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Abstract Disease resistance is essential for reliable
maize production. In a long-term tug-of-war between
maize and its pathogenic microbes, naturally occurring
resistance genes gradually accumulate and play a key
role in protecting maize from various destructive dis-
eases. Recently, significant progress has been made in
deciphering the genetic basis of disease resistance in
maize. Enhancing disease resistance can now be ex-
plored at the molecular level, from marker-assisted se-
lection to genomic selection, transgenesis technique,
and genome editing. In view of the continuing accumu-
lation of cloned resistance genes and in-depth under-
standing of their resistance mechanisms, coupled with
rapid progress of biotechnology, it is expected that the
large-scale commercial application of molecular breed-
ing of resistant maize varieties will soon become a
reality.
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selection . Genome editing .Mang Zhu and Lixiu Tong
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Introduction

Maize (Zea mays L.) is one of the most important crops
for food, feed, and fuel production worldwide. The
global demand for maize continues to grow because of
the increasing need for feed and industrial rawmaterials.
In recent years, due to the ever-shrinking genetic diver-
sity of maize varieties, continuous cropping, returning
straw to the field, high-fertility management, high-
density planting, and extreme climatic events, maize
diseases are becoming more and more serious (Duan
et al. 2019; Sun et al. 2020). Annual yield losses caused
by maize diseases (excluding viral diseases) are estimat-
ed to account for 4–14% of the global harvest
( h t t p s : / / p o r t a l . n i f a . u s d a .
gov/web/cr i sprojec tpages /1008502-genet ic -
architecture-of-disease-resistance-in-maize.html). Since
the arable land area of maize will not increase
significantly, it will be crucial to ensure stable maize
yields and high kernel quality by reducing disease
severity in this crop.

In the long history of maize cultivation, disease epi-
demics in maize is changing dynamically, as some
diseases increase or decrease in importance relative to
other diseases. Disease prevalence in maize is closely
correlated with pathogen resources, cultivated varieties,
weather conditions, farming systems, and agricultural
ecology (Yang et al. 2017a). The outbreak of southern
corn leaf blight (SCLB) in the USA in 1970 was due to
the wide deployment of susceptible cultivars with T-
type male-sterile cytoplasm (cms-T), which suffered
from the new Bipolaris maydis race T (Ullstrup 1972).
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The recent occurrence of northern corn leaf blight
(NCLB) in North China was due to the widespread
cultivation of the susceptible variety XianYu335 (Pu
2013). The high temperature and humidity in the
Huang-Huai-Hai plain are conducive to the outbreak
of stalk rot and ear rot diseases (Duan et al. 2019). In
mechanical harvesting, maize plants are left in the field
for a longer period of time for dehydration, which will
undoubtedly increase the severity of stalk/ear rot dis-
eases.Moreover, the failure to remove rotted ears during
mechanical harvesting further reduces kernel quality
(Silva et al. 2017; Holland et al. 2020).

The plant immune response is a highly complex,
tightly regulated, multi-layered process that can be
roughly divided into qualitative disease resistance and
quantitative disease resistance (QDR) (Poland et al.
2009; Kou and Wang 2010). Resistance genes (R-gene)
underlying qualitative resistance tend to provide com-
plete or near-complete resistance and are therefore also
known as major genes (Nelson et al. 2018). QDR con-
fers an incomplete or partial resistance and is controlled
by multiple small-effect genes (Niks et al. 2015). Al-
though single R-genes are often non-durable, when used
in combination with QDR genes, they can effectively
promote crop protection against pathogens (Palloix et al.
2009). Therefore, combining multiple R-genes and/or
QDRs into a single genome is the optimal choice for
breeding varieties with strong and durable disease
resistance.

As early as 1992, a major gene Hm1 was isolated in
maize by transposon-tagging method, which confers
resistance to Cochliobolus carbonum race 1 (Johal and
Briggs 1992). Notably, Hm1 is also the first resistance
gene identified in any plant species. With the same
transposon-tagging approach, another major gene Rp1-
Dwas isolated in 1999, which confers resistance against
common leaf rust (Collins et al. 1999). During the maize
growth period, however, the most devastating diseases
are caused by necrotrophic or hemibiotrophic patho-
gens, and the resistance to such diseases mainly depends
on QDR genes (Yang et al. 2017a). It turns out that
cloning of the QDR gene is muchmore difficult than the
major gene. It is not until recently that there have been
reports of successful cloning of QDR genes (Zuo et al.
2015; Hurni et al. 2015; Yang et al. 2017b; Wang et al.
2017; Liu et al. 2017; Leng et al. 2017; Li et al. 2019; Ye
et al. 2019; Yang et al. 2021; Liu et al. 2020a).

In this review, we summarize recent advances in
functional genomics on maize disease resistance,

describe the current works on molecular breeding, and
predict the potential development in the future. Several
similar reviews may help to better understand the maize
disease resistance (Poland et al. 2009; Kou and Wang
2010; St Clair 2010; Zhang et al. 2013; Niks et al. 2015;
Krattinger and Keller 2016; Ali and Yan 2012; Yang
et al. 2017a).

Functional genomics of disease resistance in maize

Inheritance of resistance to fungal diseases in maize

Most maize diseases are caused by pathogenic
fungi (Table 1). These diseases cause significant eco-
nomic losses due to reduced yield/quality and the in-
creasing input cost for disease control. Foliar disease,
smut, and stem/ear rot are among the most serious
fungal diseases of maize (Azra and Hussain 2019).

Foliar fungal diseases of cereals are usually associat-
ed with reduced photosynthetic area, chlorosis, and
premature leaf senescence (Fig. 1a–e), which result in
incomplete grain filling and reduced grain yields (Zheng
et al. 2018). A recent global survey highlighted several
foliar fungal diseases that significantly reduce maize
yields in Africa, Asia, and the Americas (Savary et al.
2019).

Northern corn leaf blight (NCLB) (Fig. 1a) causes the
yield loss of > 1% globally (Savary et al. 2019). In the
northern USA, NCLB was the most prominent corn
disease in 2015 (Mueller et al. 2016). In Jilin Province
of China, the NCLB outbreak in 2012 caused a substan-
tial yield loss (Liu et al. 2013). Qualitative resistance
conveyed by Ht genes results in distinct phenotypes in
response to infection by avirulent races of Exserohilum
turcicum. The Ht1 gene, identified from the popcorn
cultivar Ladyfinger and the field corn inbred line
GE440, confers a chlorotic-lesion reaction that reduces
sporulation and lesion size (Hooker 1963). The Ht2 and
Ht3 genes also confer chlorotic-lesion-mediated resis-
tance (Hooker 1977; Hurni et al. 2015). The Htn1 locus
was originally introgressed into modern maize cultivars
from Mexican landrace Pepitilla in the 1970s (Gevers
1975). ZmWAK-RLK1 is the causal gene atHtn1, which
encodes an unusual innate immunity receptor with an
extracellular wall-associated kinase domain (Hurni et al.
2015), and the fungal resistance correlates with reduced
benzoxazinoid content (Yang et al. 2019b). The latest
research showed that Ht2 and Ht3 are identical and
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allelic to Htn1. The difference between the ZmWAK-
RLK1 variants encoded by Htn1 and Ht2/Ht3 lies in
multiple amino acid polymorphisms, which particularly
affect the putative extracellular domain (Yang et al.
2021). The recessive gene ht4, identified in a line de-
rived from the maize synthetic BS19, confers a chlorotic
halo reaction to infection by E. turcicum (Carson 1995).
Loci affecting quantitative resistance to NCLB have
been mapped on all 10 maize chromosomes (Welz and
Geiger 2000). ZmREM6.3, the causal gene of
qNLB1.02B73, was identified by combing fine mapping,
expression analysis, and mutant evaluations.
ZmREM6.3 appears to have a specific effect on NCLB
symptom development (Jamann et al. 2016).

Gray leaf spot (GLS) (Fig. 1b) is the second most
serious foliar disease of maize worldwide (Savary et al.

2019). GLS resistance is a typical quantitative trait
controlled by multiple resistance QTLs (Menkir and
Ayodele 2005). ZmCCoAOMT2 was confirmed to be
the causal gene at QTL qMdr9.02 conferring resistance to
Cercospora zeae-maydis GLS. This gene encodes
caffeoyl-CoAO-methyltransferase, an enzyme involved
in the phenylpropanoid pathway and lignin production
(Yang et al. 2017b). Another C. zeae-maydis GLS re-
sistance QTL, Qgls8, was mapped to a ~ 130-kb region
on chromosome 8 (Zhang et al. 2017b). Two major
resistance QTLs against Cercospora zeina GLS, qRgls1
and qRgls2, were identified and fine-mapped to 1.4-Mb
and 1-Mb regions on chromosomes 8 and 5, respective-
ly (Zhang et al. 2012b; Xu et al. 2014). To date, more
than 100 QTLs for GLS resistance have been detected
(Du et al. 2020).

Fig. 1 The phenotypes of major maize diseases. a NCLB mainly
damages leaves and forms local lesions that progress until necrosis
occurs. Lesions may coalesce, blighting the entire leaf. b GLS
begins as small, regular, elongated necrotic spots. Lesions grow
parallel to the veins. The growth is limited by adjacent veins, so the
final lesion shape is rectangular. c SCLB mainly infects maize
leaves. Lesions are initially small and diamond shaped, then
become elongated as they mature. Under severe disease pressure,
lesions may coalesce, blighting the entire leaf. d Common rust has
small, powdery pustules over both surfaces of the leaves. Pustules
are brown in early stages of infection; later, the epidermis ruptures
and the lesions turn black as the plant matures. e Southern rust has
small circular, pinhead-shaped pustules. Pustules are smaller, ligh-
ter in color, andmore circular than those of common rust. Southern
rust also presents on both leaf surfaces. f BLSB develops on
leaves, sheaths, and husks. The symptoms are characteristic con-
centric spots that cover large areas of infected leaves and husks. g

Head smut spreads systemically into the ear and tassel. The most
conspicuous symptom is masses of black spores in the individual
male florets and the ear. h Common smut is easily identified by
white tumor-like galls which can develop in all aerial organs of
maize. i Gibberella stalk rot may look similar to Fusarium stalk
rot. Symptoms of stalk rot include rotting of the roots, crown, and
lower internodes. Corn infected with Gibberella has pink to red-
dish coloration of the pith and vascular strands. j Fusarium ear rot
is the most common fungal disease found on corn ears. Mold may
be white, pink, or salmon-colored. Infected kernels may turn tan or
brown. k SCMV infection causes characteristic chlorosis, here
shown in a greenhouse-grown seedling. The new leaves of sus-
ceptible plants show yellow and green stripes. l MRDD-infected
plants are usually dwarfed and severely stunted, with dark-green
leaves, shortened internodes, and waxy enations on the abaxial
surfaces of upper leaves
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Southern corn leaf blight (SCLB) (Fig. 1c), once a
major threat to global maize production, has declined to
a relatively low level due to the use of resistant cultivars.
A major recessive SCLB resistance locus, rhm1, was
mapped to an 8.56-kb region on chromosome 6 with
only one candidate gene, encoding the lysine histidine
transporter 1 (LHT1) (Zhao et al. 2012b). To date, many
QTL analyses of maize resistance to SCLB have been
conducted, revealing numerous resistance QTLs that
primarily exhibit additive or partially dominant or epi-
static effects (Carson et al. 2004; Balint-Kurti and Car-
son 2006; Balint-Kurti et al. 2007; Balint-Kurti et al.
2008; Zwonitzer et al. 2009; Kaur et al. 2019).
ZmCCoAOMT2, the causal gene of the QTL qMdr9.02,
also confers quantitative resistance to SCLB (Yang et al.
2017b). Differences in ZmCCoAOMT2-mediated SCLB
resistance are attributed to allelic variations at both the
gene expression and amino acid sequence levels, which
lead to differences in the levels of metabolites (e.g.,
lignin) in the phenylpropanoid pathway and pro-
grammed cell death (Yang et al. 2017b).

Common rust (Fig. 1d) is an important foliar disease
that is widely distributed in tropical, subtropical, tem-
perate, and highland areas (Vivek et al. 2009; Wright
et al. 2014), and causes up to 49% yield losses in
susceptible genotypes (Groth et al. 1983). The rp1 com-
plex, a cluster of resistance genes, is located on the short
arm of chromosome 10 (Hulbert 1997). Sixteen differ-
ent genes were identified in the rp1 cluster by examining
their responses to an extensive collection of rust bio-
types, and fourteen of which were given the Rp1 desig-
nation (Rp1-A to Rp1-N) (Hooker 1969; Hulbert 1997).
Among them, Rp1-D, encoding a typical resistance
protein with nucleotide-binding and leucine-rich repeat
(NB-LRR) domains, confers race-specific resistance to
the disease (Collins et al. 1999). Since many Puccinia
sorghi races that are virulent on Rp1-D have been found
throughout North America (Pataky and Tracy 1999;
Pate et al. 2000; Pataky et al. 2000), it is important to
combine multiple R-genes with QDRs to generate maize
varieties with durable resistance to common rust (Yang
et al. 2017a). With genome-wide association studies
(GWAS), 25 resistance QTLs were identified and dis-
tributed on chromosomes 1, 3, 5, 6, 8, and 10 (Zheng
et al. 2018).

Southern rust (Fig. 1e) is generally more harmful to
corn than common rust due to its ability to develop and
spread rapidly under favorable conditions. To date, at
least 18 race-specific resistance genes have been

identified, and most have been widely used in commer-
cial maize varieties, such as Rpp1-11 (Storey and
Howland 1957; Ullstrup 1965; Brewbaker et al. 2011),
Rpp25 (Zhao et al. 2013), RppQ (Chen et al. 2004; Zhou
et al. 2007), RppD (Zhang et al. 2010), RppC (Yao et al.
2013), RppS313 (Wang et al. 2019a), RppS (Wu et al.
2015), and RppCML496 (Lv et al. 2020). Like other
plant pathogenic microbes, Puccinia polysora is notori-
ous for its rapid mutation to overcome maize resistance.
For example, Rpp9 once provided effective resistance to
SCR in the southern USA, but it has since been over-
come by a new race of P. polysora (Brewbaker et al.
2011). The resistance QTLs have been identified and
mapped on chromosomes 3 and 4 (Holland et al. 1998);
3, 4, and 9 (Jiang et al. 1999); 4, 8, 9, and 10 (Jines et al.
2007); 6 (Brewbaker et al. 2011); and 1, 2, 5, 6, 9, and
10 (Wanlayaporn et al. 2013). Plant-specific remorins
are important for plant responses to microbial infections
and plant signaling processes. Overexpressing the
remorin gene ZmREM1.3 enhanced resistance to south-
ern rust in maize (Wang et al. 2019c).

Banded leaf and sheath blight (BLSB) (Fig. 1f) is a
widespread soil-borne fungal disease of both maize and
rice in South and Southeast Asia (Zhao et al. 2006; Chen
et al. 2013; Li et al. 2019). The F-box gene ZmFBL41
was identified as a causal gene conferring quantitative
resistance to BLSB (Li et al. 2019). The activity of
ZmFBL41was evaluated in the transposon-insertion line
zmfbl41 selected from the maize UniformMu resource.
The zmfbl41 line exhibited weaker disease symptoms
than the wild type (W22) following Rhizoctonia solani
infection. Two amino acid substitutions in ZmFBL41
prevented its interaction with ZmCAD (the final enzyme
in the monolignol biosynthetic pathway). This resulted
in inhibited ZmCAD degradation, leading to lignin ac-
cumulation and limiting lesion expansion (Li et al.
2019).

Head smut (Fig. 1g) and common smut (Fig. 1h) are
both soil-borne diseases of maize and pose serious
threats to maize production. Many head smut resistance
QTLs have been identified across all 10 chromosomes
(Lübberstedt et al. 1999; Chen et al. 2008; Li et al.
2015). A major dominant QTL qHSR1 on the long
arm of chromosome 2 reduced the disease incidence
by ~ 25% (Chen et al. 2008). ZmWAK is the causal
resistance gene at qHSR1 and encodes a cell wall–
associated kinase (WAK), composing of a cytoplasmic
serine/threonine kinase domain, a calcium-binding epi-
dermal growth factor (EGF_CA) domain, and an
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extracellular galacturonan-binding (GUB) domain (Zuo
et al. 2015). ZmWAK spans the plasma membrane and
functions as a receptor-like kinase that may perceive and
transduce extracellular signals. ZmWAK is highly
expressed in the mesocotyls of maize seedlings, where
it represses the growth of hyphae towards aboveground
plant tissues, resulting in a significant decrease in the
pathogen amount in floral organs, thereby reducing the
disease severity (Zuo et al. 2015). Common smut,
caused by Ustilago maydis, can be easily identified by
the formation of tumor-like galls in all aerial organs of
maize plants, which results in stunted growth and yield
losses (Martínez-Espinoza et al. 2002; Tanaka et al.
2020). In recent years, great progress has been made in
the study of the pathogenicmechanism ofU.maydis and
its interaction with plants (Ma et al. 2018; Tanaka et al.
2020; Zuo et al. 2019). The disease resistance loci are
distributed on all 10 maize chromosomes; however,
none of them have been identified (Pataky 1995;
Lübberstedt et al. 1998; Ding et al. 2008).

With the development of agricultural mechanization,
stalk rot (Fig. 1i) and ear rot (Fig. 1j) have attracted much
attention, and prompted genetic studies on them. Two
QTLs, the major qRfg1 and the minor qRfg2, were identi-
fied in the resistant inbred line 1145 (Yang et al. 2010;
Zhang et al. 2012a). The ZmCCT gene containing a CCT
domain is the causal gene at qRfg1 (Wang et al. 2017). The
insertion or deletion of a CACTA-like transposon in the
ZmCCT promoter causes differential histone modification
and DNAmethylation to regulate maize resistance to stalk
rot (Wang et al. 2017). Without the transposon insertion,
ZmCCT is in the “primed” state, allowing plants to respond
quickly to pathogen challenge and mount defense re-
sponses. By contrast, ZmCCT with the transposon inser-
tion is in the “silent” state, eliciting little or no defense
response to pathogen invasion (Wang et al. 2017).
ZmAuxRP1 is the causal gene at the minor QTL, qRfg2,
that responds quickly to pathogen challenge with a rapid
yet transient reduction in its expression, leading to arrested
root growth but enhanced resistance toGibberella stalk rot
(Ye et al. 2019). ZmAuxRP1 promotes the biosynthesis of
indole-3-acetic acid (IAA), while suppressing the forma-
tion of benzoxazinoid defense compounds (BXs). The
concerted interplay between IAA and BXs helps maintain
the growth-defense balance in a timely and efficient man-
ner to optimize plant fitness (Ye et al. 2019). Interestingly,
ZmAuxRP1 increases the resistance to Fusarium ear rot as
well, suggesting that the same mechanism is used for
resistance to both stalk rot and ear rot (Ye et al. 2019).

Rcg1 is a major QTL associated with resistance to
Anthracnose stalk rot (ASR) caused by the fungus
Colletotrichum graminicola (Jung et al. 1994). Rcg1
was identified in the inbred line MP305 by fine map-
ping, followed bymutant analysis. Rcg1 harbors an NB-
LRR disease resistance gene that delays the occurrence
of Anthracnose stalk rot, causing the disease to have
little impact on plant yield (Frey et al. 2011).

LOX (lipoxygenase) genes are thought to be in-
volved in plant susceptibility to fungal invasion and
mycotoxin production (Christensen et al. 2014;
Maschietto et al. 2015). Maize mutants with a defect
in the 9-LOX gene ZmLOX3 show reduced levels of
several 9-LOX-derived fatty acid hydroperoxides. The
kernels of lox3 mutants show greatly reduced ear rot
symptoms, including drastically reduced conidiation of
F. verticillioides and reduced production of the myco-
toxin fumonisin B1 (Gao et al. 2007; Gao et al. 2009).
By contrast, infection by F. verticillioides is suppressed
by the maize 9-LOX gene ZmLOX12 (Christensen et al.
2014). These observations suggest that a specific plant
9-LOX isoform is required for fungal pathogenesis,
including disease development and spore and mycotox-
in production (Lanubile et al. 2017).

Inheritance of resistance to viral diseases in maize

At least ten viruses cause significant agronomic losses in
maize globally (Table 1) (White 1999). The incidence
and severity of viral diseases are increasing, and new
viral diseases continue to emerge. Maize dwarf mosaic
disease (MDMD) is prevalent worldwide, especially in
the USA, Europe, and the Huang-Huai-Hai plain in
China. This disease seriously affects the yield and qual-
ity of maize (Fuchs and Gruntzig 1995). Maize lethal
necrosis (MLN), a complex viral disease, is emerging as
a serious threat to maize production (Boddupalli et al.
2020). MLN is caused by maize chlorotic mottle virus
(MCMV; genus Machlomovirus in the Tombusviridae)
in combination with one of several viruses from the
Potyviridae, such as sugarcane mosaic virus (SCMV),
maize dwarf mosaic virus (MDMV), Johnsongrass mo-
saic virus (JMV), and wheat streak mosaic virus
(WSMV) (Redinbaugh and Stewart 2018; Boddupalli
et al. 2020). MLN causes irreversible damage that kills
maize plants before they reach maturity (Yang et al.
2017a). During 2012–2013, the estimated maize yield
losses due to MLN were 23–100% in affected counties
of Kenya (De Groote et al. 2016; Batchelor et al. 2020).
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Maize rough dwarf disease (MRDD) (Fig. 1l) poses a
grave threat to maize production worldwide (Dovas
et al. 2004; Achon et al. 2015). MRDD is caused by
viruses in the Fijivirus genus in the Reoviridae family
(Zhang et al. 2001; Liu et al. 2020a). In China, outbreaks
of MRDD mainly occur in the Huang-Huai-Hai plain
(Chen et al. 2015; Xu et al. 2020). Yield losses caused
by MRDD range from 20 to 30% to as high as 100% in
severely infected fields (Xu et al. 2020).

To date, only three viral disease resistance genes
have been identified and validated, including
ZmTrxh (Liu et al. 2017) and ZmABP1 (Leng et al.
2017) against SCMV, and ZmGDIα against MRDD
(Liu et al. 2020a). ZmTrxh and ZmABP1 are the
causal genes of the major QTLs Scmv1 and Scmv2,
respectively (Xia et al. 1999; Xu et al. 1999), which
function epistatically to confer complete resistance
to SCMV (Xing et al. 2006). ZmTrxh encodes an
atypical h-type thioredoxin, and its expression level
is closely correlated with SCMV resistance (Tao
et al. 2013a; Liu et al. 2017). ZmTrxh is dispersed
in the cytoplasm to repress SCMV accumulation
without eliciting salicylic acid- and/or jasmonic
acid-mediated defense responses (Liu et al. 2017).
ZmABP1 encodes an auxin-binding protein, and its
expression level is closely associated with disease
resistance, indicating that ZmABP1 cis-regulatory
elements play a key role in SCMV resistance
(Leng et al. 2017). ZmABP1 mainly functions dur-
ing later stages of viral infection and thus adds a
second tier of resistance to the immediate response
mediated by ZmTrxh (Leng et al. 2017).

The major quantitative QTL qMrdd1 is proved to be
associated with the ZmGDIα locus, which provides
maize with recessive resistance to rough dwarf disease
(MRDD) (Tao et al. 2013b; Liu et al. 2020a). ZmGDIα
encodes a Rab GDP dissociation inhibitor alpha
(RabGDIα), which is required for vesicle trafficking.
The wild-type ZmGDIα is the dominant susceptible
allele, and its splicing mutant ZmGDIα-hel is the reces-
sive resistant allele. ZmGDIα-helwas generated when a
helitron transposon inserted into its intron 10, inducing
alternative splicing that replaces the wild-type exon 10
with a helitron-derived exon 10. ZmGDIα-hel reduces
the disease severity index of MRDD by ~ 30% (Liu
et al. 2020a). The viral protein P7-1 binds tightly to exon
10 and the C-terminal region of the wild-type ZmGDIα
to recruit it for viral infection. The helitron-derived exon
10 weakens the binding of P7-1 to ZmGDIα-hel,

resulting in quantitative resistance to MRDD (Liu
et al. 2020a).

Inheritance of resistance to bacterial diseases in maize

Under favorable environmental conditions, such as
protected cultivation, bacterial pathogens can cause tre-
mendous crop losses (Table 1). Since its discovery in
1969, Goss’s bacterial wilt and leaf blight has emerged
as an important disease of maize that causes more than
40% yield losses in susceptible maize hybrids (Carson
1991). In recent years, this disease has re-emerged and
spread throughout all major corn-growing regions in the
USA and Canada (Soliman et al. 2018) and caused 12.7
million tons of yield losses in maize between 2012 and
2015 (Mueller et al. 2016). Linkage mapping using
three recombinant inbred line populations identified 19
QTLs (Singh et al. 2016). The effect size of each QTL
was small, and none contributed > 6% of the total
phenotypic variation (Singh et al. 2016).

Bacterial stalk rot, caused by Dickeya zeae, is an
economically important disease that reduces crops yield
by 21 to 98.8% (Kumar et al. 2017). This disease occurs
in America, Canada, India, and Africa and is a major
disease in tropical and subtropical maize planting areas.
There are many other bacterial diseases in maize, such
as bacterial leaf streak of corn (caused by Pseudomonas
andropogonis) (Vidaver and Carlson 1978) and bacte-
rial wilt of corn (caused by Pantoea stewartii) (EPPO
2006). Due to increasing global temperature and humid-
ity, bacterial diseases pose a serious threat to the security
of maize production. Unfortunately, there are few ge-
netic studies about bacterial diseases in maize, so it is
necessary to screen for various resistance sources and
pay more attention to dig the resistance genes.

Inheritance of resistance to oomycete diseases in maize

Downy mildew (DM) diseases are caused by various
fungal species in several genera of Oomycetes. This
major group of diseases affects many crops, including
maize and sorghum. With a recombinant inbred line
(RIL) from the cross between B73 (susceptible) and
Ki11 (resistant), seven QTLs were identified for three
DM strains, located on chromosomes 2, 3, 6, and 9. The
major QTL on chromosome 2 could explain 12.95% of
the total phenotypic variation (Kim et al. 2020).

Pythium produces a white, rapidly growing myceli-
um, which can infect maize and cause a variety of

32    Page 8 of 22 Mol Breeding (2021) 41: 32



diseases (Agrios 2005). Pythium stalk rot, caused by
Pythium aphanidermatum and Pythium inflatum, is a
serious disease that impairs maize production (Duan
et al. 2019). Two independently inherited dominant
genes, RpiQI319-1 and RpiQI319-2, confer resistance
of Pythium stalk rot in maize (Song et al. 2015). Infec-
tion with P. aphanidermatum can also cause root rot,
seedling blight, and seed rot (Wang and Duan 2020).

Molecular breeding of disease-resistant maize

Most inbred lines used in current commercial maize
production are far from ideal in terms of disease resis-
tance. For instance, very few elite inbred lines with
resistance to head smut, stalk rot, and ear rot are avail-
able in China (Wang et al. 2014a; Duan et al. 2015).
Several inbred lines with resistance against common
rust and southern rust in China are highly susceptible
to NCLB, SCLB, CLS, and GLS (Wang et al. 2014a).
As known, the traditional breeding of disease-resistant
varieties mainly depends on the breeder’s experiences in
phenotypic selection. This is a time-consuming,

inefficient process and highly dependent on environ-
mental conditions. With the availability of elite disease
resistance genes and their tagged molecular markers, the
combination of traditional breeding and marker-assisted
selection (MAS) has proven to be very efficient for
developing elite resistant lines for maize production.
Genomic selection (GS), transgenesis technique, and
genome editing are all promising approaches as well.
Combining these methods with doubled haploid (DH)
technology could greatly accelerate the molecular
breeding process in maize (Fig. 2).

Sources of elite naturally occurring resistance genes

Natural germplasm resources, also known as genetic
resources, show extensive genetic diversity in terms of
disease resistance. Most disease resistance genes are
present in tropical inbred lines, likely because high
temperatures and high humidity favor the occurrence
and maintenance of resistance genes. QTLs conferring
resistance to GLS were identified in the highly resistant
maize line Y32, derived from the tropical germplasm
Suwan1 (Zhang et al. 2012b; Xu et al. 2014). The hybrid

Fig. 2 Scheme for molecular breeding of disease-resistant maize.
The collection of various excellent germplasm resources can pro-
vide sources for cloning and identification of disease resistance
genes. The disease resistance genes can be used for MAS and
transgenic disease resistance breeding. GS can speed up resistance
breeding programs in maize. Combining gene editing with DH

technology can quickly generate disease-resistant materials with-
out transgenic components. Combining various strategies is an
excellent way to greatly accelerate the maize breeding process.
MAS, maker-assisted selection; DH, doubled haploid; WT, wild
type
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P78599, containing mixed ETO germplasm from South
America and Suwan1 from Thailand, shows high resis-
tance to most maize diseases. For instance, the stalk-rot
disease resistance genes ZmCCT and ZmAuxRP1 were
isolated from P78599-derived inbred line 1145 (Wang
et al. 2017; Ye et al. 2019). Teosinte, the progenitor of
maize, is another important genetic resource for maize
improvement, as maize has lost a great deal of genetic
variation compared to teosinte due to domestication and
breeding bottlenecks (Tenaillon et al. 2004). A resis-
tance QTL derived from teosinte conferred resistance to
GLS, highlighting the potential value of teosinte for
maize breeding programs (Zhang et al. 2017b). Further-
more, some important resistance alleles are rare in maize
germplasms. For instance, ZmCCTwas identified solely
in inbred lines bred from the P78599 hybrid (Yang et al.
2013; Wang et al. 2017; Li et al. 2017). The ZmGDIα-
hel allele against MRDD was detected in only 36 lines
among the more than 1000 lines tested (Liu et al.
2020a). Thus, it is very necessary to conduct large-
scale collection and evaluation of maize germplasm
before identifying importantly rare natural resistance
genes and using them in resistant breeding program.

Marker-assisted selection

MAS is a powerful tool to reduce maize diseases by
using natural resistance genes. The introduction of the
head smut resistance QTL qHSR1 via marker-assisted
backcrossing significantly enhanced disease resistance
of 10 inbred lines (Zhao et al. 2012a). ZmWAK, the
causal gene at qHSR1, improves both head smut resis-
tance and yield-related traits (Konlasuk et al. 2015; Zuo
et al. 2015). ZmWAK has been widely used in the head
smut resistance breeding program via MAS to improve
the local Chinese susceptible germplasm Tongsipingtou
and to develop a number of elite inbred lines (such as
Ji853R and Chang7-2R) and resistant maize varieties
(e.g., Jidan558) (Zhao et al. 2012a).

ZmCCT and ZmAuxRP1 are the causal factors for
resistance to stalk rot (Wang et al. 2017; Ye et al.
2019). Both ZmCCT and ZmAuxRP1 have pleiotropic
effects: ZmCCT is associated with photoperiod sensitiv-
ity, and ZmAuxRP1 is involved in root growth (Yang
et al. 2013; Wang et al. 2017; Ye et al. 2019). Nine
resistant ZmCCT haplotypes were introduced into seven
elite inbred lines via MAS. The elite haplotype H5,
selected from American inbred line GEMS14, exhibited
enhanced resistance to stalk rot and less sensitivity to

photoperiod (Li et al. 2017). Notably, inbred lines and
hybrids carrying H5 also show stable stalk-rot resis-
tance, little or no photosensitivity, and improved agro-
nomic traits (such as yield and yield-related compo-
nents). The H5 haplotype has been widely used for
MAS in the stalk-rot resistance breeding programs in
China and is expected to greatly alleviate the severity of
stalk rot (Lanubile et al. 2017). Other stalk-rot resistance
QTLs, such as qRfg3 (Ma et al. 2017), Rpi1 (Yang et al.
2005), and RpiQI319-1/2 (Song et al. 2015), have been
identified in maize that will also be useful for reducing
stalk rot diseases. If a resistance gene with pleiotropic
effects is selected for resistant breeding program, it is
necessary to simultaneously evaluate its resistance per-
formance and influence on other traits in multiple ge-
netic backgrounds.

Frequently, an inbred line bearing a single resistance
QTL is not enough to achieve high-resistance perfor-
mance. Hence, pyramiding of various resistance genes
is an effective way to reduce disease severity. The
introgression of Scmv1 and Scmv2 into the susceptible
line F7 via MAS produced a near-isogenic line (NIL)
with almost complete resistance to SCMV (Xing et al.
2006). Similarly, a maize NIL containing the qMdr9.02
locus with multiple disease resistance genes generated
via MAS showed resistance to two important foliar
diseases: SCLB and GLS (Yang et al. 2017b). MAS
combined with phenotypic selection is a highly effi-
cient, low-cost method that has greatly enhanced resis-
tance breeding programs in maize (Yousef and Juvik
2001; Asea et al. 2012). However, MAS relies on the
availability of markers linked to genes/dQTLs, which
usually take a long time to identify by linkage or asso-
ciation mapping, especially for small-effect resistance
QTLs. Because of this, several other strategies are cur-
rently used in disease resistance breeding programs.

Genomic selection

Genomic selection (GS) is conducted by combining
genotypic (markers) and phenotypic data in a training
population to estimate the breeding values of lines that
have been genotyped but not phenotyped in a testing
population (Meuwissen et al. 2001). GS has been suc-
cessfully used in both animal and plant breeding pro-
grams, as it substantially increases the rate of genetic
gain (Meuwissen et al. 2001). The prediction accuracy
of GS is influenced by many factors, including trait
heritability, prediction model, population size and
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structure (relationship between the training and testing
populations), number of markers, and genotype × envi-
ronment (GE) interactions. GS uses all markers to pre-
dict the breeding value of individuals in the testing
population, and thus has a greater predictive power
compared to approaches that use only markers with
significant effects (Massman et al. 2013). Combining
two different heterotic groups in a single training set can
lead to significantly more accurate prediction for both
heterotic groups, and more importantly, this approach
saves available resources by avoiding the need to estab-
lish a training set of sufficient size for each heterotic
group (Technow et al. 2013).

Although GS in maize is currently focused on grain
yield, drought tolerance, and kernel zinc and oil content,
it shows promise for use in disease-resistant corn breed-
ing programs, as the prediction accuracy for resistance
to NCLB reached ~ 0.7 (Technow et al. 2013; Beyene
et al. 2015; Vivek et al. 2017; Guo et al. 2020; Mageto
et al. 2020; Hao et al. 2019). For MLN resistance, GS
gave a promising result despite being highly influenced
by the number of markers, training population size, and
population relevancy (Sitonik et al. 2019; Nyaga et al.
2019). The average accuracy ranges from 0.46 to 0.86
for the MLN disease severity and 0.46 to 0.87 for the
MLN area under disease progress curve (Sitonik et al.
2019). GS also showed moderate-to-high accuracy in
predicting Fusarium ear rot resistance, in which the
maximum prediction accuracy was 0.46 for Fusarium
ear rot and 0.67 for fumonisin (Liu et al. 2020b; Kuki
et al. 2020; Holland et al. 2020). The prediction accura-
cy could be greatly elevated if using improved training
population. For instance, GS generally showed low-to-
moderate prediction accuracy of 0.29 to 0.56 for GLS
resistance, which could be elevated to 0.77 or even 0.84
when increasing the diversity of the training set (Kibe
et al. 2020). In any case, when trying to breed a resistant
hybrid to a specific disease, both parental lines should
be sufficiently resistant.

Transgenesis technique

Transgenic methods are useful for breeding disease-
resistant maize. These techniques involve the direct
introduction or modification of a target gene of interest
using biotechnology (Christou 2013). Almost all disease
resistance genes in maize function normally in the
resulting transgenic lines, indicating that these tech-
niques will be highly valuable for maize resistance

breeding programs. More importantly, transgenic tech-
niques can break the reproductive isolation between
plant species to allow the introduction of resistance
genes from other plant species. For instance, the expres-
sion of the durable wheat disease resistance gene Lr34 in
maize conferred resistance to common rust and NCLB
(Sucher et al. 2017). Maize containing the Rxo1 locus
showed a strong hypersensitive response to a non-host
bacterial pathogen (Zhao et al. 2004b; Zhao et al.
2004a). Pyramiding of different plant defense response
genes and anti-apoptosis genes via genetic transforma-
tion conferred resistance to sheath blight disease and
SCLB in maize (Zhu et al. 2018). In addition to resis-
tance genes from plants, genes from fungi and viruses
are also valuable in maize disease resistance breeding
programs.

Functional analysis of resistance genes cloned from
maize indicates that resistance performance is often
closely associated with the expression of resistance
gene. Thus, it is likely that disease-resistant maize could
be bred by overexpressing or knocking down a gene of
interest. However, the increased expression of some
pleiotropic resistance genes can have negative effects
on other traits. For example, in addition to conferring
stalk rot resistance, overexpressing ZmCCT delayed
flowering time in maize (Yang et al. 2013; Wang et al.
2017). The adverse effects of overexpression could be
avoided by expressing a resistance gene under the con-
trol of a pathogen-inducible promoter. Although no
such study has been reported in maize, this strategy
has been highly successful in rice (Helliwell et al.
2013; Liu et al. 2019).

RNA inte r fe rence (RNAi) induces pos t -
transcriptional gene silencing via the expression of
double-stranded RNA (dsRNA) or hairpin RNA
(hpRNA). RNAi is a highly efficient method for con-
trolling viral diseases. Expressing hpRNA derived from
the capsid protein genes of MDMV and SCMV signif-
icantly enhanced maize resistance to MDMV and
SCMV, respectively (Zhang et al. 2011; Gan et al.
2014). MLN, a viral disease caused by co-infection with
several viruses, is destructive to maize production in
Africa (Redinbaugh and Stewart 2018), suggesting that
RNAi may be useful for controlling MLN.

However, transgenic approaches are not as widely
used as MAS in breeding of disease-resistant maize.
This is likely due to the shortage of available resistance
genes and the restrictions imposed on the cultivation of
genetically modified maize in many countries.
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Therefore, innovative transgene-free techniques have
been developed that are more acceptable to disease-
resistant maize breeding programs.

Genome editing by CRISPR/CAS9

Significant progress has been made in the field of ge-
nome editing, from zinc finger nucleases (ZFNs) to
transcription activator-like effector nucleases
(TALENs) to clustered regularly interspaced short pal-
indromic repeats (CRISPR)–associated protein
(CRISPR/Cas) (Carroll 2014; Yin et al. 2017; Adli
2018; Gao 2021). Most genome editing technologies
involve the creation of double-strand breaks (DSBs) to
trigger DNA repair mechanisms (Carroll 2014; Adli
2018). DSBs are mainly repaired in one of the following
two ways: error-prone non-homologous end-joining
(NHEJ), which creates small insertions and/or deletions
(indels), and error-free homology-directed repair
(HDR), which results in the insertion or replacement
of homologous DNA (Carroll 2014). The NHEJ-
mediated introduction of indels can disrupt the target
gene’s function if they occur in the coding region or
alter the gene expression if they occur in the cis-regula-
tory region. The HDR pathway requires the use of donor
homologous DNA to introduce precise insertions or
substitutions (Adli 2018).

The CRISPR/Cas9 system has revolutionized the
genome editing due to its simplicity, flexibility, consis-
tency, and high efficiency and has thus become the most
powerful tool for genetic analysis and crop improve-
ment (Hua et al. 2019; Zhu et al. 2020; Gao 2021). In the
past few years, the CRISPR/Cas9 system has been suc-
cessfully used for plant disease control (Langner et al.
2018; Chen et al. 2019; Mao et al. 2019). Moreover,
once the genome has been edited, the transgenic cassette
can be eliminated by selfing or hybridization (Hua et al.
2019).

Replacement/knock-in with dominant or partially
dominant resistance genes

The major R-genes Hm1 and Rp1-D act in a dominant
manner (Johal and Briggs 1992; Collins et al. 1999). A
number of QDR genes also act in a dominant or partially
dominant manner, such as ZmWAK (Zuo et al. 2015),
Htn1 (Hurni et al. 2015), ZmCCoAOMT2 (Yang et al.
2017b), and ZmAuxRP1 (Ye et al. 2019). Such dominant

(or partially dominant) R or QDR genes could be used to
replace their weak or null counterparts by CRISPR/
Cas9. Alternatively, these genes could be inserted into
(or even stacked into) the maize genome by CRISPR/
Cas9-mediated knock-in. The introduction of natural
resistance genes in this manner would have many ad-
vantages, such as the lack of linkage drag, little or no
fitness penalty, and stronger resistance due to the pres-
ence of multiple copies (Luo et al. 2016).

Due to the low efficiency of HDR, there are few
successful examples of the replacement or knock-in of
genes in plants. One of them was the improvement of
drought tolerance of maize (Shi et al. 2017). Under
drought-stress conditions, plants overexpressing AR-
GOS8 showed reduced sensitivity to ethylene and in-
creased grain yield. However, the abundance of endog-
enous ARGOS8 transcript is relatively low in most
maize inbred lines (Shi et al. 2015). The same research
team used CRISPR/Cas9 technology to knock-in the
GOS2 promoter to replace the original ARGOS8 pro-
moter, leading to the production of plants with high
levels of chimeric ARGOS8 transcripts and enhanced
drought tolerance (Shi et al. 2017). Recently, a high-
frequency and selectable marker-free intra-genomic
gene targeting (GT) was reported in maize, in which a
heat shock–inducible Cas9 was used to simultaneously
generate double-strand breaks at the target locus and
release the donor template from pre-integrated T-
DNA, generating up to 4.7% targeted insertion in T0

plants (Barone et al. 2020). This gene targeting opens up
a new way to use the CRISPR-Cas9 system to repair
endogenous defective alleles, a technique with great
potential for improving disease resistance in maize.

Modifying the cis-regulatory elements of resistance
genes

Gene expression is regulated at both the transcriptional
and post-transcriptional levels. The former mainly de-
pends on regulatory elements in the promoter region,
while the latter includes pre-RNA splicing, mRNA
modification, mRNA transport, and mRNA degradation
(Pramanik et al. 2020). Cis-regulatory elements are
readily accessible targets for CRISPR/Cas9 (Swinnen
et al. 2016). The promoter of the citrus canker suscep-
tibility gene CsLOB1 contains the pathogen’s effector
binding element. When they were edited by CRISPR/
Cas9, the resultant plants showed enhanced resistance to
citrus canker (Peng et al. 2017). Similarity, mutations of
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the promoters of SWEET11, SWEET13, and SWEET14
in rice conferred robust, broad-spectrum resistance to
Xanthomonas oryzae pv. oryzae (Oliva et al. 2019; Xu
et al. 2019).

The pleotropic gene ZmCCT confers quantitative
resistance to Gibberella stalk rot and delays flowering
time under long-day conditions (Yang et al. 2013;Wang
et al. 2017). Thus, we reasoned that deleting the photo-
sensitive elements in the ZmCCT promoter region
would create an artificial allele with reduced photosen-
sitivity but the same level of stalk rot resistance. We
recently used CRISPR/Cas9 to systematically delete the
photosensitive elements in the ZmCCT promoter to
create ZmCCT variants with the aim to select an artificial
ZmCCT allele to meet the requirement (unpublished
data).

Inactivation of host susceptibility factors

Host susceptibility (S) factors can be exploited by path-
ogenic microbes to facilitate their proliferation. Dis-
abling these key links between plants and pathogens
might provide the host with broad-spectrum, durable
disease resistance (Langner et al. 2018; Zaidi et al.
2018). A classic example of the use of CRISPR/Cas9
to improve plant disease resistance involves the S gene
MLO, which is conserved throughout monocots and
dicots. Two teams successfully editedMLO in different
species (wheat and tomato) through CRISPR/Cas9, and
the edited mlo gene improved resistance to powdery
mildew in both species (Wang et al. 2014b; Nekrasov
et al. 2017) (Wang et al. 2014b; Nekrasov et al. 2017).
Similarly, OsERF922, encoding the negative regulator
of rice blast resistance (Liu et al. 2012), was successfully
knocked out by CRISPR/Cas9, thereby increasing resis-
tance to rice blast (Wang et al. 2016). In maize resis-
tance to BLSB, ZmFBL41 is a negative regulator, and
the transposon-insertion line zmfbl41 improved maize
resistance to BLSB (Li et al. 2019). This indicates that
direct knockout of Zmfbl41 via CRISPR/Cas9 technol-
ogy can also enhance the BLSB resistance.

Since its appearance, CRISPR/Cas9 technology has
been extensively exploited to meet various demands.
Among them, base editing is an ideal solution for nu-
cleotide conversion. By fusing a CRISPR-Cas9 variant
with cytidine deaminase (or adenosine deaminase), base
editing allows for the direct transition of C·G to T·A (or
A·T to G·C) at the target site without the need of DSBs
(Shimatani et al. 2017; Zong et al. 2017; Zong et al.

2018; Li et al. 2018; Chen et al. 2019; Lin et al. 2020;
Gao 2021). DSB-free base editing can be used to intro-
duce a stop codon at a specific position, thus avoiding
the side effects of DSBs (Billon et al. 2017). Given that
disease resistance resulting from the knockout of an S
gene is often accompanied by fitness costs, base editing
could greatly reduce changes to the target S protein,
thereby minimizing fitness costs (Zaidi et al. 2018).
For instance, ZmGDIα-hel is the recessive resistance
gene against RBSDV (Liu et al. 2020a). If the key
amino acids in ZmGDIα that bind to the viral P7-1
protein are identified, then base editing can be used to
modify ZmGDIα to disrupt the interaction between
ZmGDIα and P7-1, thereby generating stronger resis-
tance ZmGDIα alleles.

Combining genome editing and double-haploid
technology

The removal of the CRISPR/Cas9 cassette requires sev-
eral generations. Double-haploid (DH) technology is a
powerful tool to promote the breeding efficiency by
reducing the need for multiple generation selection
(Ren et al. 2017). Combining CRISPR/Cas9 with DH
technology represents an excellent way to accelerate
maize breeding. Using roughly similar methods, the
Haploid Induction Editing (HI-Edit) technique
(Kelliher et al. 2019) and Haploid-Inducer Mediated
Genome Editing (IMGE) system (Wang et al. 2019b),
two different teams obtained edited haploids without the
CRISPR/Cas9 cassette in a single step. Using the HI-
Edit technique, 4.8–8.8% of the resulting plants were
shown to lack the CRISPR/Cas9 cassette and contain
the edited inducer gene matl (Kelliher et al. 2019).
Similarly, using the IMGE system, the editing efficiency
of ZmLG1 in haploids was estimated to be ~ 4.1%, and
all zmlg1-haploids were Cas9-free (Wang et al. 2019b).

Perspectives

It is a daunting task to clone a QDR gene, especially a
small-effect QDR gene (Yang et al. 2012). Thus far, only
a few QDR genes have been cloned, and many more
QDR genes remain to be identified (Mackay et al. 2009;
Yang et al. 2017a). In the long run, however, it will be
crucial to clone all resistance genes and understand their
resistance mechanisms. This is because (1) only if resis-
tance genes and related markers are available, can we
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replace susceptibility genes with resistance genes with
less or no genetic drag; (2) the availability of a natural
resistance gene allows for the identification of other
downstream resistance-related genes in the same defense
pathway; (3) all resistance genes could be modified via
gene editing to create a series of artificial alleles for
breeding of potentially resistant varieties.

Since most maize QDR genes only contribute a small
genetic effect to help reduce disease severity (Holland
2007; Mackay et al. 2009), a lot of time and efforts are
required to complete gene discovery by traditional map-
based cloning strategy. In an attempt to accelerate gene
discovery process, various resources must be utilized,
such as diverse genetic stocks, various biological tech-
niques, big data analysis, and bioinformatics tools. Se-
quential fine mapping based on recombinant-derived
progeny is highly effective for narrowing down small-
effect QDR loci (Yang et al. 2012; Ye et al. 2019).
Online access to ever-increasing maize genome se-
quences is very helpful for identifying candidate resis-
tance genes (Schnable et al. 2009; Springer et al. 2018;
Sun et al. 2018; Yang et al. 2019a). Omic analysis, such
as transcriptomics and metabolomics, play key roles in
identifying candidate resistance genes and understand-
ing their mechanisms (Zhang et al. 2017a; Yang et al.
2019b; Ye et al. 2019; Yao et al. 2020). Various Mu-/
EMS-induced mutation libraries allow us to quickly
examine the resistance performance of the candidate
gene (Lu et al. 2018; Liang et al. 2019). Transgenic
techniques, coupled withmore powerful genome editing
tools, can be used to accurately identify function of a
candidate resistance gene (Christou 2013; Adli 2018).

Most sequence changes between resistant and sus-
ceptible alleles are related to transposable elements, i.e.,
the presence/absence variations resulted from transpo-
son insertions, such as ZmCCT (Wang et al. 2017) and
ZmGDIα (Liu et al. 2020a), or residual sequences
caused by frequent transposon insertion/deletion activi-
ties, such as ZmWAK (Zuo et al. 2015), ZmTrxh (Liu
et al. 2017), and ZmABP1 (Leng et al. 2017). Given that
transposable elements account for approximately 85%
of the whole maize genome (Schnable et al. 2009), it is
conceivable that one transposon or another will be acti-
vated by biotic stresses to create genetic variants for
natural selection. Only those alleles with enhanced dis-
ease resistance and no negative effect on agronomic
traits are prone to be selected and preserved in maize.

Genome editing opens up infinite possibilities to
edit a target gene based on a human’s blueprint. If a
resistance gene comes from the loss-of-function of a
susceptibility gene, i.e., the so-called recessive re-
sistance gene (usually found in viral resistance), the
simplest way is to disrupt or delete the susceptibility
gene by gene editing to create an artificial resistance
allele. Alternatively, key nucleotides related to dis-
ease susceptibility need to be identified and modi-
fied to generate resistance alleles while maintaining
the other functions. If a resistance gene is dominant/
semi-dominant over the susceptibility gene due to
the gene expression level, the cis-regulatory region
could be modified by inserting a strongly induced
promoter or increasing the copy number of resis-
tance gene to achieve stronger resistance. On the
other hand, if protein structure is essential for dis-
ease resistance, the key residues/peptides to perceive
pathogen effectors should be pinpointed in an at-
tempt to generate stronger resistance alleles. Fur-
thermore, all genes involved in the defense pathway
are the potential targets for gene editing to increase
resistance.

In short, only by discovering enough resistance genes
and understanding their molecular mechanisms, coupled
with advanced biotechnology, can we achieve the goal
of breeding super maize varieties with high disease
resistance and ideal agronomic traits.
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