45.9 56.7 53.7 49.0 51.3
rmseTST 62.3 57.4 68.6 63.4 60.3 62.4

G + E + M rTRN 0.95 0.95 0.95 0.95 0.95 0.95
rTST 0.76 0.79 0.84 0.84 0.85 0.82
rmseTRN 36.9 37.2 40.1 40.2 40.5 39.0
rmseTST 54.9 50.9 56.2 54.8 53.0 53.9
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in testing prediction ability of 0.13) and a slightly larger degree of overfitting 
of the model (difference of prediction ability in training–testing sets of 0.12) 
(Table 5).

Supplementing genomic prediction with a phenotypically derived E matrix 
drastically increased the prediction ability in training and testing sets (0.95 and 
0.83, respectively) and reduced the errors. The G + E model achieved the highest 
prediction ability among all the tested models (Table 5).

Aiding genomic prediction with M matrices also increased the prediction 
ability, albeit smaller than adding the E matrix (testing sets prediction ability 
difference of 0.27 between G + E and G + M models). Prediction based on M 
matrices coupled with the E matrix achieved a prediction ability comparable 
with genomic prediction aided by the E matrix (testing set accuracies of 0.75 
and 0.83 for M + E and G + E models, respectively). The M + E model was simi-
lar to the G + E model in its degree of overfitting (difference between training 
and testing set accuracies of 0.12 and 0.16, respectively) (Table 5).

The most complex model, utilizing G, E, and M matrices, achieved predic-
tion abilities almost identical to the G + E model (testing set accuracies of 0.82 
and 0.83, respectively); however, adding multispectral information resulted in 
minor errors both in training and testing sets, as compared to the G + E model. 
M matrix originating from the 2021 Vollebekk environment (with the highest 
temporal density) paired with G and E matrices showed the highest prediction 
ability in the prediction of GY (testing set prediction ability 0.85) (Table 5).

Which camera bands are the most informative for GY prediction using M matrix?

In single-environment scenario, GY prediction using a constructed M matrix 
based on only one band reduced prediction ability by 35% compared to the 
entire M matrix (average testing set prediction ability for the individual bands 
of 0.46 compared to 0.71 for the entire M matrix, Table 4 and 5). On average, 
bands exhibited the following ranking (descending prediction in the test set pre-
diction ability): RedEdge, red ex aequo green and blue, and NIR; however, these 
differed slightly among the environments. The bands with the highest predic-
tion abilities were RedEdge and the three “basic” bands (red, green, and blue). 
Contrastingly, the least informative band was consistently NIR (except for Volle-
bekk 2019, where it ranked 4), with high variability in the testing set prediction 
ability reaching as low as − 0.22 in the Staur 2019 environment. The remaining 
bands were consistent in their prediction abilities (Table 6).

Bearing similarity to the single-environment scenarios (Table 6), M matrices 
developed on single bands had poor and reduced prediction ability in multi-envi-
ronment scenarios by 41% (average testing set prediction ability of 0.21) com-
pared to the entire M matrices (Table  5 and 7). The average ranking of bands 
also bared similarity to the single-environment scenarios: RedEdge ex aequo red 
and green, blue, and NIR.
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Effect of multispectral data capture on GY prediction ability

GY prediction in single-environment scenarios was possible, with accuracies 
ranging from 0.17 to 0.68. Based on all the environments, data capture sessions 
late in the growing season (when plants approach physiological maturity) tended 
to be less informative (Fig. 6). At the same time, the prediction ability dropped 
further as maturing progressed. It is difficult to conclude the informativeness of 
early season flights due to the scarcity of available records; however, based on 
Vollebekk 2020 and 2021 environments, early season flights are more informative 
than flights taken later, until approximately the end of June. Data capture sessions 
carried out in July showed the highest prediction ability in all the seasons with 
stable accuracies (Fig. 6). Based on the 2021 Vollebekk environment, no mean-
ingful differences in prediction ability could be observed between the two used 
cameras (Fig. 6).

Table 6  Comparison of prediction abilities of constructed M matrices based on a single band captured 
during a single season in a single-environment scenario. Abbreviated location names: S Staur, V Volle-
bekk, rTRN prediction ability in the training set, rTST prediction ability in the testing set, rmseTRN root 
mean squared error in the training set, rmseTST root mean squared error in the testing set. *M matrix 
developed using Micasense RedEdge M camera data; ** M matrix developed using Phantom 4 Multi-
spectral camera data

Band Metric Environment Avg

2019 S 2019 V 2020 V 2021 V* 2021 V**

Red rTRN 0.59 0.58 0.64 0.59 0.73 0.63
rTST 0.55 0.47 0.60 0.44 0.63 0.54
rmseTRN 52.29 44.2 62.6 55.95 47.2 52.4
rmseTST 52.7 46.5 66.0 70.2 54.8 58.0

Green rTRN 0.59 0.62 0.59 0.59 0.71 0.62
rTST 0.55 0.56 0.53 0.54 0.65 0.53
rmseTRN 52.4 42.4 65.6 56.0 48.6 53.0
rmseTST 53.1 44.8 68.1 59.0 52.2 55.4

Blue rTRN 0.45 0.38 0.60 0.57 0.69 0.54
rTST 0.40 0.25 0.53 0.47 0.65 0.46
rmseTRN 57.4 50.2 65.2 56.5 50.1 55.9
rmseTST 59.6 51.9 67.7 63.6 52.9 59.1

RedEdge rTRN 0.63 0.63 0.58 0.60 0.69 0.63
rTST 0.60 0.58 0.53 0.56 0.61 0.58
rmseTRN 50.2 42.0 66.3 54.9 49.7 52.6
rmseTST 51.4 44.0 68.6 59.4 55.8 55.8

NIR rTRN 0.82 0.45 0.42 0.44 0.66 0.56
rTST -0.22 0.35 0.21 0.13 0.55 0.21
rmseTRN 30.7 48.4 73.0 58.0 51.8 52.4
rmseTST 64.6 50.6 81.2 68.7 58.8 64.8
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Minimal GY prediction setup in single‑environment scenarios using the M matrix

The prediction ability ranged from 0.51 to 0.58 and 0.55 to 0.62 for RGB and MS cam-
eras, respectively—using MS instead of RGB cameras increased prediction ability only 
slightly (average difference of 0.04). Prediction performed using both cameras showed 
identical degrees of overfitting (prediction ability difference between training and test-
ing sets of 0.03) (Table 8).

Table 7  Comparison of prediction ability of constructed M matrices based on a single camera band in 
multi-environment scenarios (two environments as testing set, drawn randomly at every iteration). The 
development of M matrices was based on data originating from different environments, and each M 
matrix has been tested individually on randomly selected test environments over 200 iterations. Abbre-
viated location names: S Staur, V Vollebekk, rTRN prediction ability in the training set, rTST predic-
tion ability in the testing set, rmseTRN root mean squared error in the training set, rmseTST root mean 
squared error in the testing set. *M matrix developed using Micasense RedEdge M camera data; ** M 
matrix developed using Phantom 4 Multispectral camera data

Band Metric M matrix developed on data from: Avg

2019 S 2019 V 2020 V 2021 V* 2021 V**

Red rTRN 0.46 0.44 0.56 0.56 0.55 0.51
rTST 0.21 0.24 0.24 0.25 0.35 0.26
rmseTRN 109.6 110.3 111.3 111.4 112.1 111.0
rmseTST 119.7 118.1 128.5 134.3 124.7 125.0

Green rTRN 0.46 0.45 0.56 0.57 0.55 0.52
rTST 0.22 0.23 0.23 0.25 0.35 0.26
rmseTRN 109.3 110.0 111.4 110.9 111.7 111.0
rmseTST 119.2 118.6 128.8 130.4 124.7 124.0

Blue rTRN 0.48 0.48 0.57 0.58 0.57 0.53
rTST 0.10 0.12 0.18 0.12 0.26 0.16
rmseTRN 109.1 109.3 111.1 110.6 111.1 110.0
rmseTST 121.0 121.4 131.7 133.1 129.2 127.0

RedEdge rTRN 0.44 0.45 0.56 0.56 0.56 0.52
rTST 0.24 0.25 0.24 0.26 0.33 0.26
rmseTRN 110.1 110.0 111.27 111.15 111.5 111.0
rmseTST 118.1 117.7 128.8 129.3 125.9 124.0

NIR rTRN 0.48 0.47 0.57 0.58 0.56 0.53
rTST 0.00 0.18 0.08 0.10 0.31 0.13
rmseTRN 109.2 109.5 110.9 110.5 111.5 110.0
rmseTST 122.8 120.3 132.7 133.3 127.2 127.0
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Fig. 6  Prediction ability of M matrix developed on all bands from a single date in single-environment 
scenario, in environments 2019 Vollebekk (a), 2019 Staur (b), 2020 Vollebekk (c), and 2021 Vollebekk 
(d, e). Phenotyping data was gathered using Micasense RedEdge (a–d) or Phantom 4 Multispectral (e) 
camera. Colored regions in the plots indicate approximate growing stages of the panel in each environ-
ment. X axis, date of mission; Y axis, prediction ability



 Molecular Breeding (2024) 44:5

1 3

5 Page 24 of 31

Discussion

Using relationships among objects or individuals has been present in plant breeding 
for over 100 years and has been the foundation for quantitative genetics. Those rela-
tionships can be derived based on various properties of the individuals, such as their 
pedigrees (A matrix) or dense genotyping data (Meuwissen, Hayes, and Goddard, 
2001), and are widely used in breeding programs worldwide for both simple and 
complex traits. This study elaborates on utilizing multispectral phenotypes to con-
struct genotypic relationships. The described methodology, bearing similarity to the 
G or A matrices or work of Krause et al. (2019), focuses not on individual numeri-
cal multispectral phenotype values and their possible abstract relationship with the 
complex trait of interest but rather on the similarities between genotypes.

Having standard GS in a single-environment scenario as a benchmark, M matrix-
based prediction performed similar. GS tended to reach almost perfect prediction 
ability in the training set, with a considerable drop in prediction ability when tested 
on new lines. With an average GY heritability of 0.6 in this study, we can see that 
GS attempts to predict experimental error in individual trials. The prediction ability 
difference between training and testing sets for the M matrix was four times smaller 
than for GS, indicating a much lower level of overfitting, probably due to being 
“closer” to the actual phenotypes. The prediction accuracies using M matrices in 
a single-environment scenario are comparable to those using H matrices (Krause 
et al. 2019). H matrix is analogical to the M matrix but developed on hyperspectral 
data with 62 bands, covering a spectrum between the 380- and 850-nm region. It 
indicates that introducing more narrower bands is less valuable than using fewer but 
broader bands available on commercial “low-cost” cameras such as those used in the 
study. The prediction accuracies achieved by the M matrices are also similar to other 
studies using linear and non-linear modeling approaches, including OLS (ordinary 

Table 8  Comparison of GY prediction ability in single-environment scenarios using a minimal setup 
(single data capture during July) with M matrices developed based on RGB and multispectral data (cam-
eras). Abbreviated location names: S Staur, V Vollebekk, rTRN prediction ability in the training set, 
rTST prediction ability in the testing set, rmseTRN root mean squared error in the training set, rmseTST 
root mean squared error in the testing set. *M matrix developed using Micasense RedEdge M camera 
data; ** M matrix developed using Phantom 4 Multispectral camera data

Setup Metric M matrix developed on data from: Avg

2019 S 2019 V 2020 V 2021 V* 2021 V**

RGB camera rTRN 0.58 0.55 0.60 0.57 0.58 0.58
rTST 0.56 0.51 0.58 0.54 0.55 0.55
rmseTRN 53.0 44.3 65.0 56.4 56.1 55.0
rmseTST 52.4 45.2 66.0 57.2 27.3 55.6

MS camera rTRN 0.63 0.59 0.62 0.63 0.61 0.62
rTST 0.62 0.55 0.59 0.60 0.58 0.59
rmseTRN 50.4 42.4 63.7 53.4 54.3 52.9
rmseTST 50.5 44.3 65.2 54.7 56.0 54.1
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least squares), Bayesian methods, and PLS (partial least squares), as well as func-
tional regression (Aguate et  al. 2017; Montesinos-López et  al. 2017) or machine/
deep learning methods (Shafiee et al. 2021).

The prediction capabilities of M matrices, developed in various environments, 
are expected to be lower when assessed using multi-environment means, as they are 
closely tied to their respective originating environments. Interestingly, when evalu-
ated against multi-environment means, M matrices derived from temporally dense 
data exhibit a slightly higher prediction ability compared to trial means of their ori-
gin. It could be partially because the means resemble the original environment but 
could also indicate that even the seemingly environment-specific similarity meas-
ure has the potential to generalize the genetic part of the phenotype. It is also high-
lighted by the M matrices originating from different environments, showing predic-
tion power when tested on different environments (with exceptions). The temporally 
denser the data, the higher the M matrix’s generalization ability. However, it is not 
easy to consult this hypothesis with available research.

G and M matrices complement each other—the GS model coupled with the M 
matrix (G + M) in a single-season scenario achieved higher prediction ability than 
its components alone. The G + M model has the theoretical advantage of using both 
genetic information and the outcome of this information in a particular environment, 
capturing more of the crucial G × E interactions. However, the performance gain of 
adding M to GS was relatively small and came with valuable error reduction in the 
testing set. Considering the relatively low expense of acquiring multispectral infor-
mation and its standalone prediction capacity, it can be a viable addition to the prac-
tical applications of GS protocols as also shown in other works (Zhu et  al. 2022, 
Robert et al. 2022b).

In multi-environment scenarios, an M matrix–based prediction was inferior to 
GS, a logical consequence of the inherent environment specificity of the M matrices, 
as opposed to the “general” genetic nature of the G matrix. However, the predic-
tion ability of M matrices in multi-environment scenarios tended to increase with 
the number of data capture sessions, which was not the case for single-environment 
scenarios. It indicates that a temporally denser M matrix can describe the genetic 
component of GY, reaching prediction ability almost as high as GS, even though this 
component is not as crucial for the prediction in a single-environment scenario.

GS supplemented with the M matrix shows overall slightly superior predic-
tion ability compared to the GS or M matrix–based prediction alone; however, this 
appears to depend on the origin of the M matrix and, probably more importantly, 
the temporal density of data capture sessions (these two are confounded in this 
work). Despite higher prediction ability, the G + M model shows higher error val-
ues, indicating that providing environment-specific information (M matrix) to GS in 
multi-environment prediction scenarios brings little value without providing further 
context.

GY prediction in multi-environment scenarios using G or M matrices with envi-
ronmental context (E matrix) shows high prediction ability, with GS’s superiority in 
prediction ability and error. It indicates that both layers of information prove inform-
ative when used in the environmental context. Although the model combining G, 
M, and E variates (G + M + E) is not superior to G + E in terms of prediction ability, 
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it minimizes the error, hinting that even only one field season of HTP data capture 
can aid GS protocols in providing more accurate genetic estimates of GY in multi-
environment scenarios.

The camera bands’ relative ranking of prediction ability indicates that heritability 
is essential. Both the least heritable and the least important band was near-infrared 
(NIR), despite its established link with plant physiology (multiple reflections of tur-
gid cell structure (Peñuelas & Filella 1998)). Hypothesizing, NIR reflectance could 
gain importance when water availability severely limits GY output (drought); how-
ever, it is impossible to verify this based on our available data. NIR bands tend to 
be “unstable” and prone to differences in light conditions during data capture, bear-
ing a significant challenge in field based HTP. This problem is partially solved by 
introducing normalized vegetation indices (VIs, linear combinations of reflectance 
values in selected spectral regions) such as NDVI, which are more robust under vari-
able lighting conditions.

The most important bands (RedEdge, red, green, and blue) all link to chlorophyll 
and are more heritable than NIR. RedEdge points to chlorophyll content (Gitelson 
et  al. 1996), and due to its photochemical properties, chlorophyll absorbs red and 
blue light while reflecting green. Therefore, it is reasonable to hypothesize that chlo-
rophyll properties and content of a genotype govern the usefulness of the M matrix, 
following findings made by Krause et al. (2019). It may also be that these associa-
tions are spurious—the most influential bands are highly heritable, and the M matrix 
models may therefore work on a “plants that look alike, yield alike” principle with-
out an actual biological component to it.

The most informative data capture time occurs during the grain-filling period, 
which aligns well with the hypothesis that chlorophyll properties are captured by the 
M matrix and govern its predictive ability—during grain-filling, higher chlorophyll 
content means higher assimilation force and photosynthesis rate, resulting in higher 
GY (Ghimire et  al. 2015; Sid’ko et  al. 2017). At the same time, inspecting drone 
imagery during grain filling indicates that the purely visual differences among trial 
plots are the smallest. Surprisingly, data capture sessions taken later in the grow-
ing season yield lower prediction ability. The moment when plants start maturing is 
easy to determine visually using HTP imagery due to the decay of chlorophyll and 
water content (change in color). GY is highly correlated with earliness in the NMBU 
spring wheat panel (Mróz et  al. 2023); hence, it should be reasonably possible to 
predict GY based on differences in genotype earliness. Our findings contradict this 
hypothesis, as a decay in prediction ability was observed as maturing progressed. 
These arguments also support the hypothesis of the M matrix using chlorophyll 
information proxies to predict GY rather than the “plants that look alike, yield alike” 
principle. Krause et al. (2019) did not observe a similar relationship: all flights taken 
during the vegetative season yielded comparable prediction ability.

This study used two cameras for HTP data capture: Micasense RedEdge M and 
Phantom 4 Multispectral camera. They were analyzed back to back for their pre-
diction ability using the M matrix in all models and scenarios. Our results show 
no evidence to conclude that there are significant differences in prediction ability 
between the cameras, despite the different technical specifications and numeri-
cal reflectance values obtained. This conclusion aligns with the authors’ previous 
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studies, comparing the same two cameras in parallel mission sessions for GY and 
biomass prediction using machine learning (Shafiee et al. 2023).

Based on our results, the prediction ability gains of using a multispectral camera 
over a simple RGB camera are incremental, despite multispectral cameras giving 
access to the informative RedEdge band. Considering the needed hardware, effort, 
and other resources for GY prediction, a simple RGB camera is more appealing 
from a purely economic standpoint. It was also exemplified that as little as a sin-
gle flight mission with a simple RGB camera during the grain-filling period yields 
enough data to predict GY with prediction ability over 0.5 in a single-environment 
scenario. It shows the potential of the method and the potential of HTP in large-
scale field trial applications.

The usefulness of GS and GY prediction using the M matrix can hardly be com-
pared, as those two methodologies occupy different application niches in plant 
breeding: the purpose of GS is an early prediction of genotype’s GEBV to enable 
efficient screening of early-generation progenies in breeding programs and being 
able to apply speed breeding. Therefore, the most significant advantage of GS is 
the ability to estimate GEBVs based on a sample of DNA of a single plant earlier. 
GY prediction using the M matrix does not have this advantage. Genotypes must be 
put in field trials to collect their multispectral phenotypes, which can occur only in 
later-generation progenies in reasonably sized field trials. However, prediction using 
the M matrix scales very well, as adding more plots does not increase the workload 
linearly (which is the case in GS). Therefore, GY prediction using the M matrix fits 
well in the later stages of large-scale breeding programs, allowing the breeder to test 
a more significant number of variety candidates without expanding their technical 
base.

One disadvantage of the M matrix and machine learning protocols is their inher-
ent connection with their environment of origin. Environment-specific trait esti-
mates are of little use for breeders unless the environment closely resembles their 
target population of environments. Nevertheless, it was shown that a constructed M 
matrix based on dense data from a single environment could generalize (to “see” the 
heritable signal) and perform well when tested on a multi-environment mean. The 
fact that the M matrix works synergistically with GS makes it an affordable way to 
improve GS prediction ability and be used as a standalone tool. An added advantage 
of M matrix-based prediction or its inclusion into GS protocols is its purely statisti-
cal and comprehensible nature paired with using already available software without 
customization.

Conclusions

Developing genotypic relationships using high-throughput multispectral data (M 
matrix) gathered using consumer-grade equipment for GY prediction in wheat was 
elaborated. A back-to-back comparison of the prediction abilities of genomic selec-
tion models, including combinations of G, M, and E matrices, was conducted using 
multi-environment field trial data and mixed models (BLUP) in single and multi-
environment scenarios. M matrix possesses standalone prediction ability similar to 
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the G matrix, and genomic selection models can be improved by including both G 
and M matrices. The importance of camera bands for grain prediction using the M 
matrix was discussed, showing that bands with the highest heritability are the most 
important. The importance of data capture was investigated, demonstrating that 
imagery taken during grain filling yields the best prediction ability. The study also 
showed that GY prediction is possible using a simple RGB camera with a slight 
prediction ability loss. The work contributes to expanding use cases for multispec-
tral high-throughput phenotyping data and shows the potential of using this data for 
improving genomic selection protocols or standalone GY prediction in large-scale 
field trials.
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