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Abstract Clubroot is a destructive soil-borne pathogen
of Brassicaceae that causes significant recurrent reduc-
tions in yield of cruciferous crops. Although there is
some resistance in oilseed rape (a crop type of the
species Brassica napus), the genetic basis of that resis-
tance is poorly understood. In this study, we used an
associative transcriptomics approach to elucidate the
genetic basis of resistance to clubroot pathotype ECD
17/31/31 across a genetic diversity panel of 245 acces-
sions of B. napus. A single nucleotide polymorphism
(SNP) association analysis was performed with 256,397
SNPs distributed across the genome of B. napus and
combined with transcript abundance data of 53,889
coding DNA sequence (CDS) gene models. The SNP
association analysis identified two major loci (on chro-
mosomes A2 and A3) controlling resistance and seven
minor loci. Within these were a total of 86 SNPmarkers.
Altogether, 392 genes were found in these regions.
Another 21 genes were implicated as potentially in-
volved in resistance using gene expression marker

(GEM) analysis. After GO enrichment analysis and
InterPro functional analysis of the identified genes, 82
candidate genes were identified as having roles in club-
root resistance. These results provide useful information
for marker-assisted breeding which could lead to accel-
eration of pyramiding of multiple clubroot resistance
genes in new varieties.
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Introduction

Clubroot disease caused by the soil-borne obligate
biotrophic pathogen Plasmodiophora brassicae is one
of the most serious diseases of cruciferous crops, espe-
cially the allotetraploidBrassica napus (2n = 38, AACC)
and its diploid progenitor species Brassica rapa (2n =
20, AA) and Brassica oleracea (2n = 18, CC) (Dixon
2009; Fredua-Agyeman and Rahman 2016). Two-phase
infection by this parasite leads to formation of galls or
clubs on the roots and hypocotyls of diseased plants
(Hwang et al. 2012). Creation of these club-shaped roots
ultimately leads to the interruption of the uptake and flow
of water and minerals in roots. This results in wilting,
stunted growth, chlorosis and leaf abscission leading
even to the death of infected plants (Kageyama and
Asano 2009). The symptoms of clubroot disease result
in significant reduction of seed yield as well as decreas-
ing of oil content in seed of susceptible cruciferous plants
worldwide (Dixon 2009). The average loss of yield in
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areas with P. brassicae exceeds 20% but may lead to
total crop failure (Pageau et al. 2006). Indeed, the ever-
growing rapeseed production all over the world in the
past years also increase areas infested by P. brassicae.
Dissemination has been observed in Europe, China,
India, Canada and Australia (Diederichsen et al. 2014;
Chai et al. 2014; Bhattacharya et al. 2014; Rahman et al.
2014; Donald and Porter 2014).

Three main systems have been set to distinguish
between pathotypes of P. brassicae. The most common-
ly used is the Williams classification (Williams 1966).
This system is based on 4 different resistant varieties and
is able to distinguish 16 different pathotypes. Seven
different pathotypes have been revealed in the
Czech Republic. The most common pathotypes are 7
(43%) and 6 (29%) (Ricarova et al. 2016). Other sys-
tems distinguishing pathotypes are the European club-
root differential (ECD) set (Buczacki et al. 1975) and the
differential system of Some et al. (1996).

Traditional agricultural practices such as soil liming
or agrochemical treatments by fungicides are expensive
and not very effective to control this disease (Hwang
et al. 2014), which is further complicated due to the
broad range of hosts in which the pathogen is able to
reproduce and the ability of spores to survive more than
20 years (Wallenhammar 1996). The most effective and
economic strategy to eliminate clubroot disease is a
combination of conventional disease-management mea-
sures including crop rotation, liming, application of
fungicides and disinfection of equipment in combina-
tion with the use of varieties possessing multi-resistant
genes (Faggian and Strelkov 2009).

Intensive breeding of cultivars resistant to clubroot
has been ongoing for many years. The main sources of
clubroot resistance (CR) genes were found in European
fodder turnip cultivars (Brassica rapa), namely Gelria
R, Siloga, Debra and Milan White (Hirai 2006). These
sources of resistance were successfully introgressed into
Brassica napus, which has led to the release of several
resistant rapeseed cultivars (Piao et al. 2009).

The effort of scientists to find resistance genes is
increasing every year along with the growing areas
affected by P. brassicae. Recently, two CR genes in
B. rapa have been cloned: CRa has been mapped on
chromosome A3 (Ueno et al. 2012) and Crr1 on chro-
mosome A8 (Hatakeyama et al. 2013). Furthermore,
seven other loci have been finely mapped on the A3
chromosome of B. rapa, namely CRb, CRb-kato, CRd,
Crr3, Rcr1, Rcr2 and Rcr4 (Saito et al. 2006; Kato et al.

2013; Chu et al. 2014; Zhang et al. 2014; Huang et al.
2017; Yu et al. 2017; Pang et al. 2018). At least ten
another CR loci were discovered in the A genome; Crr2
was mapped on A1 (Suwabe et al. 2003); CRc and Rcr8
on A2 (Sakamoto et al. 2008; Yu et al. 2017); CRk,
PbBa3.1 and PbBa3.3 on A3 (Sakamoto et al. 2008;
Chen et al. 2013); CrrA5 on A5 (Nguyen et al. 2018);
Crr4 on A6 (Suwabe et al. 2006); and Rcr9 on A8 (Yu
et al. 2017).

In contrast with B. rapa, less progress has been
made towards the identification of CR genes in the
B. oleracea genome (C genome). Previous studies
have presumed that there are much less dominant
CR genes in C genome and CR is quantitative under
polygenic control there (Zhang et al. 2016). So far,
five loci have been described: CR2a, CR2b, Pb3, Pb4
and PbBo1 (Landry et al. 1992; Grandclément and
Thomas 1996; Voorrips et al. 1997; Rocherieux et al.
2004). Furthermore, at least 10 CR quantitative trait
loci (QTL) have been mapped in the C genome: QTL-
LG3 on C1 (Nomura et al. 2005), Pb-Anju1, Pb-
Anju2 and CRQTL-YC on C2 (Nagaoka et al. 2010;
Lee et al. 2016), Pb-Anju3 on C3 (Nagaoka et al.
2010), Pb-GC1 and QTL-LG9 on C5 (Nagaoka et al.
2010; Nomura et al. 2005) and Pb-Anju4 and Rcr7 on
C7 (Nagaoka et al. 2010; Dakouri et al. 2018).

Currently, more than 30 CR loci and two dominant
CR genes have been proposed in the AC genome of
B. napus. Manzanares-Dauleux et al. (2000) discovered
one dominant gene Pb-Bn1 on A4 and two QTLs on A4
and C5. So far, the most CR loci have been mapped by
Werner et al. (2008), in which 19 QTL (most race-
specific) were detected across 8 chromosomes.

The first GWAS-based study using Brassica 60 K
SNP arrays for screening a natural population of 472
B. napus accessions in an infected field to detect resis-
tance genes to most predominant pathotype 4 of
P. brassicae in China mapped 10 loci on A4, A10, C3,
C4, C6 and C9 chromosomes (Li et al. 2016).Compared
to 60 K SNP array, current associative transcriptomics
(AT) platform (Havlickova et al. 2018) offers much
better SNP coverage with the added benefit of using
transcript abundance data. AT that was first described by
Harper et al. (2012) has been previously used to identify
genes underlying control of seed glucosinolate content
(Lu et al. 2014), anion homeostasis (Koprivova et al.
2014), cell wall polysaccharides (Wood et al. 2017) and
leaf calcium and magnesium accumulation (Alcock
et al. 2017).
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In this study, 245 diverse B. napus genotypes were
inoculated under controlled conditions by the mixture of
most predominant P. brassicae pathotype ECD 17/31/
31 in the Czech Republic and scored for clubroot resis-
tance. These data were used for ATwith aim to elucidate
associated regions associated with a source of clubroot
resistance.

Materials and methods

Plant material

A panel of 245 accessions of Brassica napus used to test
clubroot resistance and subsequent association analysis
has been previously reported (Havlickova et al. 2018).
Based on previous relatedness characterization, acces-
sions were defined as winter oilseed rape (101), winter
fodder (4), spring oilseed rape (92), swede (17), kale (2),
semi-winter (5) and not assigned crop type (24). This
collection is composed of lines all over the world, in-
cluding varieties from Europe, Asia, North America,
Australia and North Africa, with lines released from
the 1950s up to today’s modern winter Canola type
oilseed rape (Supplemental Table 1).

Pathogen isolates

Inoculum used for testing of the resistance to club-
root was composed by the most aggressive
pathotypes P. brassicae within the Czech Republic.
Clubs for inoculum preparation were collected from
the hardest hit areas affected by clubroot near Svetla
Hora in the Moravian-Silesian Region (Ricarova
et al. 2016). According to the identification method
called the ECD (European Clubroot Differential set)
Buczacki et al. (1975), the pathogen was identified as
pathotypes 17/31/31.

Inoculum standing spores were obtained from a
solid club of infected plants. Before use, the tumours
were stored at −18 °C. The clubs were pureed in
distilled water for 3 min at the highest speed to
prepare an inoculum. The final suspension was fil-
tered through a muslin cloth and then centrifuged
three times for 7 min; the resultant clusters of spores
were resuspended in distilled water and adjusted with
Bürker chamber to the desired concentration of
100 M spores in 1 ml of inoculum.

Inoculation of spores and plant cultivation

Cultivation trays with a cell size of 4 × 4 cm were filled
with a mixture of coarse pearlite and conventional grow-
ing medium for vegetables (Forestina, Czech Republic)
with a pH 6.5 in the ratio 1:1. The seeds of tested
genotypes were sown in each pot on the surface of the
growth substrate. On every seed was applied by micro-
pipette 0.5 ml of inoculum at a concentration of
100 M spores ml−1 and covered with 1 cm of coarse
pearlite. As the standard, extremely susceptible variety of
Chinese cabbage ‘Granaat’ has been used. The prepared
plant pots were placed with five replications in a ran-
domized design on trays within constantly maintained
about 1 cm high water level. Plants were grown in a
growth chamber with a 16-h day (80 to 100μEm−2 s−1 at
20 °C) and an 8-h night (18 °C) photoperiod over a
period of 7 weeks. Indication of infection was observed
3 weeks after sowing. The plants were fertilized weekly
using a solution of Kristalon Start (AGRO CS a.s.,
Czech Republic) (0.5 g per 10 l of water).

Evaluation of infestation

Disease severity was assessed 7 weeks after inoculation
from roots using a standard 0–3 scale, where 0 = no
visual symptoms, 1 = clubs only on the lateral roots,
2 = main root clubs and 3 = deformed entire root system
(Buczacki et al. 1975) (Fig. 1a) The disease index (DI)
was determined as follows:

DI = [(n1 + 2n2 + 3n3)/(NT × 3)] × 100, where n1 to n3
were the number of plants with different disease severity
of 1–3 scale and NT represented the total number of
identified plants, respectively (Li et al. 2016). Very
sensitive genotypes showed DI above 80%, while high
resistant genotypes reveal DI less than 20%.

Transcriptome sequencing, SNP detection, gene
expression and associative transcriptomics

Plant material was a subset of the genetically diverse AT
panel of 383 rapeseed accessions described by
Havlickova et al. (2018). The growth conditions for
RNA extraction, transcriptome sequencing and func-
tional genotype determination were reported previously
by He et al. (2017). The genotypes reported in
Havlickova et al. (2018) were re-used for the present
study. Mapping and associative transcriptomics were
performed as described by Havlickova et al. (2018). In
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total, 256,397 SNPs (MAF > 0.01) and 53,889 CDS
models (RPKM > 0.4) were used for Manhattan plots.
Regions of the genome containing multiple markers
showing significant association with trait variation are
termed herein association peaks. In the Manhattan plots,
simple SNP markers (i.e. polymorphisms between re-
solved bases) and hemi-SNPs (i.e. polymorphisms in-
volving multiple bases called at the SNP position in one
allele of the polymorphism) that have been directly
linkage mapped and can be assigned to a genome with
confidence are shown as dark points. Hemi-SNP
markers that have not been linkage mapped are shown
as light points indicating that the polymorphism could
be at either the position of the CDS gene model plotted
or within the homeologous CDS genemodel in the other
genomes. Association peaks comprising only light

points are termed herein shadow peaks. Shadow peaks
are not expected to represent the positions of trait control
loci. To evaluate minor effect loci, we implemented two
thresholds for calling association peaks as described by
Li et al. (2016). The major peaks were designated as
significant associated loci, when they contained at least
one SNPwith significance − log10P < 10−5 (sSNP). The
minor loci were called as a potential associated loci, if a
minimum of one SNP in the peak has significance 10−5

< − log10P < 10−4 (pSNP) and a locus has a distinguish-
able shape of peak as well.

Candidate gene annotation

Pairwise linkage disequilibrium was calculated, and
heat maps were produced for each individual
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Fig. 1 a Disease severity was assessed after 7 weeks from inoc-
ulation by using a standard 0–3 scale (0 = no visual symptoms, 1 =
clubs only on the lateral roots, 2 =main root clubs, 3 = deformed

entire root system). b Histogram of disease index (DI) in 245
accessions including colour coded crop types
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chromosome as previously described by Havlickova
et al. (2018). Potential candidate genes were identified
within the range of LD block regarded as region with the
most significant SNPs (− log10P > 4) which r2 > 0.4 (Li
et al. 2016); when not present, a region of ± 0.2 Mb
(Samayoa et al. 2015) from the significant SNPs on the
pseudomolecule reference sequence was checked for
annotated genes putatively involved in plant response
to the club root. To uncover potential candidate genes,
GO enrichment analysis, InterPro functional analysis
and manual annotation based on the similarity of
A. thaliana were performed.

Results

Phenotypic variation of clubroot resistance in a diversity
panel

Resistance to clubroot was assessed in an association
panel of 245 Brassica napus accessions by using DI
(Figs. 1b and 2; Supplemental Table 1). The measured
values showed a high level of phenotypic variation
within the panel. The DIs ranged from 0 to 100 with
an average value of 45.51 ± 2.32 standard error (SE).
The frequency distributions diagrams of DIs indicated a

certain degree of separation between almost fully resis-
tant lines and sensitive ones. Moreover, 35.5% of lines
were classified as resistant (DI < 20), whereas 19.6%
demonstrated extreme susceptibility to the clubroot dis-
ease (DI > 80) with prevalent amount of lines with DI in
the range of 61–70 (24%). Unequal distributions of data
may indicate that the resistance is driven by major
resistance gene or genes accompanied by multi-loci of
weaker effect. To evaluate the effect of the crop type to
clubroot resistance, frequency distribution was assessed
(Fig. 1b). Both kale lines were found to be resistant
(DI = 0), followed by swede (DI = 3.9 ± 3.8), spring
OSR (DI = 23.5 ± 3.3), semiwinter OSR (DI = 43.9 ±
8.8), fodder with largest variation (DI = 56.7 ± 17.2),
not assigned crop types (DI = 66.2 ± 5.8) and winter
OSR (DI = 68.2 ± 2.4).

SNP association analysis

AT analysis of DI identified 9 SNP association peaks
with trait variation (Fig. 3). They were called according
to location on the B. napus pseudomolecule
(BnA01_0308 , BnA02_0265 , BnA02_0286 ,
BnA03_0186 , BnA03_0263 , BnA08_0009 ,
BnC02_0414, BnC07_0238, BnC07_0421).

0

100

a

b

c

d

Fig. 2 Population structure and trait variation across 245 B. napus
accessions. a Relatedness of accessions in the panel based on
355,536 scored SNPs. b Main crop types in the panel, colour-
coded: orange for spring oilseed rape, green for semi-winter oil-
seed rape, light blue for swede, dark blue for kale, black for fodder

and red for winter oilseed rape, grey for crop type not assigned. c
Population structure for highest likelihood K = 2. d Variation for
clubroot resistance by using disease index DI (DI = 0, no visual
symptoms; DI = 100, deformed entire root system)
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Five SNP association peaks included sSNPs as
shown in Supplemental Table 2. In total, 86 SNPs were
highly associated with clubroot resistance, 29 of them
were called as sSNP and the remaining 57 as pSNP. Five
SNPs were lying alone above − log10P < 10−4 threshold
line without any close sSNPs or pSNPs to create a
distinguishable peak, therefore excluded from further
investigation. The rest of the associated SNPs were
clustered in small loci and formed clear peaks. Graphic
representation of SNP association analysis inManhattan
plots for individual chromosomes is seen in Supplemen-
tal Figure 3. The most significantly associated peak
BnA03_0263 with predominant simple sSNPs (−
log10P > 7) that can be assigned with confidence to a
genome was discovered on chromosome A03 (Fig. 4).
This peak was accompanied by the presence of corre-
sponding shadow peak in homeologous region of chro-
mosome C07 (BnC07_0421) shown in Supplemental
Figure 3h. Furthermore, other associated peaks in very
small regions with simple sSNPs BnA02_0265 and
BnA03_0186 were found on chromosomes A02 and
A03 respectively (Supplemental Figure 3b, d). Both of
them were also accompanied by the presence of corre-
sponding shadow peaks with hemi-SNPs in
homeologous regions of chromosomes C02 and C07:
BnC02_0414 (Supplemental Figure 3f) and

BnC07_0238 (Supplemental Figure 3g) respectively.
The last three potential loci were found on A01:
BnA01_0308 (Supplemental Figure 3a), A02:
BnA02_0286 (Supplemental Figure 3c) and A08:
BnA08_0009 (Supplemental Figure 3e).

Candidate genes from SNP analysis were searched
in the total area of 392 genes (in LD blocks contain-
ing significant SNPs; Supplemental Figure 4 or at a
distance of 0.2 Mb from the pSNPs/sSNPs in locus).
In these regions, potential candidate genes directly/
indirectly involved in clubroot resistance are identi-
fied Supplemental Table 2. Using the results of en-
richment analysis, genes containing phrase “defence
response”, “ethylene”, “jasmonic acid”, “salicylic ac-
id”, “abscisic acid”, “auxin” and “gibberellin” were
considered as potential candidate genes. Based on the
InterPro analysis and annotation, the transcription
factors with plant defence domains ERF, bZIP,
WRKY, MYB, plant defence cis-regulatory ET/JA
motifs, G-box, GCC-box, W-box and pathogen-
related proteins were included to candidate gene
group (Singh et al. 2002). The estimated narrow-
sense heritability (h2) of DI 0.469 suggests that ge-
netic variability may play a substantial role in CR
resistance. In total, 63 candidate genes have been
identified from SNP analysis (Supplemental Table 2).

Fig. 3 Transcriptome SNP association analysis for clubroot resis-
tance. The SNP markers are positioned on the x-axis based in the
genomic order of the genemodels in which the polymorphismwas
scored, with the significance of the trait association, as –log10P, on
the y-axis. A1 to A10 and C1 to C9 are the chromosomes of
B. napus, shown in alternating black and blue colours to permit
boundaries to be distinguished. Hemi-SNP markers (i.e. polymor-
phisms involving multiple bases called at the SNP position in one

allele of the polymorphism) for which the genome of the poly-
morphism cannot be assigned are shown as light points, whereas
simple SNP markers (i.e. polymorphisms between resolved bases)
and hemi-SNPs that have been directly linkage mapped, both of
which can be assigned to a genome, are shown as dark points. The
broken blue and red horizontal lines mark significance − log10P =
5 and -log10P = 4, respectively
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GEMs analysis

Candidate genes were identified on the significance
limit of − log10P > 3.5. Graphic representation of the
gene expression analysis is shown in Supplemental
Figure 1. The gene expression analysis identified 21
genes which exceeded the defined limit of significance
(Supplemental Table 3). In the total, we identified 21
genes above this limit (Supplemental Table 3). These
genes were located on the chromosomes A05, A07,
A09, A10, C02, C03, C04, C05, C06, C07, C08 and
C09 (Supplemental Figure 1). GO enrichment analysis,
InterPro analysis and annotation were performed at the
same way as for SNP candidate genes. Overall, 12
potential candidate genes have been identified from
GEM analysis (Supplemental Table 3). These do not
correspond to the positions of the SNP associations.
This low number of candidates is a consequence of the
available transcript abundance data being derived from
leaf tissue, whereas the trait was measured in roots.

Discussion

Many studies have reported clubroot resistance loci in
B. napus and its diploid progenitors B. rapa and
B. oleracea, for example: Anju1, Anju2, Anju3, Anju4,
CRa, CrrA5, CRb, CRbkato, CRQTL-GN_1, CRQTL-
GN_2, CRc, CRd, Crr1, Crr2, Crr3_CRk, QTL_LG9,
MCR-A4, MCR-C3, MCR-C9, PbBA31, PbBA32, SCR-
A10a, SCR-A10b, SCR-C3, SCR-C4a, SCR-C4b, SCR-
C6, Rcr1, Rcr2, Rcr4, Rcr7, Rcr8 and Rcr9 (Chen et al.
2013; Chu et al. 2014; Dakouri et al. 2018; Hayashida
et al. 2008; Huang et al. 2017; Kato et al. 2013; Lee et al.
2016; Li et al. 2016; Nagaoka et al. 2010; Nguyen et al.
2018; Nomura et al. 2005; Pang et al. 2018; Saito et al.
2006; Sakamoto et al. 2008; Suwabe et al. 2003; Yu
et al. 2017; Zhang et al. 2014). In this study, we aimed to
use AT to identify further loci and candidate genes
playing key roles in clubroot resistance in oilseed rape.
The clubroot disease is difficult to control, once the soil
is infested with spores of P. brassicae, the soil
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 Cab002025.1: Disease resistance (TIR-NBS-LRR class) family
 Cab047587.1: Disease resistance (TIR-NBS-LRR class) family
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Fig. 4 SNP association analysis for clubroot resistance focus on
part of pseudomolecule with the highest associated locus (around
26million bases from the beginning of the A03 chromosome). The
SNP are positioned on the x-axis based on their location (units
105), the positions of the candidate genes for this locus are further
indicated on x-axis. On the y-axis are values of the trait association

significance (− log10P). The black signs represent simple SNP and
hemi-SNP markers assigned to the corresponding genome and
grey hemi-SNP markers for which the genome of the polymor-
phism cannot be assigned. The dashed blue and red lines mark
significance − log10P = 5 and − log10P = 4, respectively
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contamination could last for more than 20 years (Dixon
2009). In the last decade, this disease is spreading rap-
idly (Ricarova et al. 2017). In the light of seriousness,
numerous studies have been conducted to discover re-
sistance genes. However, most studies were carried out
on B. rapa. In B. napus, a source of the major resistance
gene has been found in Mendel variety, which shows
resistance against certain pathogens. Unfortunately, the
nature of resistance is based on only one resistance gene
and it was overcome by new pathotype or high pathogen
pressure (Diederichsen et al. 2014).

Recent GWAS analysis conducted in B. napus for
Chinese pathotype 4 identified nine new resistance
loci (Li et al. 2016). In this study, we performed
GWAS with a mix of European P. brassicae
pathotypes 17/31/31. We used a large diversity panel
of B. napus representing genotypes from around the
world. For association analysis, we combined SNP
markers and transcript abundance from mRNA-Seq
to detect new resistance loci and potential candidate
genes for resistance against clubroot disease.

In total, we identified 86 SNPs to be highly associat-
ed with clubroot resistance. Twenty-nine of them with
significance of P < 10−5 and 57 SNPs with significance
10−5 < P < 10−4. SNPs were located into nine small loci
(BnA01_0308 , BnA02_0265 , BnA02_0286 ,
BnA03_0186 , BnA03_0263 , BnA08_0009 ,
BnC02_0414, BnC07_0238, BnC07_0421). This sug-
gests that the clubroot resistance is probably quantita-
tively inherited trait controlled by multiple loci.

The most prominent association peak was located on
chromosomeA03, locus BnA03_0263 (Fig. 4), with few
hemi-SNPs (markers with ambiguous genome anchor-
ing) present in homeologous position on chromosome
C07, locus BnC07_0421 (Supplemental Figure 3h).
Among the genes containing most of the sSNPs on
chromosome A03, 7 candidate genes were found, of
which 6 belong to the Disease Resistance (TIR-NBS-
LRR class) family. In the corresponding region of
B. rapa genome or in close proximity, resistance genes
CRa, CRbkato, Rcr1, Rcr2 and Rcr4 have been identified
(Hayashida et al. 2008; Ueno et al. 2012; Kato et al.
2013; Chu et al. 2014; Huang et al. 2017; Yu et al.
2017). The GEM analysis revealed among 6 disease
resistance candidates, one with a high correlation with
the clubroot DI (BnaA03g45000D). This gene shows
the greatest similarity with the already cloned CRa
clubroot resistance gene in the B. rapa genome. How-
ever, in the study by Zhang et al. (2016) focusing

specifically on CRa ortholog in B. napus, localized in
high proximity of our locus BnA03_0263, the same
principle of resistance has not been demonstrated and
it has been suggested that resistance to P. brassicaemay
be controlled by the combined effect of a new CR gene
and CRa from B. rapa (Zhang et al. 2016).

Ano the r a s soc i a t ed l ocu s BnA03_0186
(Supplemental Figure 3d) has been detected on chromo-
some A03. We found 7 candidate genes directly con-
taining sSNPs lying in close proximity of a group of 4
leucine-rich repeat transmembrane kinase genes. The
ortholog of this gene in A. thaliana is localized to the
plasma membrane, and it is involved in the regulation of
plant innate immunity. Moreover, this gene has the
ability to recognize chitin (Le et al. 2014) and its tran-
scription is strongly declined under clubroot infection
(Siemens et al. 2006). Another candidate gene contain-
ing pSNPs is ERF domain 11; ethylene response factor
acts as a negative regulator of JA-responsive defence
gene expression, resistance to fungal pathogen Fusari-
um oxysporum and antagonist of JA inhibition of root
elongation (Lyons et al. 2013).

The second most prominent association peak was
located on chromosome A02, locus BnA02_0265
(Fig. 5). In this locus, we identified 9 candidate genes.
The most promising are Tryptophan RNA-binding at-
tenuator contains sSNPs. A. thaliana ortholog is in the
direct interaction with PEN3 required for non-host re-
sistance (Campe et al. 2016) and pectin lyase-like su-
perfamily also contains sSNPs. Its role is cell wall
modification (Etchells et al. 2012). This locus also in-
cluded RING U-box superfamily, which is disease re-
sistance protein (TIR-NBS class) with function of signal
transduction, apoptosis and innate immune response.
Other candidate genes can be seen below.

A second locus on A02 chromosome BnA02_0286
contains two candidate genes, A. thaliana orthologs
cytochrome P450, family 71, subfamily B, polypeptide
20 (potential genetic target of Whirly transcription fac-
tor) and defence response CAP-gly domain linker.

Loci BnA02_0265 and BnA02_0286 overlap a rela-
tively large locus designed as Rcr8 (Yu et al. 2017).

Another associated locus with pSNPs was found on
chromosomeA01.Within this locus, 11 candidate genes
are present and their position is not overlapping with
previously described region where Crr2 gene has been
identified in B. rapa (Suwabe et al. 2003). The direct
gene encompassing pSNP is an ortholog ATPase, AAA-
type, CDC48 and negative regulator of NLR-mediated
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immunity (Copeland et al. 2016). Next to this gene is
another interesting candidate gene ortholog of PAT-
TERN-TRIGGERED IMMUNITY (PTI) COMPRO-
MISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1
and PCRK1. This gene is important for immunity in-
duced by damage associated molecular pattern—
DAMPs (Sreekanta et al. 2015a, b). Interesting gene in
this locus is also phytosulphokine 5 precursor, which is
an important signalling in resistance in root infection of
Fusarium oxysporum (Shen and Diener 2013).

The other associated locus was found on chromo-
some A8. This does not correspond to resistance loci
identified previously on this chromosome, Rcr9 and
Crr1, being in different positions on the chromosome
(Yu et al. 2017; Suwabe et al. 2003). It contains 6
candidate genes, for example cluster of orthologs of
GDSL-motif l ipase 2 and GDSL-like Lipase
Acylhydrolase superfamily. They are involved in disease
resistance and negatively regulate auxin signalling (Lee
et al. 2009).GDSL-like lipase is also engaged in defence
against Alternaria brassicicola (Oh et al. 2005).

GEM association revealed 21 genes, exceeding the
limit of − log10p 3.5. These genes were distributed
across the whole genome, with slight predominance
towards C genome. Performing GO enrichment

analysis, InterPro analysis and using blastn for anno-
tation gene with orthologs of A. thaliana, we reduced
the number of candidate genes to nineteen. The most
promising candidates were orthologs of pentacyclic
triterpene synthase 1, which is important for of PEN1
and PEN2 functions in powdery mildew non-host
interaction. This synthase mediates transport required
for innate immunity and focal accumulation of
syntaxin PEN1 (Nielsen et al. 2012). Another candi-
date cytokinin response factor 2 plays important role
in response to stress condition and auxin regulation
(Simackova et al. 2015). S-adenosyl-L-methionine-
dependent methyltransferase superfamily is another
stress candidate gene especially important in drought
tolerance (Nir et al. 2014). It is important to recog-
nize that only genes with expression in the source
tissue for mRNAseq (i.e. leaves) correlated with the
CR trait can be identified as GEM associations; those
with root-specific or infection-specific expression
cannot be identified by AT with the expression data
available. However, AT analysis revealed candidate
genes directly or indirectly involved in clubroot re-
sistance, not only as results of the significant associ-
ation between DI and sequence variation present in
our diversity panel, but also as result of difference in
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 Cab009373.1: Cystatin monellin superfamily
 Cab009348.1: U2 snRNP auxilliary factor, large subunit, splicing factor
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Fig. 5 SNP association analysis for clubroot resistance focus on
part of pseudomolecule with the second most prominent associa-
tion peak (around 26 million bases from the beginning of the A02
chromosome). The SNP are positioned on the x-axis based on their
location (units 105), the positions of the candidate genes for this
locus are further indicated on x-axis. On the y-axis are values of the

trait association significance (− log10P). The black signs represent
simple SNP and hemi-SNP markers assigned to the corresponding
genome and grey hemi-SNP markers for which the genome of the
polymorphism cannot be assigned. The dashed blue and red lines
mark significance − log10P = 5 and − log10P = 4, respectively
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transcript abundance within the panel and therefore
provides added value in the association analysis.

Translation of our findings into improved clubroot
resistance of new B. napus varieties will involve the
development of molecular markers to select alleles as-
sociated with greater resistance. To aid this, we have
compiled (Supplemental Figure 5) shortlists of suitable
polymorphisms to underpin the development of high
throughput SNP markers. The use of molecular markers
to pre-select seedling for trialling will improve the speed
and efficiency of breeding for clubroot resistance.
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