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QSn.csu-6B and three other loci (WAPO-A1, VRN-
D3, and PPD-B1), genotypes with a greater number 
of superior alleles at these loci consistently exhibit 
higher spikelet number. The frequency of superior 
alleles at these loci varies among winter wheat vari-
eties adapted to different latitudes of the US Great 
Plains, revealing opportunities for breeders to select 
for increased spikelet number using simple molecular 
markers. This work lays the foundation for the posi-
tional cloning of the genetic variant underlying the 
QSn.csu-6B QTL to strengthen our understanding of 
spikelet number determination in wheat.
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Introduction

Common wheat (Triticum aestivum L.) provides 20% 
of global caloric intake and comprises a quarter of 
cereal production by volume (FAOSTAT). Therefore, 
it is imperative to improve wheat yields to meet the 
consumption needs of a growing population (Ray 
et al. 2013). Wheat yield is a complex, polygenic trait 
determined by both grain weight and grain number 
per unit area (Fischer 1985), which are negatively 
correlated with one another as a result of resource 
competition (Shanahan et al. 1985; Borrás et al. 2004; 
Zhang et al. 2016; Mangini et al. 2018). A reduction-
ist approach to study the genetic variation underlying 
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individual yield components contributing to overall 
yield has been proposed to overcome this complexity 
(Brinton and Uauy 2019). Identification and charac-
terization of genetic variants influencing yield com-
ponents will improve our understanding of the epi-
static interactions between different alleles, and allow 
breeders to more precisely select optimal allelic com-
binations to develop higher-yielding wheat cultivars.

Wheat yield is most closely associated with grain 
number  m−2 (Kuchel et al. 2007; Bennett et al. 2012; 
Xie and Sparkes 2021), which itself is determined by 
tiller number, spikelet number per spike, and spikelet 
fertility (Slafer et al. 1990, 2015). The wheat spike is 
located at the terminus of each productive tiller and 
is composed of spikelets formed at each rachis node, 
each with the potential to form between four and six 
grains (Bonnett 1966). Spikelet number is determined 
early in reproductive development (Bonnett 1966), 
has a high broad-sense heritability observed between 
0.49 and 0.95 (Zhang et  al. 2018; Ma et  al. 2019; 
Chen et al. 2020), and is less affected by the environ-
mental factors that impact grain number and weight 
later in the growing season (Zhang et  al. 2018). 
Therefore, breeding for increased spikelet number is a 
promising approach to develop higher-yielding wheat 
cultivars (Borrás et al. 2004; Slafer et al. 2015; Wolde 
et al. 2019).

Wheat plants with a winter growth habit initiate 
the transition from vegetative to reproductive devel-
opment following vernalization and in response to 
lengthening photoperiods (Hyles et  al. 2020). Opti-
mizing the timing of this transition for each target 
environment is crucial to maximize a wheat plant’s 
reproductive success, which in agriculture translates 
to grain production. Plants that initiate spike devel-
opment too early risk exposure to late-spring frost 
damage, while heading too late increases the risk of 
heat stress during grain filling (Kamran et  al. 2014; 
Grogan et al. 2016). Allelic variation in several genes 
has been identified that influences both heading date 
and spike architecture, creating a challenge for wheat 
breeders to increase spikelet number without delay-
ing heading date beyond the optimal environmental 
window. For example, PHOTOPERIOD 1 (PPD1) 
encodes a PSEUDO RESPONSE REGULATOR 
family protein that accelerates heading in response 
to long-day photoperiods (Beales et al. 2007). Plants 
with tandem duplications of the PPD-B1 gene (Ppd-
B1a allele) exhibit reduced sensitivity to photoperiod 

and head earlier than plants with fewer copies (Ppd-
B1b allele (Díaz et al. 2012)). The Ppd-B1b allele is 
associated with increased spikelet number in durum 
wheat (Triticum turgidum L. var. durum) (Arjona 
et al. 2018) and regulates spikelet formation (Boden 
et al. 2015).

PPD1 accelerates heading in part through the acti-
vation of VERNALIZATION 3 (VRN3, also called 
TaFT1), which encodes an ortholog of Arabidopsis 
thaliana FLOWERING LOCUS T1 (Yan et al. 2006). 
In A. thaliana and rice (Oryza sativa), FT1 encodes a 
mobile protein that is translocated from the leaves to 
the shoot apical meristem to induce meristem identity 
genes that accelerate heading date and promote repro-
ductive development (Corbesier et  al. 2007; Tamaki 
et al. 2007). A single nucleotide insertion in the Vrn-
D3b allele creates a frame shift mutation conferring 
a later heading date compared to plants carrying the 
Vrn-D3a allele (Bonnin et al. 2008; Wang et al. 2009; 
Chen et al. 2010). The later heading date conferred by 
a homoeologous Vrn-B3b allele (referred to as TaFT-
B1a) is associated with increased spikelet number and 
is proposed to be caused by a non-synonymous SNP 
(Brassac et  al. 2021). Allelic variation in PPD1 and 
VRN3 genes has been broadly utilized in wheat breed-
ing programs to optimize heading date for specific 
target environments (Nishida et al. 2013; Zheng et al. 
2013; Grogan et al. 2016; Ochagavía et al. 2018).

Other quantitative trait loci (QTL) for spike archi-
tecture have less impact on heading date. Through 
positional cloning, WHEAT ORTHOLOG OF ABER-
RANT PANICLE ORGANIZATION 1 (WAPO-A1) 
was identified as a candidate gene for a spikelet num-
ber QTL on chromosome arm 7AL (Kuzay et  al. 
2019). WAPO-A1 is an ortholog of A. thaliana UNU-
SUAL FLORAL ORGANS (Wilkinson and Haughn 
1995) and rice ABERRANT PANICLE ORGANIZA-
TION 1, and overexpression of this gene confers 
increased spikelet number in rice (Ikeda et al. 2005, 
2007). In wheat, the Wapo-A1b allele is associated 
with increased spikelet number in some environ-
ments (Kuzay et al. 2019; Muqaddasi et al. 2019) and 
its frequency in wheat germplasm has increased over 
time, potentially as a consequence of positive selec-
tion in formal breeding programs (Kuzay et al. 2019). 
Although the mechanism by which WAPO-A1 affects 
spikelet number remains unknown, natural variation 
in WAPO-A1 has a limited effect on heading date 
(Muqaddasi et al. 2019).
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Another QTL associated with grain weight and 
spike architecture was previously identified on wheat 
chromosome arm 6BL and is the focus of the current 
research study. Using doubled haploid and recombi-
nant inbred line (RIL) populations derived from two 
hard white winter wheat genotypes (“Platte” and 
CO940610), associations were detected between this 
QTL and test weight (El-Feki et al. 2013; Dao et al. 
2017), kernel weight and diameter (Dao et al. 2017), 
and spike length (El-Feki et  al. 2018). The superior 
allele for test weight and kernel weight from the 
genotype CO940610 was also associated with higher 
grain protein and ash concentration in a segregating 
 BC3F2:3 population (Dao et al. 2017).

In the current study, high-density genetic markers 
from the wheat 90 K SNP array (Wang et  al. 2014) 
and exome capture and sequencing technologies 
(Krasileva et al. 2017) were used to validate and char-
acterize this QTL, which was associated with spikelet 
number in different genetic populations. This genetic 
locus was thus named QSn.csu-6B, where QSn.csu-
6Ba was associated with wider grains and fewer 
spikelets and QSn.csu-6Bb was associated with nar-
rower grains and more spikelets. Although the QSn.
csu-6B locus exhibits epistatic interactions with pre-
viously characterized WAPO-A1, VRN-D3, and PPD-
B1 alleles for spikelet number, genotypes with greater 
numbers of superior alleles at these loci consistently 
exhibit higher spikelet number. Geographic variation 
in the frequencies of each allele among germplasm 
reveals opportunities to apply marker assisted selec-
tion to combine superior alleles for this trait in wheat 
breeding programs.

Materials and methods

Plant materials

The Hard Winter Wheat Association Mapping Panel 
(HWWAMP) is a population of 258 hard red and 
41 hard white winter common wheat inbred lines 
assembled by public and private breeding programs 
reflecting the wide precipitation and temperature gra-
dients across the primarily dryland wheat cropping 
systems of the Great Plains region of the USA (Gut-
tieri et  al. 2015). The lines were previously catego-
rized into northern (Montana, North Dakota, South 
Dakota, n = 39), central (Colorado, Kansas, Nebraska, 

n = 119), and southern (Oklahoma, Texas, n = 105) 
classes, based on the geographical region within the 
Great Plains where the lines were developed (Grogan 
et  al. 2016). A fourth category of “other” (n = 36) 
was used for lines that did not fit one of these three 
regional categories.

The CO940610/ “Platte” hard white winter wheat 
recombinant inbred line (COP-RIL) population was 
previously described (Dao et  al. 2017). Remnant 
 F5:6 seed from this population was advanced to pro-
duce  F5:7 and  F5:8 seed used in field experiments. 
CO940610 (GSTR 10702; pedigree — KS87H22/
MW09) is an experimental hard white winter wheat 
line developed by the Colorado State University 
wheat breeding program and carries Ppd-B1b, Vrn-
D3a, Wapo-A1a, and QSn.csu-6Ba alleles. “Platte” 
(PI 596297; pedigree — “Tesia 79”/Chat “S”// 
“Abilene”) is a hard white winter wheat cultivar 
developed by HybriTech Seed International and car-
ries Ppd-B1a, Vrn-D3b, Wapo-A1b, and QSn.csu-6Bb 
alleles.

Eight Heterogeneous Inbred Families (HIFs) 
were derived from COP-RIL  F3:4 remnant seed 
by screening 528 individual plants with Kom-
petitve Allele Specific PCR (KASP) marker Bob-
White_c22638_135 (Table  S1). The 35 individual 
plants heterozygous for this marker were genotyped 
with three other KASP markers (KS0619_760354, 
KS0619_760357, and KS0619_760427) spanning 
the QSn.csu-6B locus. The high background genomic 
homogeneity in near isogenic lines developed from 
these individuals can provide greater power to detect 
allelic effects in mapping studies (Haley et al. 1994; 
Tuinstra et al. 1997). Individuals heterozygous for all 
four loci were then genotyped using KASP markers to 
distinguish WAPO-A1, VRN-D3, and PPD-B1 alleles 
(Table S1). From the 35 individuals, eight HIFs at the 
 F4:5 generation were derived, each with a different 
combination of fixed PPD-B1, WAPO-A1, and VRN-
D3 alleles (Table S2). From each HIF, 96 individual 
 F5 plants were genotyped for the QSn.csu-6B locus 
with the same four KASP markers to identify single 
plants fixed for either the QSn.csu-6Ba or QSn.csu-
6Bb allele.  F5:6 seeds were derived from these indi-
viduals and used in field experiments.
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Field experiments

Field experiments for the HWWAMP were planted 
in Greeley, Colorado (40.447  N, 104.636  W; eleva-
tion 1425 m; soil type Nunn clay loam and Olney fine 
sandy loam) under irrigated and dryland conditions 
in the fall of 2011, referred to as “Greeley 2012 irri-
gated” and “Greeley 2012 dryland,” respectively. The 
population was planted again in Fort Collins, Colo-
rado (40.648  N, 104.993  W; elevation 1558  m; soil 
type Nunn clay loam) under irrigated and dryland 
conditions in the fall of 2012, referred to as “Fort 
Collins 2013 irrigated” and “Fort Collins 2013 dry-
land,” respectively. Plots approximately 3.6  m2 were 
arranged in a row-column design with two check vari-
eties “Settler CL” (PI 655,242; pedigree — “Wesley” 
sib// “Millennium” sib/ “Above” sib) and “Hatcher” 
(PI 638,512; pedigree — “Yuma”/PI 372,129// 
“TAM-200”/3/4*Yuma/4/KS91H184/ “Vista”). The 
experimental genotypes were unreplicated for each 
environment.

Field experiments for the biparental populations 
were planted in Fort Collins, Colorado. The  F5:6,  F5:7, 
and  F5:8 COP-RIL populations were planted under 
irrigated conditions in the fall of 2016, 2018, and 
2019, referred to as “Fort Collins 2017,” “Fort Col-
lins 2019,” and “Fort Collins 2020,” respectively. 
Each line was planted in a two-row plot 0.92 m long 
with 23  cm spacing between rows, 28  cm spacing 
between plots, and a planting density of approxi-
mately 2,500,000 seeds  ha−1. In Fort Collins 2017, 
two replicates were planted in a randomized complete 
block design. In Fort Collins 2019 and Fort Collins 
2020, one replicate was planted where the RILs were 
randomized. Eight  F5:6 HIFs were planted in Fort 
Collins 2020 under the same conditions as the RILs. 
Each HIF was planted in three replicates using a ran-
domized complete block design with a family block 
nested within each replicate block. Each replicate 
block consisted of all eight family blocks, and each 
family block consisted of 18 lines with nine lines 
fixed for QSn.csu-6Ba and nine lines fixed for QSn.
csu-6Bb.

Phenotyping

Grain weight, heading date, and spikelet number data 
were previously collected for the HWWAMP in four 
environments: Greeley 2012 dryland, Greeley 2012 

irrigated, Fort Collins 2013 dryland, and Fort Col-
lins 2013 irrigated (Grogan et  al. 2016). These phe-
notypic data were downloaded from the T3/Wheat 
database (Blake et al. 2016). Kernel width was meas-
ured for the current study from remnant seed of the 
HWWAMP grown in the same four environments 
using the method described below.

Grain length, width, and weight were measured for 
the COP-RIL population in Fort Collins 2017. Each 
sample consisted of ten spikes randomly selected 
from each plot. The grain was threshed using a wheat 
head thresher (Precision Machine Co., Inc, Lincoln, 
NE, USA, part # WHTA0100001). Broken grains 
were discarded, and approximately 400 grains were 
spread evenly across a bed scanner (Microtek Inter-
national Inc, Hsinchu City, Taiwan, part # MRS-
3200A3L). Scanned images were collected at a ver-
tical and horizontal resolution of 300 dots per inch 
and analyzed using the software GrainScan (Whan 
et al. 2014) to calculate mean length, width, and grain 
number. Sample weight was divided by grain number 
to calculate mean grain weight.

Spikelet number was measured in each environ-
ment by manually counting spikelets beginning from 
the first rachis node to the terminal spikelet. Only 
heads with an intact terminal and basal spikelet were 
counted. For Fort Collins 2017, ten spikes were ran-
domly selected from each plot, and grains harvested 
from those spikes were used to measure grain length, 
width, and weight. Twenty spikes were selected for 
Fort Collins 2019 and Fort Collins 2020.

Heading date was recorded in Julian days from 
January 1 when approximately 50% of the spikes in 
a plot had fully emerged from the flag leaf sheath. 
Heading date was recorded for each line of the COP-
RIL and HIF populations in Fort Collins 2020. All 
raw phenotypic data is provided in Supplemental data 
1.

Genotyping

Lines from the HWWAMP population were previ-
ously genotyped using the 90  K SNP array (Wang 
et al. 2014), and data were downloaded from the T3/
Wheat database (Blake et  al. 2016). Markers with a 
minor allele frequency of greater than 0.05 and miss-
ing in less than 20% of genotypes were retained for 
downstream analysis (Supplemental data 1). Peak 
markers BobWhite_c22638_135 and IWA5913 from 
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the 90  K SNP array data were used to differenti-
ate between the QSn.csu-6B and WAPO-A1 alleles, 
respectively. Marker data for PPD-B1 was gener-
ated using a PCR-based assay (Beales et  al. 2007) 
and were described for the HWWAMP previously 
(Grogan et al. 2016). VRN-D3 was genotyped using a 
cleaved amplified polymorphic sequence marker pre-
viously described (Chen et al. 2010).

DNA was extracted using a modified Cetyl Tri-
methyl Ammonium Bromide (CTAB) extraction pro-
tocol (Doyle and Doyle 1990). DNA samples were 
diluted in water to a final concentration between 50 
and 100 ng/µL prior to genotyping. DNA concentra-
tion was measured via a spectrophotometer (Thermo 
Scientific, Waltham, MA, USA, NanoDrop 1000). 
KASP reactions were performed in a total volume of 
10 µL comprising 5 µL KASP V4.0 2X Master Mix 
(LGC Genomics, LLC, Beverley, MA, USA, Cat. # 
KBS-1016–017-US), 0.14 µL of 54 µM KASP primer 
mix, and approximately 100  ng of DNA template. 
The PCR conditions used consisted of: 94  °C for 
15 min for hot-start Taq activation; ten cycles of two-
step PCR with a 94 °C denaturing step for 20 s and 
an annealing-elongation step for 60 s starting at 61 °C 
and decreasing by 0.6  °C each cycle until reach-
ing 55 °C; 26 further cycles of two-step PCR with a 
94 °C denaturing step for 20 s and a 55 °C annealing-
elongation step for 60 s. PCR was carried out on an 
Applied Biosystems QuantStudio Q3 qPCR machine 
(Applied Biosystems, Waltham, MA, USA, Cat. # 
A28136) and analyzed using QuantStudio Design 
and Analysis software (version 1.4). KASP primer 
sequences for the VRN-D3 locus were designed 
from a previously described cleaved amplified poly-
morphic sequence marker and provided by the US 
Department of Agriculture, Agricultural Research 
Service, Hard Winter Wheat Genetics Research Unit 
(Manhattan, KS, USA) (Table  S1). KASP primer 
sequences for the WAPO-A1 locus were previously 
published (Table S1). KASP primer sequences for the 
QSn.csu-6B alleles were designed using the online 
primer design tool PolyMarker (Ramirez-Gonzalez 
et al. 2015). The PPD-B1 locus was genotyped using 
a presence-absence marker adapted from the previ-
ously described PCR-based assay by using the same 
KASP PCR conditions, but with 42  µM of KASP 
primer mix with only one forward primer including 
a VIC fluorophore tail sequence (Table  S1) (Beales 
et al. 2007). Primers were synthesized by Integrated 

DNA Technologies (San Diego, CA, USA). All geno-
typic data is provided in Supplemental data 1.

Statistical analysis

Grain width best linear unbiased estimates (BLUEs) 
were calculated for the HWWAMP with the lmer 
function of the afex R package version 0.28–1 (Sing-
mann et  al. 2020) using a mixed model where envi-
ronment and the row-column location of each plot 
was treated as a random effect and genotype was 
treated as a fixed effect. The BLUEs model also 
accounted for the nested structure of plot location 
within each environment. Genome-wide association 
mapping was conducted upon 16,058 markers and 
298 genotypes using a mixed model method previ-
ously described (Yu et al. 2006) and R version 4.0.2 
(Team R Development Core 2020) with the rrBLUP 
version 4.6.1 package (Endelman 2011). In the mixed 
model, population structure was treated as a fixed 
effect using an additive relationship matrix calculated 
from the markers, and genotype was treated as a ran-
dom effect. Marker effect was treated as a fixed effect 
following the restricted maximum likelihood method 
previously described (Endelman 2011). QTL were 
identified as significant markers (− Log10 (P) > 3) 
within 10.0 cM of one another, using the genetic map 
previously published for the 90 K SNP array (Supple-
mental data 1) (Wang et al. 2014).

Spikelet number, heading date, and kernel weight 
BLUEs for the HWWAMP were calculated with a 
linear model considering both genotype and envi-
ronment as fixed effects due to data from the T3/
Wheat database being corrected prior to this analysis. 
BLUEs calculated for the COP-RIL population used 
the same method; however, the Fort Collins 2017 data 
was averaged across two replicates prior to analysis 
to avoid confounding estimates due to the unbalanced 
nested structure of two replications in Fort Collins 
2017; no replication was included in Fort Collins 
2019 and Fort Collins 2020.

Spikelet number and kernel weight data for the 
HWWAMP were analyzed via one-way analysis of 
variance (ANOVA) using R version 4.0.2 (Team R 
Development Core 2020) with the package emmeans 
version 1.5.0 (Lenth 2019). Only 249 lines that had 
genotype and phenotype data for all four loci of inter-
est (WAPO-A1, VRN-D3, PPD-B1, and QSn.csu-
6B) and four environments (Greeley 2012 dryland, 
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Greeley 2012 irrigated, Fort Collins 2013 dryland, 
and Fort Collins 2013 irrigated) were used to calcu-
late the effect sizes and P-values.

Pearson correlations were estimated using the 
Pearson’s Product-Moment Correlation Test from the 
stats R package (R version 4.0.2, stats package ver-
sion 4.0.2). HWWAMP correlations for each envi-
ronment were calculated between spikelet number, 
heading date and kernel weight for each environment, 
and BLUEs across all environments. The Fort Collins 
2017 COP-RIL correlations were calculated among 
kernel length, kernel width, kernel weight, and spike-
let number. The Fort Collins 2020 COP-RIL cor-
relations were calculated between heading date and 
spikelet number.

One-way ANOVA was conducted for all kernel 
length, kernel width, kernel weight, heading date, 
and spikelet number observations of the COP-RIL 
population with the loci of interest as the dependent 
variable using R version 4.0.2 (Team R Develop-
ment Core 2020) with the package emmeans version 
1.5.0 (Lenth 2019). Prior to analysis, COP-RIL indi-
viduals that were segregating at the WAPO-A1, VRN-
D3, PPD-B1, and QSn.csu-6B loci were removed. 
To identify interactions affecting spikelet number, a 
full linear model was constructed accounting for the 
four-way interaction between the WAPO-A1, VRN-
D3, PPD-B1, and QSn.csu-6B loci and environment. 
Akaike information criterion was calculated for all 
possible model subset combinations of the full model 

using the MuMin package in R (R version 4.0.2, 
MuMIn package version 1.43.17) (Barton 2020). The 
model with the lowest Akaike information criterion 
was the full four-way interaction model, which was 
used for subsequent analyses on interactions. Sig-
nificance of the model terms was calculated via the 
Tukey-adjusted type II ANOVA method.

The HIF spikelet number data was analyzed via 
a linear model accounting for the allelic state of the 
QSn.csu-6B locus by family and the replicate effect 
using R version 4.0.2 with the package emmeans 
version 1.5.0. Since the WAPO-A1, VRN-D3, and 
PPD-B1 alleles were nested within each family, these 
variables were not included in the model. Using the 
backwards selection approach, a model that accounted 
for the effect of the QSn.csu-6B locus, family, and 
replicate was identified, which was used for all down-
stream analysis.

Results

Identification and validation of a QTL for grain width 
and spikelet number in the HWWAMP

A genome-wide association study of kernel width in 
the HWWAMP identified 46 significant marker asso-
ciations for grain width (− Log10 (P) > 3) correspond-
ing to 12 QTL (Fig.  1; Supplemental data 1). None 
of these QTL corresponded to the peak markers for 

Fig. 1  A genome-wide association of the hard winter wheat 
association mapping panel (HWWAMP) for kernel width using 
16,058 markers derived from the 90 K SNP array (Wang et al. 
2014). Best linear unbiased estimates for kernel width were 
calculated for 298 genotypes using data collected from the 
Greeley 2012 dryland, Greeley 2012 irrigated, Fort Collins 

2013 dryland, and Fort Collins 2013 irrigated environments. 
The horizontal line represents − Log10 (P) = 3. The closest 
flanking markers for each locus of interest were determined 
by their physical position in the IWGSC RefSeq v1.0 genome 
assembly and are highlighted in red
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WAPO-A1, VRN-D3, and PPD-B1, which all exhib-
ited no association with variation in kernel width 
(− Log10 (P) = 0.25, 0.18, and 0.68, Table S3). One 
QTL, with a single significant marker (BobWhite_
c22638_135, − Log10 (P) = 3.36) and two flanking 
markers, spanning a 10.0  Mbp region of chromo-
some arm 6BL in the RefSeq v1.0 reference genome 
assembly (493.5 Mbp to 503.5 Mbp; Supplemental 
data 1) was previously associated with variation in 
grain traits (El-Feki et al. 2013; Dao et al. 2017). This 
peak marker is more than 360 Mbp from the GPC-
B1 locus, ruling out NAM-B1, that is associated with 
variation in grain protein content, as a candidate gene 
(Uauy et  al. 2006). To investigate this QTL further, 
the peak marker (BobWhite_c22638_135) was used 
to analyze the association with kernel weight and 
spikelet number using publicly available phenotypic 
data from 249 lines of the HWWAMP population 
grown in four environments (Table  1). Variation at 
the QSn.csu-6B locus was significantly associated 
with kernel weight in all four individual environ-
ments (P < 0.05), indicating that the increase in grain 
width conferred by QSn.csu-6Ba translates to heavier 
grains (Table 1). BLUEs across all four environments 
showed that the QSn.csu-6Ba allele is significantly 
associated with increased kernel weight (P = 0.0002). 
The QSn.csu-6B locus was also significantly associ-
ated with spikelet number in one environment (Gree-
ley 2012 dryland, P = 0.02; Table 1), where the QSn.
csu-6Bb allele conferred increased spikelet number.

Kernel weight and spikelet number were nega-
tively correlated in three of the four tested environ-
ments (P < 0.001; Table  S4) and based on BLUEs 
calculated from all four environments (r = − 0.260, 
P < 0.0001; Table  S4). Although there was no 

significant correlation between kernel weight and 
spikelet number (P = 0.634) in the Greeley 2012 dry-
land environment, these traits showed the strongest 
negative correlation in the Greeley 2012 irrigated 
environment (r = − 0.408, P < 0.0001; Table  S4).
Among three other loci of interest that were tested, 
variation in WAPO-A1 was significantly associ-
ated with spikelet number in all four environments 
(P < 0.0001; Table  1) and in a GWAS (− Log10 
(P) = 7.64; Table S3). Calculated BLUEs showed that 
the WAPO-A1b allele is associated with increased 
spikelet number (P < 0.0001). Variation in VRN-D3 
was significantly associated with both kernel weight 
and spikelet number in all environments (P < 0.01), 
except spikelet number in Greeley 2012 dryland 
(P = 0.25). Consistent with the negative correlations 
between these traits, the Vrn-D3b allele was sig-
nificantly associated with increased spikelet number 
(P < 0.0001) and the Vrn-D3a allele was significantly 
associated with increased kernel weight (P = 0.0003). 
Variation in PPD-B1 was associated with spikelet 
number and kernel weight only in Greeley 2012 irri-
gated (P < 0.001; Table 1) and with heading date in a 
GWAS (− Log10 (P) = 3.55) (Table S3).

Epistatic and additive interactions between four 
spikelet number loci in the COP-RIL population

The genotypes CO940610 and “Platte” are polymor-
phic for all four loci of interest, so the COP-RIL pop-
ulation was used to further validate their association 
with grain size and weight, and spikelet number in 
three environments. In Fort Collins 2017, there was 
no significant marker-trait association between QSn.
csu-6B and grain weight, width or length (Fig.  2A). 

Table 1  Effect size of QSn.csu-6B, WAPO-A1, VRN-D3, and 
PPD-B1 loci on thousand kernel weight (TKW, in grams) and 
spikelet number per spike (SNS) in the HWWAMP across 
four environments and the calculated BLUEs across all envi-

ronments. Significance was calculated via one-way ANOVA 
where *P < 0.05, **P < 0.01, ***P < 0.0001; n.s = not signifi-
cant

Environment QSn.csu-6B WAPO-A1 VRN-D3 PPD-B1

TKW SNS TKW SNS TKW SNS TKW SNS

Greeley 2012 dryland 1.30** 0.48* 0.15n.s 1.05*** 1.02** 0.16n.s 0.07n.s 0.07n.s
Greeley 2012 irrigated 0.01* 0.05n.s 0.01n.s 1.21*** 0.01** 0.52** 0.01** 0.33*
Fort Collins 2013 dryland 0.94** 0.11n.s 0.77** 0.73*** 0.68** 0.56*** 0.01n.s 0.06n.s
Fort Collins 2013 irrigated 1.82** 0.11n.s 0.43n.s 0.98*** 1.10** 0.69*** 0.11n.s 0.08n.s
BLUEs 1.02** 0.05n.s 0.34n.s 0.99*** 0.70** 0.48*** 0.05n.s 0.07n.s
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All three traits were negatively correlated with spike-
let number (P < 0.05; Table S5). A significant marker-
trait association was detected between QSn.csu-6B 
and spikelet number in the Fort Collins 2017, 2019, 
and 2020 environments (Fig.  2B). The QSn.csu-6Bb 
allele derived from “Platte” conferred a positive effect 
of between 0.679 and 0.808 spikelets among the three 

environments, explaining between 9.2 to 12.9% of the 
variation (Table  S6). When BLUEs calculated from 
all three environments were analyzed, QSn.csu-6B 
had a significant effect of 0.739 spikelets (P < 0.0001; 
Table S6).

Variation in WAPO-A1, PPD-B1, and VRN-D3 
loci segregating in the COP-RIL population were 

Fig. 2  Marker-trait associations observed in the COP-RIL 
population in three environments. A Association between QSn.
csu-6B alleles and kernel weight, length, and width in Fort 
Collins 2017. The effect of the “Platte” and CO940610 alleles 
on spikelet number for the B QSn.csu-6B, C WAPO-A1, D 

VRN-D3, and E PPD-B1 loci in Fort Collins 2017, 2019, and 
2020 environments and the Best Linear Unbiased Estimates 
(BLUEs). *P < 0.05, **P < 0.001, ***P < 0.0001, calculated 
via one-way ANOVA
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also significantly associated (P < 0.05) with spike-
let number in all three environments (Fig.  2C-E). 
For all three loci, the superior allele was consist-
ently associated with increased spikelet number in 
all three environments (Table  S6). The WAPO-A1b 
allele conferred the largest effect of 0.890 spikelets 
(P < 0.0001), consistent with the positive effect of 2.1 
spikelets previously reported in a spring wheat RIL 
population (Kuzay et  al. 2019). The Vrn-D3b allele 
had a positive effect of 0.518 spikelets (P < 0.0001), 

and the Ppd-B1b allele had a positive effect of 0.394 
spikelets (P = 0.003), consistent with a previous study 
in spring durum wheat RIL populations (Arjona et al. 
2018).

Genotypes that carried a greater number of supe-
rior alleles at these four loci consistently exhibited a 
higher spikelet number compared to genotypes with 
fewer superior alleles, even when the mean spikelet 
number within environments differed significantly 
(Fig.  3A; Table  S7). Pairwise comparisons between 

Fig. 3  Effect of combining superior spikelet number alleles 
across four loci in the COP-RIL population. A Mean spikelet 
number for the Fort Collins 2017, 2019, and 2020 environ-
ments by number of superior alleles. Compact letter display 
represents significant differences between genotypes (α = 0.05). 

B Grand mean spikelet number for each allelic combina-
tion. Compact letter display represents significant differences 
between genotypes (α = 0.05). C Q graphs of two-way interac-
tions between QSn.csu-6B and the three other loci
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genotypes grouped by their number of superior alleles 
show that spikelet number significantly increases as 
the number of superior alleles increase (P < 0.0001), 
except for the comparison between genotypes car-
rying two and three superior alleles (P = 0.0531; 
Fig. 3A). When genotypes were separated according 
to their specific allelic combinations at these four loci, 
the pattern was similar, but differences between gen-
otypes were smaller (Fig.  3B). This may be a result 
of a significant two-way interaction between QSn.
csu-6B and VRN-D3 (P = 0.0009) (Fig. 3C), a three-
way interaction among QSn.csu-6B, VRN-D3, and 
PPD-B1 (P = 0.0002; Table S7) and a four-way inter-
action among all loci (P < 0.0001; Table S7). This is 
supported by an allelic frequency analysis where the 
QSn.csu-6B effect on spikelet number is greatest in 
genetic backgrounds with both VRN-D3a and PPD-
B1a alleles (Fig. S1). Two-way interactions between 
QSn.csu-6B and WAPO-A1 (P = 0.086) and between 
QSn.csu-6B and PPD-B1 (P = 0.364) were not signifi-
cant (Fig. 3C).

In Fort Collins 2020, spikelet number and head-
ing date were positively correlated in the COP-RIL 
population (r = 0.37, CI95 = 0.25–0.48, P < 0.0001), 
consistent with previous observations (Shaw et  al. 
2013; Chen et al. 2020; Brassac et al. 2021). Among 
individual loci, variation in PPD-B1 and VRN-D3 
were significantly associated with heading date 
(P < 0.0001; Table  S8). Furthermore, the effect of 
PPD-B1 and VRN-D3 on spikelet number was not 
independent of heading date, suggesting the observed 
effect on spikelet number is a result of a difference 

in heading (Fig.  S2). By contrast, variation at the 
WAPO-A1 and QSn.csu-6B loci was not associated 
with heading date (Table S8) and the effect of these 
loci on spikelet number was independent of heading 
date (Fig. S2).

Validation of QSn.csu-6B effect on spikelet number 
in HIFs

The effect of QSn.csu-6B on spikelet number was fur-
ther validated in eight HIFs segregating for this locus, 
but fixed for different combinations of alleles at VRN-
D3, PPD-B1, and WAPO-A1 (Table  S2). The QSn.
csu-6B locus was significantly associated with spike-
let number in seven of the eight HIFs (P < 0.05), with 
an effect size ranging from 0.248 to 0.504 spikelets 
(Table  S2). The positive effect of the QSn.csu-6Bb 
allele on spikelet number was consistent in all seven 
families despite variation between families in mean 
spikelet number (Fig. 4) and VRN-D3, PPD-B1, and 
WAPO-A1 alleles (Table S2). For example, the largest 
effect sizes for the QSn.csu-6B allele were observed 
in families COP6BHF260 (mean spikelet number of 
19.8, fixed for Vrn-D3b and Ppd-B1b alleles) and 
COP6BHF207 (mean spikelet number of 18.1, fixed 
for the Ppd-B1b allele; Table S2). The QSn.csu-6Bb 
allele was also associated with increased spikelet 
number in family COP6BHF337, although the dif-
ference was not significant (P = 0.0667). This family 
headed two days earlier than any other HIF and was 
fixed for the early flowering Vrn-D3a and Ppd-B1a 
alleles (Table S2).

Fig. 4  Mean spikelet 
number for each QSn.
csu-6B allelic class in eight 
HIFs. + P < 0.1, *P < 0.05, 
**P < 0.01, ***P < 0.001. 
Full details of each HIF are 
provided in Table S2
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A latitudinal dissection of the frequency of superior 
spikelet number alleles in HWWAMP

The frequency and distribution of superior spikelet 
number alleles for all four loci varied among germ-
plasm from the HWWAMP adapted to different 
regions of the USA Great Plains (Fig. 5). The superior 
QSn.csu-6Bb allele had a frequency of 0.86 across the 
whole panel, but with increasing frequency in lines 
adapted to the northern region (0.97) compared to the 
southern region (0.81). The superior Wapo-A1b allele 
had a frequency of 0.77 among all lines, comparable to 
the frequency of this allele in a panel of North Ameri-
can spring wheat lines (0.83) (Kuzay et al. 2019), and 
varied only slightly between regions (Fig.  5). The 

superior Vrn-D3b allele was most common in lines 
adapted to the northern region (0.71), with lower fre-
quencies in both the central (0.54) and southern (0.56) 
regions. The superior Ppd-B1b allele showed wide 
variation among regions, ranging from a frequency 
of 0.90 in the northern region to 0.41 in the southern 
region (Fig. 5). Across the entire HWWAMP 26% of 
lines carry all four superior alleles, while just 1.6% of 
lines carried no superior alleles at these loci (Fig. 5). 
The northern region had the largest proportion of lines 
carrying all four superior alleles (0.54) likely due to 
the overall greater frequency of superior Ppd-B1b and 
Vrn-D3b alleles (Fig. 5). A smaller proportion of lines 
with superior alleles at all four loci were observed in 
the central (0.23) and southern (0.19) regions.

Fig. 5  Allelic frequency of the superior (green) and inferior 
(orange) alleles for each locus affecting spikelet number (QSn.
csu-6B, WAPO-A1, VRN-D3, and PPD-B1) across a latitudinal 
gradient within the HWWAMP. The top row contains all 249 

genotypes, including 30 genotypes categorized as “other.” The 
right column represents the frequency of individuals which 
contain either 0, 2, 4, 6, or 8 superior alleles (QSn.csu-6Bb, 
Wapo-A1b, Vrn-D3b, and Ppd-B1b)
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Discussion

Application of the QSn.csu-6B QTL to increase 
spikelet number

In different bi-parental mapping populations tested in 
multiple environments, the QSn.csu-6Bb allele from 
“Platte” was consistently associated with increased 
spikelet number, despite this allele originally being 
identified for its association with reduced kernel 
weight in a doubled haploid population (El-Feki et al. 
2013) and kernel width in an association mapping 
panel (Supplemental data 1). These observations are 
likely a factor of the well-documented negative cor-
relation between spikelet number and grain weight 
(McIntyre et  al. 2010; Bennett et  al. 2012; Slafer 
et  al. 2014), which was also observed in the current 
study (Table S5). However, despite this negative cor-
relation in the COP-RIL population, QSn.csu-6B 
was associated only with variation in spikelet num-
ber (P < 0.001) and had no effect on kernel weight 
(P = 0.35). One possible explanation for these incon-
sistent results is that the QTL region includes more 
than one causal gene, with at least one gene impact-
ing spikelet number and at least one gene controlling 
grain size. Depending on their proximity, the effects 
of both genes might be detected in a doubled haploid 
population or an association mapping panel as an 
overlapping QTL, whereas in the RIL population, it is 
possible that only the gene for spikelet number is seg-
regating. High-resolution mapping to delimit the can-
didate gene region will be required to test this hypoth-
esis. Environmental effects may also impact these 
observations, since the HWWAMP was evaluated 
in two environments with limited irrigation and two 
fully irrigated environments, including one year with 
above-average temperatures (Grogan et al. 2016). By 
contrast, the COP-RIL population was always evalu-
ated in fully irrigated conditions, so differences in the 
expression of traits under these varying conditions 
could also be a factor in their inconsistency.

Although grain number is moderately correlated 
with yield per se (Kuchel et  al. 2007; Bennett et  al. 
2012; Xie and Sparkes 2021), increased spikelet num-
ber does not always translate to greater grain number 
due to impacts at later stages of development, includ-
ing on floret fertility (Bonnett 1966). Additionally, 
a skewed COP-RIL population structure favoring 
the positive effect allele QSn.csu-6Bb and negative 

effect alleles WAPO-A1a, PPD-B1a, and VRN-D3a 
(Table  S9), could reduce the statistical power to 
detect the epistatic interactions identified in this study 
(Table S7). This could explain why QSn.csu-6B only 
had a significant effect on spikelet number in two of 
the eight allelic combinations (Fig. S1), whereas five 
of six allelic combinations were significant in the 
HIFs (Fig. 4; Table S2). Therefore, it will be impor-
tant to evaluate the effects of the QSn.csu-6B locus 
using isogenic materials grown in replicated yield 
plots to determine the utility of this allele to breed for 
higher-yielding wheat varieties.

The effect of QSn.csu-6B on spikelet number is 
explained by a polygenic model with both additive 
and epistatic effects with WAPO-A1, PPD-B1, and 
VRN-D3 alleles, and the inexpensive genetic markers 
described in the current study can be utilized in breed-
ing programs to select germplasm containing multiple 
superior alleles for spikelet number. This knowledge 
could also be applied in genomic selection to help 
improve the rate of genetic gain for spikelet number 
(Meuwissen et  al. 2001; Goddard and Hayes 2007). 
Genomic prediction accuracy for spikelet number has 
been reported to be as high as 78% (Alqudah et  al. 
2020), but could potentially be improved further by 
including polymorphisms of known effect in the pre-
diction model (Bernardo 2014; Rutkoski et al. 2014; 
Li et al. 2019). In simulations, marker effects with an 
R2 greater than 10% had a positive or neutral effect 
on prediction accuracy (Bernardo 2014). Therefore, 
including WAPO-A1 (%R2 = 18.7; Table S6) and QSn.
csu-6B (%R2 = 13.8; Table  S6) loci as fixed effects 
could improve the accuracy of prediction models for 
spikelet number.

Genetic constraints to regionally adapted germplasm

The positive correlation between spikelet number 
and heading date (Table  S4) presents a constraint 
on selecting for increased spikelet number where 
regional adaptation favors an earlier heading date 
(Zheng et  al. 2013; Kamran et  al. 2014). This is 
reflected in the higher frequency of Vrn-D3b and Ppd-
B1b alleles in wheat germplasm adapted to northern 
latitudes compared to southern latitudes (Fig.  5), 
likely because wheat varieties with later heading 
dates have a lower risk of cold damage from late-
spring frost events (Kamran et  al. 2014). Likewise, 
varieties that head earlier are likely to be well adapted 
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to southern latitudes, where summer heat stress can 
negatively impact fertility. Therefore, genetic varia-
tion for spikelet number that does not impact head-
ing date may be less regionally constrained, and has 
broader utility in breeding programs. Natural allelic 
variation at WAPO-A1 had no significant effect on 
heading date in the COP-RIL population in Fort 
Collins 2020 (Table  S8), and the frequencies of the 
superior Wapo-A1b allele in the HWWAMP were 
consistent between latitudes, suggesting there are 
fewer regional constraints to the use of this allele in 
the Great Plains. However, previous findings from a 
diversity panel of 518 European winter wheat varie-
ties across three environments revealed that WAPO-
A1 has a mild, but significant effect on heading date 
(Muqaddasi et  al. 2019), so additional studies in a 
more diverse set of environments will be required to 
fully characterize this allele.

Although only based on one  year of field data, 
analysis of the HIFs and COP-RILs suggests that the 
QSn.csu-6B locus has no significant effect on head-
ing date (Tables S2 and S8). Despite this observation, 
the QSn.csu-6Bb allele was detected in increasing 
frequency from southern to northern latitudes in the 
Great Plains, following the trend of the Vrn-D3b and 
Ppd-B1b allelic frequencies (Fig. 5). The QSn.csu-6B 
locus exhibits a significant two-way interaction with 
VRN-D3 (Table  S7), whereby the effect size of the 
QSn.csu-6Bb allele is greatest in germplasm carry-
ing the early-heading Vrn-D3a allele (Fig. 3C). This 
suggests that the most promising breeding applica-
tion of this allele may be in early-heading germplasm 
adapted to southern latitudes where the frequency of 
the Vrn-D3a allele is highest.

Cloning the causative genetic variant underlying the 
QSn.csu-6B locus

Although hundreds of QTL associated with wheat 
yield components have been detected (Cao et  al. 
2020), few causative genes have been cloned. A 
powerful approach to identify and characterize the 
genetic variant underlying the QSn.csu-6B locus will 
be to perform high-resolution genetic mapping with 
near isogenic lines containing recombination break-
points within the QSn.csu-6B region of interest. This 
effort could be accelerated by screening heterozy-
gous individuals derived from the  F5 HIFs described 
in this study, which, because of their homogeneous 

genetic backgrounds, provide an increased statis-
tical power to detect small effect variants (Haley 
et al. 1994; Tuinstra et al. 1997). The use of exome 
capture sequencing (Krasileva et al. 2017) will help 
identify a high-density set of informative mark-
ers with which to precisely identify recombination 
breakpoints and delimit the QTL region.

Identification of the underlying causal gene will 
allow for the characterization of natural genetic vari-
ation within diverse panels of Triticum and Triti-
cum-related species, for many of which genome and 
exome sequencing data is available (Krasileva et  al. 
2017; He et  al. 2019). Furthermore, random and 
targeted mutagenesis can be applied to expand the 
range of genetic variation in both coding and regula-
tory regions, the value of which was recently demon-
strated for agronomic traits in tomato (Solanum lyco-
persicum L.) (Rodríguez-Leal et al. 2017) and maize 
(Zea mays) (Liu et  al. 2021). Screening this genetic 
diversity may reveal haplotypes and novel variants of 
utility for breeding programs.

Mutant alleles will also be valuable to further our 
understanding of the regulatory pathways determin-
ing spikelet number. These studies should include 
characterization of the complex three and four-way 
interactions between VRN-D3, PPD-B1, WAPO-
A1, and QSn.csu-6B detected in this study (Fig. 3C; 
Table  S7), potentially enabling more targeted 
approaches to achieving optimal heading date and 
spike architecture for target environments. An under-
standing of how these genetic loci interact with each 
other and their environment will be important to more 
efficiently breed wheat cultivars expressing high yield 
stability that are well adapted to specific target envi-
ronments (Sreenivasulu and Schnurbusch 2012; Brin-
ton and Uauy 2019).

Conclusion

Variation at the QSn.csu-6B locus is consistently 
associated with spikelet number in hard winter wheat, 
exhibits epistatic interactions with three other alleles 
for spikelet number, and has only a limited impact 
on heading date. Despite these interactions, marker-
assisted selection to combine superior alleles at these 
loci is a promising approach to increase spikelet num-
ber and help develop higher-yielding wheat varieties.
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