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Abstract Brassica juncea (AABB), Indian mus-
tard, is a source of disease resistance genes for a wide
range of pathogens. The availability of reference
genome sequences for B. juncea has made it possi-
ble to characterise the genomic structure and distri-
bution of these disease resistance genes. Potentially
functional disease resistance genes can be identified
by co-localization with genetically mapped disease
resistance quantitative trait loci (QTL). Here we iden-
tify and characterise disease resistance gene analogs
(RGAs), including nucleotide-binding site—leucine-
rich repeat (NLR), receptor-like kinase (RLK) and
receptor-like protein (RLP) classes, and investigate
their association with disease resistance QTL inter-
vals. The molecular genetic marker sequences for four
white rust (Albugo candida) disease resistance QTL,
six blackleg (Leptosphaeria maculans) disease resist-
ance QTL and BjCHII, a gene cloned from B. juncea
for hypocotyl rot disease, were extracted from pre-
viously published studies and used to compare with
candidate RGAs. Our results highlight the complica-
tions for the identification of functional resistance
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genes, including the duplicated appearance of genetic
markers for several resistance loci, including Ac2(?),
AcB1-A4.1, AcB1-A5.1, Rim6 and PhR2 in both the
A and B genomes, due to the presence of homoe-
ologous regions. Furthermore, the white rust loci,
Ac2(t) and AcB1-A4.1, mapped to the same position
on chromosome A04 and may be different alleles of
the same gene. Despite these challenges, a total of
nine candidate genomic regions hosting 14 RLPs,
28 NLRs and 115 RLKs were identified. This study
facilitates the mapping and cloning of functional
resistance genes for applications in crop improvement
programs.

Keywords Disease resistance genes - Nucleotide-
binding site—leucine-rich repeat (NLR) - Quantitative
trait locus (QTL) - Receptor-like protein (RLP) -
Receptor-like protein kinase (RLK) - Brassica juncea

Introduction

Brassica juncea, commonly known as Indian mustard,
is extensively cultivated, with a total of 952,727 hec-
tares producing 728,931 tonnes across 25 countries in
2018 (FAO 2020). However, its production is limited
by several diseases, including blackleg (Leptosphaeria
maculans, L. biglobosa), Sclerotinia stem rot (Scle-
rotinia sclerotiorum), white rust (Albugo candida),
Alternaria blight (Alternaria brassicae, A. brassici-
cola, A. raphani), downy mildew (Hyaloperonospora
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brassicae), white leaf spot (Pseudocercosporella cap-
sellae) and powdery mildew (Erysiphe cruciferarum)
(Oram et al. 1999; Pradhan and Pental 2011; Edwards
et al. 2007; Inturrisi et al. 2021). Traditional disease
management strategies include fungicide applica-
tion and seed treatments, crop rotation and the use of
resistant cultivars. However, the effectiveness of resist-
ant cultivars can break down over time due to chang-
ing pathogen populations and the diversity of aviru-
lence genes (Zhang et al. 2015; Rouxel and Balesdent
2017). For example, the breakdown of blackleg resist-
ance in commercial cultivars of B. napus has been
reported in Australia and Canada (Van De Wouw et al.
2016; Rouxel and Balesdent 2017; Van de Wouw et al.
2014; Zhang et al. 2015). Because of the potential to
break down resistance, it is important to expand the
sources of resistance for introgression into commer-
cial B. napus cultivars. Sources of germplasm for
resistance breeding have been identified in several B.
juncea genotypes coming from the major producing
countries, such as Australia, Canada, China and India,
for resistance to L. maculans, S. sclerotium and A.
candida (Li et al. 2006, 2007a, b, 2008a, b), and B.
Jjuncea has proven to be a valuable source of resistance
genes for introgression into other Brassica crops, such
as canola (B. napus) (Inturrisi et al. 2021).

Plant resistance gene analogs (RGAs) play an
important role in plant resistance response against
pathogens (Zhang et al. 2020; Sekhwal et al. 2015).
The nucleotide-binding site-leucine-rich repeats
(NLR), receptor-like kinases (RLK) and receptor-like
proteins (RLP) are the main classes of RGAs (Zip-
fel 2014, 2008; Kim et al. 2012; Stotz et al. 2014).
In a typical NLR gene, the NBS and LRR domains
are located in the middle and the C-terminus of the
gene respectively (Meyers et al. 1999; Xiao et al.
2001; Shao et al. 2014). The remaining structure of
NLR proteins consists of three main domains at the
N-terminus; the TIR-NBS-LRR (TNL) class is char-
acterized by a toll/interleukin-1 receptor domain; the
CC-NBS-LRR (CNL) class contains the coiled-coil
domain; and the RPW8-NBS-LRR (RNL) class con-
tains the resistance to powdery mildew 8 (RPWS)
domain. Different types of RLKSs include leucine-
rich repeat-receptor-like kinases (LRR-RLKSs), the
largest gene family of RLKs and are highly con-
served, and the less conserved lysin motif-receptor-
like kinases (LysM-RLKs) (Gust et al. 2012; Wan
et al. 2008; Zeng et al. 2012). In contrast, RLPs have
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an extracellular domain, a transmembrane domain
and a short cytosolic domain without a signalling
domain. Some of the main types of RLPs include
leucine-rich repeat-receptor-like proteins (LRR-
RLPs) (Jones et al. 1994; Jehle et al. 2013) and lysin
motif-receptor-like proteins (LysM-RLPs) (Willmann
et al. 2011). These genes have been identified and
studied across Brassica species and Brassica pange-
nomes (Inturrisi et al. 2020; Yang et al. 2021; Bayer
et al. 2019; Dolatabadian et al. 2020), as well as wild
and cultivated species of the Brassicaceae family
(Tirnaz et al. 2020).

Genetic mapping in plants has been used exten-
sively to identify genetic regions associated with
traits (Rafalski 2002; Tanksley et al. 1989; Mohan
et al. 1997; Xu et al. 2017). The availability of plant
reference genomes and pangenomes allows for trans-
lation of these genetic loci to genomic regions and the
identification of candidate gene variations underlying
heritable traits (Dolatabadian et al. 2020; Hurgobin
and Edwards 2017; Bayer et al. 2019), and the avail-
ability of the B. juncea genome (Yang et al. 2016)
allows the identification of candidate disease resist-
ance genes underlying previously identified disease
resistance quantitative trait loci (QTL) in this spe-
cies. Here we performed in silico analysis to identify
disease resistance QTL from published literature and
map genetic locations to B. juncea, based on flanking
molecular genetic markers. Candidate genes for dis-
ease resistance were identified in the QTL intervals,
including several NLR, RLP and RLK genes. These
genes provide candidates for further assessment
and validation for their role in defence against these
important diseases.

Materials and methods
Genomic resources

Molecular genetic markers associated with resistance
to infection by L. maculans and A. candida patho-
gens, and BjCHI I resistance for hypocotyl rot disease
in B. juncea were identified in published literature
(Tables S1, S2, S3). The sequence of the markers and
genes were downloaded from the literature, the NCBI
(https://www.ncbi.nlm.nih.gov/) or TAIR (https://
www.arabidopsis.org/index.jsp) websites (Tables S1,
S2, S3).
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The list of RGAs, including NLRs, RLKs and
RLPs, was extracted from previous studies (Tirnaz
et al. 2020; Yang et al. 2021; Inturrisi et al. 2020).
All classes of RGAs were identified based on their
domain structure using the RGAugury pipeline (Li
et al. 2016b). RLKs were further classified into three
types; ‘RLK-LRR’, ‘RLK-LysM’ and ‘RLK-other-
receptor’. RLPs were classified into two types; ‘RLP-
LRR’ and ‘RLP-LysM’ and NLRs were classified to
‘NL’, “TN’, “TNL’, ‘CNL’, ‘N’ and ‘other’ subclasses.
The graphical representation of NLR, RLK and RLP
genes was visualised using Mapchart V2.3 (Voorrips
2002).

Characterisation of published resistance QTL to the
physical position on the reference genome

The physical chromosomal positions of the disease-
associated molecular genetic markers were deter-
mined by comparing the sequences (Tables S1-S3)
with the reference B. juncea genome v1.5 (Yang
et al. 2016) on the Brassica database (BRAD) web-
site (http://brassicadb.org/brad/blastPage.php). If a
marker could not be placed on a pseudomolecule or a
contig, it was removed from further analysis.

Previously predicted NLR, RLK and RLP genes
(Tirnaz et al. 2020; Yang et al. 2021; Inturrisi et al.
2020) were assigned as candidate resistance genes
if positioned within the flanking markers of a QTL
interval or, alternatively, positioned 1 Mbp region
upstream and downstream of the marker.

Results

Integration of QTL for disease resistance in Brassica
Jjuncea

White rust

In silico mapping for disease resistance has been con-
ducted for white rust disease in B. juncea, where four
QTL (Table S4) were identified. Marker sequences
were available for white rust resistance loci: Ac2(t),
Acr, AcB1-A5.1 and AcB1-A4.1 (Table S1). Four
white rust resistance QTL had marker sequences
available to locate the genomic region of the
QTL. Sequences for the primer pair of ILP marker
At5g41560 (Panjabi et al. 2008), and RAPD primers

OPB06 (OPBO06,(,,) and OPNO1 (OPNO1,,,,) were
obtained from (Rajaseger et al. 1997; Ananga et al.
2006; Solmaz et al. 2010). In addition, BjCHII, a
gene cloned from B. juncea for hypocotyl rot resist-
ance, was identified (Table S3).

Genomic sequences for A. thaliana genes
At2g34510, At2g36360, At5g41560 and At5g41940
from which markers for white rust resistance loci
AcB1-A4.1 and AcB1-A5.1 (Panjabi-Massand et al.
2010) were derived from the TAIR website. The
DNA sequence of all four genes was compared with
the B. juncea reference to identify their approximate
position.

The same white rust QTL represent the genes Acr
and Ac2;. These genes were identified using the same
mapping population from the crossing of susceptible
J90-4317 and resistant J90-2733 (Prabhu et al. 1998,;
Cheung et al. 1998; Somers et al. 1999). In addition,
it was suggested that Ac2; and Ac2(t) are two separate
loci despite the absence of polymorphism for mark-
ers between the two cultivars identified with Ac2; and
Ac2(t) (Mukherjee et al. 2001).

There were several markers and QTL that could
not be analysed further due to unavailable sequence
information, including RFLP markers for Acr; X140a,
X42 and X83 (Cheung et al. 1998).

Blackleg

Ten blackleg QTL were identified in B. juncea
(Table S5), while the flanking markers were unavaila-
ble for several QTL. Marker sequences were available
for blackleg resistance loci, Rlm6, LMJR1, LMIJR2,
rjlm2 and PhR2, as well as a locus without an iden-
tifying name (Table S2). Sequences for the primer
pair of ILP marker OPG02 (OPG02.800), OPTO1
(OPTO01.800), OPIO1 (OPIO1-HaellI) and OPU9 were
sourced from (Kumar et al. 2010; Srivastava et al.
2014; Delourme et al. 1994; Struss et al. 1996). The
blackleg QTL, LMJRI and LMJR2, were flanked by
one RFLP and one SSR; however, the SSR sequences
(LMJRI, sB31143F; LMJR2, sB1534) were unavail-
able. The flanking RFLP markers pN199RV and
pN120cRI were found on the NCBI website as pN199
(GenBank: CZ692853.1) and pNI120 (GenBank:
CZ692836.1), respectively, where the RFLP were
named differently depending on the linkage map,
species and publication. In addition, the SSR mark-
ers positioned in the same linkage group to SSRs
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flanking the LMJRI and LMJR?2 resistance loci were
analysed due to the unavailability of sBb31143F and
sB1534. Additional literature (Fredua-Agyeman et al.
2014; Nelson et al. 2009; Chen et al. 2013; Navabi
et al. 2010, 2011) was investigated for the Brassica B
genome linkage groups that were used in Christian-
son et al. (2006) to determine the SSRs with avail-
able marker sequence found in the same Brassica B
genome linkage group.

In some instances, multiple blackleg disease QTL
were found to represent the same gene, for example
RIm6 and Jiml (Chevre et al. 1997; Balesdent et al.
2002; Brun et al. 2000; Fudal et al. 2007) due to a
change in nomenclature. Four RFLP and three AFLP
markers were linked to the blackleg resistance gene,
PhR2, where an RFLP (RP1513) and AFLP (S7G4)
marker were converted to PCR-based STS markers
linked to the same resistance gene and mapped to the
same position in linkage maps (Plieske and Struss
2001).

Sequence information of three RFLP markers for
PhR2 (pRP1457.H, pRP1513.E, pRP1602.H) (Plieske
et al. 1998), RFLP markers linked to three resistance
loci (Dixelius and Wahlberg 1999) and one unnamed
RFLP associated to resistance locus, LmBR1 (Dixe-
lius 1999), were not available and they were excluded
from the analysis.

Physical mapping of candidate disease resistance
genes in Brassica juncea

White rust

The physical map and distribution of previously pre-
dicted RGAs (Yang et al. 2021; Inturrisi et al. 2020;
Tirnaz et al. 2020) on B. juncea chromosomes were
produced (Figure S1, Fig. 1). An uneven distribution
of NLRs, RLPs and RLKs was observed between B.
Jjuncea chromosomes (Figure S1). For example, RLP-
LysM genes were only found on chromosomes A06
and BO3 and the majority of RLKs were located on
chromosomes A03, B02, BO3, BO5, BO8 and ‘unkn
own’.

White rust resistance QTL for AcB1-A4.1, AcB1-
AS5.1 and Ac2(t) were located on the A genome chro-
mosomes A04, A0S and AO4, respectively (Fig. 1).
Flanking markers for QTL AcB1-A4.1(B01), AcB1-
A5.1(B06) and Ac2(t)(BO1) aligned with regions
on the B genome chromosomes. There were no

@ Springer

significant matches for the decamer primers for
RAPD markers WR2 and WR3, which are flanking
markers for Acr (=Ac2;); hence, no genomic position
could be determined.

The sequence of several flanking markers for
white rust QTL had multiple matches on different
chromosomes (Fig. 1). The sequences of E-ACC
and M-CAA, for the marker E-ACC/M-CAA;5,
for a white rust resistance locus Ac2(t), were found
on chromosome BOl. However, only M-CAA for
marker E-ACC/M-CAA;5, was identified on chromo-
some A04 and the distance between the primers was
3,466,012 bp on chromosome B01, which is more
than the estimated size of E-ACC/M-CAA;5,, 350 bp.

Two genomic locations were found on chromo-
some AQ05 for the white rust resistance QTL, AcB1-
A5.1. These had QTL interval sizes of 1,098,849 bp
and 1,102,681 bp and were positioned 3832 bp apart.
The flanking markers for AcB1-A4.1 were placed on
chromosomes A04 and BOl. The flanking marker
At5g41940 for AcB1-A4.1 had top BLAST hits on
chromosome AO7 and Contigl1207, although the other
flanking marker At5g41560 failed to have top BLAST
hits in these locations. It was also found with other
markers for QTL regions that top BLAST hits were
found on multiple chromosomes and multiple posi-
tions of the same chromosome (Fig. 1).

Candidate resistance genes were mapped within
the locus and 1 Mb downstream and upstream from
the white rust resistance (Table 1). RLKs were domi-
nant in all QTL. The white rust QTL linked to AcB1-
A4.1, BOI1, has the smallest size (304,083 bp) and
lowest number of RGA (3) among all QTL. In total,
there were five genomic regions of interest with 2
RLPs, 3 NLRs and 27 RLKSs (Table 1).

Blackleg

Markers for blackleg resistance QTL were iden-
tified on several chromosomes (Fig. 1). Markers
for PhR2 were positioned on chromosomes A03
and B03 with interval sizes of 1,358,032 bp and
1,224,376 bp, respectively. Markers for LMJRI
were positioned on chromosome B03 with loci
interval size of 8,176,380 bp based on the set of
SSRs utilised in the study (Christianson et al.
2006). PhR2 overlaps with LMJRI on chromosome
BO3 at 2,554,162 bp-3,778,538 bp. In addition, the
genomic region of interest for LMJR2 was identified
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Fig. 1 Physical distribution of markers linked to disease
resistance in B. juncea along with resistance genes on the
physical map of B. juncea. B. juncea chromosomes (Chr) are
represented as white bars with resistance gene names shown on
the right-hand side. The physical positions of genetic markers
are indicated as coloured horizontal bars and named for white
rust (black), blackleg (red) and hypocotyl (green). The suffixes
-M’, ‘-FP’ and ‘-RP’ indicate that the physical position was

using a similar approach to LMJRI where SSR
markers of the same linkage group of the SSR that
was linked to LMJR2 were positioned on chromo-
some BO08, with a locus interval of 20,282,056 bp.
The markers for RIm6 were located on several chro-
mosomes: A07, A0O9 and BO1 (Fig. 1). The RAPD
and RFLP markers were found to be linked to RIm6
from a couple of studies (Chevre et al. 1997; Bar-
ret et al. 1998). CAPS and SCAR markers that were
linked to RIm6 were used for screening B. napus
and B. juncea interspecific hybrid populations
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based on the sequence of the marker, a forward primer or a
reverse primer, respectively. Regions of sequence identity for
markers and genes are placed into a box with loci names. Let-
ter subscript for loci names indicates more than one region of
interest for a particular resistance locus or gene. Different col-
ours and font of gene names reflect different classes of RGA;
NLRs (dark green), RLKs (dark blue), RLPs (red). The chro-
mosome size is shown above the chromosome bar (Mb)

(Rashid et al. 2018). The CAPS markers, BnHz_2
and BjHz_1, did not provide a QTL region, unlike
rjlmZ, PhR2, LMJRI and LMJR2 (Christianson
et al. 2006; Plieske and Struss 2001; Saal and
Struss 2005; Saal et al. 2004), and were found on
chromosome AO07 and A09. However, the SCAR
markers for RIm6, B5-1520 and B5RIm6_1, were
found on chromosome BO1 and they were shown to
be located within the r;im2 locus (Fig. 1). All three
SCAR markers linked to rjlm2, B51520, C5-1000
and RGALm, were found on chromosome BO1.
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Fig. 1 (continued)

Similar to white rust, candidate resistance
genes were mapped within the locus and 1 Mb
downstream and upstream from the loci for black-
leg (Table 1), and all QTL for resistance had the
highest proportion of RLKs. Most QTL contained
more NLRs than RLPs, expect for LMJR2 on
chromosome BO8 (2 NLRs and 6 RLPs). Among
all QTL, blackleg QTL linked to LMJR2, BOS,
has the largest size (20,282,056 bp) and highest
number of RGA (48). Genomic regions of inter-
est with a larger size interval tended to have a
greater number of total RGAs. The SCAR mark-
ers, B5-1520 and B5RIm6_1, were linked to R/m6;
however, there was no linkage map information
provided by Rashid et al. (2018) and B5-1520
was the same SCAR marker utilised for rim2.
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Rim6 was located on chromosome BOl using
the SCAR markers, B5-1520 and B5RIm6_1,
with an interval of 1467 bp where BjuB003452
overlapped with the interval of the markers
(Rashid et al. 2018). Analysis of the locus inter-
val along with 1 MB upstream and downstream
mapped four RLK genes (BjuB003438, LRR-
RLK; BjuB003480, LysM-RLK; BjuB005639,
Other-receptor-RLK  BjuB027118, LRR-RLK).
There were two RLPs outside of this region
for analysis (BjuB002972, LRR-RLP, BOI,
16,299,149-16,300,492; BjuB024332, LRR-RLP,
BO1, 19,952,790-19,957,271). For blackleg resist-
ance, in total, there were four genomic regions
of interest with 12 RLPs, 25 NLRs and 88 RLKs
(Table 1).
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Fig. 1 (continued)

Hypocotyl rot derived from an Arabidopsis chitinase gene (Zhao

and Chye 1999). The coding sequence for BjCHII
BjCHII (GenBank accession no. AAF02299), a chi- was available and was BLASTed against the B. jun-
tinase gene for hypocotyl rot resistance, was mapped cea reference genome and found to be positioned on
in an unnamed B. juncea genotype using primers chromosome A03, 20,353,574-20,355,565 bp, with a
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Fig. 1 (continued)

coding sequence length of 1991 bp on the reference
genome. An annotated gene from the B. juncea ref-
erence genome, BjuA012108, was shown to overlap
with the physical position of the coding sequence
for BjCHII on chromosome A03. The physical posi-
tion of BjuA012108 was on chromosome AQ3 at
20,353,662 to 20,355,562 bp with a gene length of
1901 bp and consisting of two exons. BjuA012108
was not previously identified as a RGA in B. juncea;
however, it is reported as a member of the glycosyl
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hydrolases gene family which is also involved in plant
defence mechanisms against microbes and herbivores
(Mir et al. 2020).

Discussion
In this study, the association of RLKs, RLPs and

NLRs, the main classes of RGAs, with B. juncea
resistance QTL of white rust, blackleg and hypocotyl
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Fig. 1 (continued)
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Fig. 1 (continued)
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ChrB08 rot diseases were investigated. Similar genetic map-
8994 M ping studies were previously performed across vari-

susoassos  LMJR2 ous crop species for the identification of functional
g g resistance genes. For instance, Sagi et al. (2017)
T £ . validated candidate NLR genes for ascochyta blight
BluBosa641 _§ resistance in chickpea that were co-localised within
—— the QTL interval from previously published studies
| /:Z:AZZ using qRT-PCR among three cultivars at four differ-
B EE%?%%%% ent time points. These candidate NLRs were selected
— for validation after the identification of NLR genes
~— Bienic . from the chickpea reference genome and physical
SN Busorese 7; positioning of the flanking markers for known dis-
EONN e ) ease resistance QTL in chickpea. Candidate genes
I Bt 5 have been identified in Brassica species through
= o]  —8 genetic analysis for disease resistance against Sclero-
E\ \ Bt - tinia stem rot in B. napus (Wei et al. 2016; Wu et al.
] Buoir 1 2016), clubroot disease in B. napus (Li et al. 2016a)
] and B. rapa (Yu et al. 2017), blackleg disease in B.
B suaries napus (Cantila et al. 2020; Tollenaere et al. 2012;
! Buoacs Raman et al. 2016), yellow wilt disease in B. oleracea
I SSE:SZZ? (Lv et al. 2014; Shimizu et al. 2015), turnip mosaic
N Biedianos virus disease in B. rapa (Lv et al. 2015) and downy
=\ Bliedtcio mildew in B. rapa (Yu et al. 2016). Wu et al. (2016)
I Bl zcs performed a comparative analysis for Sclerotinia stem
- s £ rot resistance in B. napus where QTL identified in the
I BlBot1seg £ study and previous studies aligned to the B. napus
Sannzses genome based on the physical position of the mark-
| Bieotace ers (Wu et al. 2016). There were 41 genes identified
i Bieoraia for Sclerotinia stem rot resistance among 12 B. napus
. 023 chromosomes along with three chromosomal regions
=\3§3:3?3 with multiple QTL (Wu et al. 2016). An integration
_\gggggg; analysis of QTL for Sclerotinia stem rot in B. napus
\533‘1523 was conducted by Li et al. (2015) where QTL from
§ggg}gggg previous studies were aligned to the B. napus genome
555‘553?32 to identify 26 candidate NLRs. In addition, 4 and 7
/Eéé%é%é NLRs were identified on conserved QTL regions
B / §§§i§§§§ located on B. napus chromosome A9 and C6, respec-
- tively (Li et al. 2015). An integration analysis for dis-
Sueoroers ease resistance in B. juncea was similar to approaches
§§§§§§§ implemented by Wu et al. (2016) to identify candidate
u ::::: resistance genes. Here we mapped over 100 RGAs in
'§Eiégféili & B. juncea genome; however, not all of them are nec-
:\Sﬁﬁliiii o essarily involved in a resistance response. In particu-
\E.Egéiiiié lar RLK and RLP genes are also involved in various,
Efggi}%é‘g other biological processes (Sekhwal et al. 2015).
Here, QTL analysis indicates that the positions
Fig. 1 (continued) of the QTL markers did not always have hits on

the same chromosomes. For example, for Ac2(1),
the forward primer for OPB06,,,, was aligned to
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chromosomes A04 (e-value=0.000297) and BO1
(e-value=0.001) although the reverse primer and
the other flanking marker, E-ACC/M-CAA;;5,, were
not strongly aligned. This observation could be due
to differences in the marker sequences between
the lines they were identified in and the reference
genome, or it could be problems with genome
assemblies. For example, the wrong placement of
a contig in the genome assembly or duplication
may lead to the forward and reverse primers for a
marker, or different markers underlying the QTL
being found on different chromosomes. In addition,
at the time that markers were developed for these
QTL, the reference genome of B. juncea was not
available and it was impossible to design primers
for exact genomic physical positions.

Some QTL had positions on multiple chromo-
somes. For example, AcB1-A4.1 had a similar QTL
region size of 362,237 bp and 304,083 bp on chro-
mosomes A04 and BO1, respectively. There were two
QTL regions for AcB1-A5.1 on chromosome AO0S. In
addition, At2g34510 and At2g36360 for AcB1-A5.1
were located on chromosome B06 at an interval size
of 929,582 bp. The candidate resistance genes for
AcB1-A4.1, AcB1-A5.1 and Ac2(t) were placed on
the A genome chromosomes, A04, AO05 and A04,
respectively. Mapping QTL on more than one chro-
mosome and often different sub-genomes may be
caused by homoeologous regions between the A and
B genome and result in the identification of ortholo-
gous and homogeneous resistance genes. This will
highlight the importance of performing a genome-
wide analysis and not only focus on the reported
regions for a specific gene and marker to ensure all
candidate genes have been considered.

In some cases, two different genes were mapped in
the same position. For example, the disease locus of
AcB1-A4.1 overlapped with Ac2(t) on chromosome
A04, which could suggest two disease resistance
loci on the same chromosome, or that AcB1-A4.1
and Ac2(t) were actually the same disease resistance
locus. AcB1-A4.1 and Ac2(t) being the same disease
resistance locus was suggested by Singh et al. (2015).
This is a common challenge when different markers
or populations are used and it is unclear whether loci
are distinct genes, different alleles of the same gene
or in fact the same gene.

Although it was found the majority of RGAs
underlying the QTL were NLR genes and they

play a major role in plant disease resistance (Mey-
ers et al. 1999; McHale et al. 2006), most of the
previously cloned resistance genes for white rust
and blackleg resistance were reported as RLKSs
and RLPs. For instance, the resistance genes for
blackleg resistance cloned from Brassica species,
i.e. Rlm2 and LepR3, were shown to encode extra-
cellular leucine-rich receptor (eLRR) receptor-like
proteins (RLPs) on chromosome A10 (Larkan et al.
2013, 2015). LepR3 was annotated as Bra008930
in B. rapa, which was 1890 bp gene length, 851
amino acid length and motif structure predicted by
InterProScan analysis to include a single peptide at
the N-terminal, eLRR region, transmembrane motif
and cytoplasmic C-terminal region at the C-ter-
minal (Larkan et al. 2013). RIm2 was cloned in B.
napus and had a protein motif structure to include
a single peptide at the N-terminal, eLRR region,
transmembrane motif and cytoplasmic C-termi-
nal region at the C-terminal (Larkan et al. 2015).
Rim2, an LRR-RLP, was shown to interact with
AtSOBIR1, a LRR-RLK gene (Larkan et al. 2015),
and LepR3 was shown to interact with BnSOBIRI,
a B. napus RLK (Ma and Borhan 2015). These
highlight the importance of including RLKs and
RLPs, in addition to NLRs for the identification of
functional resistance genes.

Many of the QTL intervals were shown to contain
clustered RGAs. This has been observed in previ-
ous studies, which found QTL located in a resistance
gene-rich region containing NLR gene clusters that
confer resistance to a number of different pathogens
(Wang et al. 2010; Jeong et al. 2001). A clustered
region of NLR genes has also been found to underly
different QTL conferring fungal resistance in soy-
beans (Kang et al. 2012). This may have implications
for disease resistance and be beneficial for resistance
gene evolution.

The markers for resistance against the same
race of pathogen isolates are possibly useful for
further analysis between plant species, especially
closely related plant species like diploid B. nigra
and allotetraploid B. juncea which both pos-
sess the Brassica B genome. B. juncea has been
shown to have resistance to multiple races (1, 3,
4,7, 8, 9) of Xanthomonas campestris, the causal
agent for black rot, where it was postulated that
B. juncea have black rot resistance genes, RI, RS
and possibly R4 (Vicente et al. 2001; Jensen et al.
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2010; Vicente and Holub 2013). The resistance
genes for RI and R4 were established to be single
dominant genes, which correspond to avirulence
genes Al and A4, respectively. It was also postu-
lated that B. juncea cultivar Guangtou possessed
resistance gene Rcl, which corresponds to aviru-
lence gene avrXccC (xopAH) (He et al. 2007), and
resistance genes Rcl and Rc3 may be resistance
genes RI and R4.

To conclude, with advances in whole-genome
sequencing technologies and availability of crops
genome sequence, it is important to perform
genome-wide mapping studies of genes and QTL
linked to agronomically important traits, such as
disease resistance, to facilitate the identification
and application of these genes in the breeding pro-
gramme. Here we mapped nine genomic regions
related to disease resistance in B. juncea where the
regions carryl4 RLPs, 28 NLRs and 115 RLKs. We
also indicated and discussed a number of challenges
that can affect the accuracy of gene identification,
including identifying QTL markers in various loca-
tions across the genome, which can be observed as a
result of the homologs genomic regions. Altogether,
we expected the outcome assists and facilitates the
identification of functional genes towards breeding
improvements.
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