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Abstract In sub-Saharan Africa, maize is the key deter-
minant of food security for smallholder farmers. The
sudden outbreak of maize lethal necrosis (MLN) disease
is seriously threatening the maize production in the re-
gion. Understanding the genetic basis of MLN resistance
is crucial. In this study, we used four biparental popula-
tions applied linkage mapping and joint linkage mapping
approaches to identify and validate the MLN resistance-
associated genomic regions. All populations were geno-
typed with low to high density markers and phenotyped
in multiple environments against MLN under artificial
inoculation. Phenotypic variation for MLN resistance

was significant and heritability was moderate to high in
all four populations for both early and late stages of
disease infection. Linkage mapping revealed three major
quantitative trait loci (QTL) on chromosomes 3, 6, and 9
that were consistently detected in at least two of the four
populations. Phenotypic variance explained by a single
QTL in each population ranged from 3.9% in population
1 to 43.8% in population 2. Joint linkage association
mapping across three populations with three biometric
models together revealed 16 and 10 main effect QTL for
MLN-early and MLN-late, respectively. The QTL iden-
tified on chromosomes 3, 5, 6, and 9 were consistent with
the QTL identified by linkage mapping. Ridge regression
best linear unbiased prediction with five-fold cross-vali-
dation revealed high accuracy for prediction across pop-
ulations for both MLN-early and MLN-late. Overall, the
study discovered and validated the presence of major
effect QTL on chromosomes 3, 6, and 9 which can be
potential candidates for marker-assisted breeding to im-
prove the MLN resistance.

Keywords MLN .MCMV. QTLmapping . Joint
linkage associationmapping .Maize . GBS

Introduction

Maize is sub-Saharan Africa’s (SSA) most important
staple food crop and is cultivated onmore than 35million
hectares predominantly under rain-fed conditions and
subject to the vagaries of weather (Shiferaw et al.
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2011). The maize lethal necrosis (MLN) disease emerged
as one of the major threats to the maize-based food
security in SSA since 2011 (http://mln.cimmyt.org/).
This devastating disease was first reported in September
2011 in the South Rift Valley of Kenya and by 2014,
MLN was extensively reported in Kenya, Uganda,
Tanzania, Rwanda, D.R. Congo, and Ethiopia (Wangai
et al. 2012; Adams et al. 2014; Lukanda et al. 2014;
Mahuku et al. 2015a, b). The MLN disease is caused
by co-infection by two viruses—Maize Chlorotic Mottle
Virus (MCMV) and Sugarcane Mosaic Virus (SCMV).
Field observations indicated that MLN has affected al-
most all the commercially grown maize varieties in Ken-
ya (De Groote et al. 2016), with yield losses ranging from
30 to 100% depending on the stage of disease infection
and the environment.

Multi-mode transmission of both MLN-causing vi-
ruses is a significant challenge for effective management
of the disease. SCMV is known to be transmitted by
aphids in a non-persistent mode (Louie 1980; Tao et al.
2013) whereas MCMV is known to be transmitted by
insect-vectors (including varied species of chrysomelid
beetles and thrips) as well as contaminated seed (Jensen
et al. 1991; Zhang et al. 2011). Application of chemical
pesticides is resource-intensive for smallholders in east-
ern Africa and is not environment-friendly over a long
term. Therefore, breeding for MLN resistance is a sus-
tainable management option. The severity of MLN is
widely influenced by favorable environments (Mahuku
et al. 2015b). Screening germplasm under artificial in-
oculation against MLN is reliable, but is labor-intensive.
Better understanding of the genetic basis of resistance to
MLN can pave the way to accelerate the development of
MLN-resistant germplasm.

Linkage mapping is commonly used to detect the
quantitative trait loci (QTL) in biparental populations
(Mackay et al. 2009). The QTL conferring resistance to
SCMVand other major virus diseases in maize has been
investigated in several studies particularly in temperate
germplasm (Wisser et al. 2006; Redinbaugh and Pratt
2009; Ding et al. 2012; Zambrano et al. 2014; Li et al.
2016). Genome-wide association study (GWAS) on
tropical maize germplasm showed that MLN is con-
trolled by few loci with major effects and many loci
with minor effects (Gowda et al. 2015). Joint linkage
association mapping (JLAM) with multiple biparental
populations offers an additional advantage over other
mapping approaches by combining the high power of
QTL detection from linkage analyses with the fine

resolution of association mapping (Yu et al. 2008; Liu
et al. 2011). However, the benefits of linkage mapping
and JLAM have not been explored yet to understand the
genetic architecture of MLN resistance.

In SSA, development and deployment of improved
maize germplasm with enhanced yield and yield stabil-
ity in disease-prone environments are the topmost pri-
ority (Cairns et al. 2013). Successful deployment of
climate-resilient improved maize germplasm depends
largely on improvement of relevant adaptive traits, in-
cluding resistance to MLN, maize streak virus (MSV),
Northern corn leaf blight (NCLB), gray leaf spot (GLS),
and ear rots. Identifying and validating genomic regions
conferring resistance to MLN and developing produc-
tion markers can significantly accelerate the efforts on
rapid development and deployment of elite, multiple
stress-tolerant maize germplasm in SSA.

Genomic selection (GS) is rapidly gaining impor-
tance in plant breeding to accelerate genetic gain
(Crossa et al. 2010, 2013, 2017; Vivek et al. 2017;
Zhao et al. 2012; Zhang et al. 2017). Predicting and
identifying the best resistant or best performing lines
before phenotyping from the selected biparental popu-
lations is one of the most important applications of GS
in maize breeding. Moderate to high accuracy has been
reported in biparental populations of maize (Zhao et al.
2012; Zhang et al. 2015, 2017). In this study, our aim
was to improve the understanding of the genetic archi-
tecture of MLN resistance in tropical maize germplasm,
including identification/validation of genomic regions
associated with MLN resistance. We applied linkage
mapping, JLAM, and GS on four different biparental
populations genotyped with low to high density markers
and phenotyped in multiple environments in Kenya,
under artificial inoculation with optimum combinations
of MLN-causing viruses. The specific objectives were
to (i) investigate the phenotypic variation for MLN
resistance; (ii) identify/validate the genomic regions
associated with MLN resistance by linkage mapping
and JLAM; and (iii) evaluate the potential of GS for
improving MLN resistance.

Materials and methods

Plant materials and field trials

Four biparental maize populations from the Global
Maize Program of International Maize and Wheat
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Improvement Center (CIMMYT) were evaluated in
MLN screening facility under artificial inoculation. Pop-
ulation 1 comprised of 229 F3 families from the cross,
CML543 × LaPostaSeqC7-F71-1-2-1-2-B-B-B-B, pop-
ulation 2 comprised of 200 F3 families from the cross,
CML543 × CML444, and population 3 comprised of
260 F3 families from the cross, CML444 × CML539. In
addition, population 4 comprised of 124 F3 families
obtained from the cross, Mo37 × CML144 were also
used in this study. All 689 F3 families from the first three
populations were crossed with a common single-cross
tester (CML312 × CML442) from the opposite heterotic
pool, whereas population 4 was used as per se for
phenotypic evaluation. The testcross progenies and F3
families of population 4 were evaluated in one row (3m)
plots with two replications in three seasons in two
locations during 2012 to 2014 in Kenya. The locations
were Narok (latitude 01° 05′ S, longitude 35° 52′ E,
1827 m above sea level (masl), clay loam texture) and
Naivasha (latitude 0° 43′ S, longitude 36° 26′ E,
2086 masl, clay sandy loam soil texture). All standard
agronomic management practices were followed. All
lines were evaluated in replicated trials with α-lattice
design.

Artificial inoculation of MLN viruses

Stock isolates of MCMV and SCMV, collected from
MLN hotspot areas in Kenya, were further confirmed
by enzyme-linked immunosorbent assay (ELISA). In an
MLN quarantine facility established in Naivasha, Ken-
ya, both viruses were propagated on a susceptible hy-
brid, H614, in isolated greenhouses. Infected leaf sam-
ples collected from the field were cut into small pieces
and ground in a mortar and pestle in extraction buffer
(10 mM potassium–phosphate, pH 7.0). The resulting
sap extract was centrifuged for 2 min at 12,000 rpm.
Carborundum was added to decanted sap extract at the
rate of 0.02 g/ml. The susceptible hybrid H614 at two
leaves stage was inoculated by rubbing sap extract onto
the leaves. These infected plants served as a source of
inoculum for large-scale field trials. Two separate,
sealed greenhouses were maintained for SCMV and
MCMV inoculum production. Three weeks before har-
vesting the plants for field inoculation, random samples
from the inoculated plants were tested with ELISA from
the SCMV and MCMV greenhouses to confirm the
inoculum purity.

Keeping the uniform disease pressure across field
trials is crucial to get high-quality data. After several
experiments, we optimized the optimum combination of
SCMV and MCMV to have maximum MLN infection
onmaize plants. The ratio of 4 parts of SCMVand 1 part
of MCMV (weight/weight) combination was more ideal
(Gowda et al. 2015; Mahuku et al. 2015b). We used this
optimized combination of SCMV and MCMV viruses
(ratio of 4:1) and inoculated twice at the fourth and fifth
week after planting. Plants were inoculated using a
motorized, backpack mist blower (Solo 423
MistBlower, 12 ltr capacity). An open nozzle (2-in.
diameter) was used to deliver inoculum spray at a pres-
sure of 10 kg/cm2. Presence of both viruses in the field
trials was confirmed by ELISA once disease symptoms
were apparent (approximately 2 weeks post inocula-
tion). MLN disease severity was visually scored on each
plot in an ordinal scale of 1 (highly resistant, with no
disease symptoms) to 5 (highly susceptible, leading to
necrosis and death). Data were recorded twice as Bearly
stage of infection^ (21 days 1st post inoculation; here-
after referred to as BMLN-early^) and Blate stage of
infection^ (42 days 1st post inoculation; hereafter re-
ferred to as BMLN-late^).

Phenotypic evaluation

The testcross progenies from the first three populations
(Pop1, Pop2, and Pop3) were evaluated in two seasons
in Naivasha and one season in Narok, in separate but
adjacent field trials connected with four common
checks, whereas the fourth population (Pop4) was eval-
uated separately at two seasons in Naivasha. For the
analyses, each season was treated as different locations.
Observed outliers were excluded from analysis. Since
MLN data were based on ordinal scales, it was evaluated
to know whether the data meets the assumptions of the
applied statistical model (independent, normally
distributed, and constant variance; Rawlings et al.
1998). For each population, residuals plot and histogram
across locations revealed that the MLN data meets all
the model assumptions, and consequently, data was not
transformed.

Analyses of variance for each of the location and
across locations for each population were carried out
using the PROCMIXED procedure with restricted max-
imum likelihood (REML) option in SAS 9.2 (SAS
Institute 2010). Variance components were determined
by following linear mixed model: Yijko = μ + gi + lj +
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rkj + bojk + eijko, where Yijko was the disease severity of
the ith genotype at the jth environment in the kth repli-
cation of the oth incomplete block, μ was an intercept
term, giwas the genetic effect of the ith genotype, lj was
the effect of the jth environment, rkjwas the effect of the
kth replication at the jth environment, bojk was the effect
of the oth incomplete block in the kth replication at the
jth environment, and eijko was the residual. Locations
and replications were treated as fixed effects, and geno-
type and incomplete blocks as random effects. For
JLAM, combined analyses of the first three populations
were carried out to calculate best linear unbiased pre-
dictions (BLUPs) and total variance components by
using MEATA-R software (http://hdl.handle.net/11529
/10201). Heritability (H2) on an entry-mean basis was
calculated as the ratio of genotypic to phenotypic
variance.

Molecular analyses

Six parental lines and their F3 progenies were genotyped
with preselected, polymorphic, low-density SNPs by
Monsanto Company, using a TaqMan assay
(http://www.appliedbiosystems.com website), under
the Water Efficient Maize for Africa (WEMA) project.
In addition, the first three populations were also geno-
typed with high-density markers by genotyping-by-
sequencing (GBS) at the Institute for Genomic Diversi-
ty, Cornell University, Ithaca, USA, as per the procedure
described in earlier studies (Elshire et al. 2011; Glaubitz
et al. 2014; Gowda et al. 2015). The detailed informa-
tion on low-density markers were described in previous
study (Semagn et al. 2013).

Linkage mapping

For the first three populations (Pop1, Pop2, and Pop3),
the GBS data was filtered with a minor allele frequency
(MAF) of 0.05 and a minimum count of 95% of the
sample size. Then, only marker loci homozygous for
both parents and polymorphic between the two parents
were retained in all populations. After quality screening,
set of uniformly distributed, polymorphic SNPs was
selected. For each marker locus, observed genotype
frequencies were checked for deviations from Mende-
lian segregation ratios and allele frequency of 0.5 using
a χ2 test. High-quality molecular data were used to
construct genetic linkage maps. For population 4, a
linkage map was constructed using low-density

markers. Individual linkage maps for each population
were constructed by using QTL IciMapping software
ver 4.0 (Meng et al. 2015; http://www.isbreeding.net).
Linkage analyses of SNPs were conducted using the
Kosambi (1944) mapping function with a minimum
logarithm of odds (LOD) of 3.0 and a maximum dis-
tance of 30 cM between two loci.

For each population, BLUPs across locations for
MLN-early and MLN-late disease scores were used to
detect QTL based on inclusive composite interval map-
ping (ICIM) implemented in the software QTL
IciMapping V.4 (Meng et al. 2015). With the ICIM
method, the walking step in QTL scanning of 1 cM
and a relaxed LOD threshold of 3.0 were chosen for
declaring putative QTL. The origin of the favorable
alleles for MLN resistance was identified based on sign
of the additive effects of each QTL.

Joint linkage association mapping

For JLAM, GBS-based SNPs from the first three popu-
lations were used. For quality screening, in each popu-
lation, SNPs which were either monomorphic between
the parents, or had missing value of > 5%, or had a
minor allele frequency of < 0.05 were discarded from
analysis. After these quality checks, 15,000 high-quality
GBS SNPs were retained for JLAM analyses across
populations. BLUPs calculated across populations and
environments were used in JLAM studies.

For the JLAM approaches, an additive genetic model
was chosen for the testcross progenies (Utz et al. 2000).
We used three multiple regression approaches for JLAM
and each of these models was explained in detail by Liu
et al. (2011) and Würschum et al. (2012). In brief, we
applied a two-step procedure for QTL detection. In a
first step, stepwisemultiple linear regression was used to
select a cofactors based on the Schwarz Bayesian Crite-
rion (SBC, Schwarz 1978). Cofactors were selected by
using Proc GLMSELECT implemented in the statistical
software SAS 9.2 (SAS Institute 2010). In the second
step, we calculated a P value for the F test by using a full
model (including SNP effect) versus a reduced model
(without SNP effect) (Reif et al. 2010). Genome-wide
scans for QTL were implemented in R version 3.2.5 (R
Development Core Team 2013).

The first model, model A, for QTL detection is as
follows: Trait =Cofactors +Marker, it includes both
cofactors and marker effects across populations (for
details, see Reif et al. 2010; Liu et al. 2011). In model
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B, a population effect is included as additional effect to
correct the population stratification: Trait =Pop +Co-
factors +Marker. In the third model (model C), both
cofactors and marker effects were modeled as nested
within populations: Trait = Pop + Cofactors (Pop) +
Marker (Pop). Bonferroni–Holm procedure (Holm
1979) was used to declare markers significantly
(P < 0.05) associated with MLN disease resistance.
The total proportion of phenotypic variance explained
by the detected QTL was calculated by fitting all signif-
icant SNPs simultaneously in a linear model to obtain
adjusted R2 (Utz et al. 2000). Principal components (PC)
were calculated using TASSEL ver 5.0 (Bradbury et al.
2007).

The physical positions of all the markers mapped in
all four populations are known. We developed integrat-
ed physical map by including all the markers from four
populations. All the QTL detected for MLN-early and
MLN-late in each populations and JLAM were mapped
on this integrated physical map. The 60-bp source se-
quences of the significant SNP were used to perform
BLAST searches against the ‘B73’ RefGen_v2
(http://blast.maizegdb.org/home.php?a=BLAST_UI).
Within the local LD block including associated SNPs,
the filtered genes in MaizeGDB (http://www.maizegdb.
org) containing directly or adjacent to each significant
SNP were considered as possible candidate genes for
MLN resistance.

Genome-wide prediction

For genome-wide prediction, 2000 common SNPs for
each of the three populations which had no missing
values and distributed uniformly across the genome
were selected. For GS, the ridge regression best linear
unbiased prediction (RR-BLUP; Whittaker et al. 2000)
methodwas used (Zhao et al. 2012). Prediction accuracy
of the GS approach was evaluated using five-fold cross-
validation with 100 times repetitions. The accuracy of
GS was calculated as rGS = rMP/h, where h refers to the
square root of heritability and rMP is the correlation
between observed and predicted phenotypes (Dekkers
2007). The prediction accuracies for MLN resistance
were compared based on random markers and combi-
nation of random markers with significant markers de-
tected through JLAM.

Further, to understand the effect of different training
populations on prediction accuracy, GS was applied to
predict within and across biparental populations. We

estimated the marker effect and predicted the genomic
breeding values in two different scenarios as follows:
scenario 1a: Estimation of marker effects was performed
across populations, and prediction accuracy was
assessed across populations; scenario 1b: Estimation of
marker effects was performed across populations, and
prediction set was drawn from within each population.
In scenario 2, estimation of marker effects and predic-
tion of genomic breeding values were performed within
each segregating population. For scenario 1a and b,
estimation of marker effects was based on the genotypic
variance of the total populations. In contrast, scenario 2
was based on the estimates of the average genotypic
variance and heritability within segregating populations.

Results

Among the six parental lines used in this study
CML543, CML539, and CML144 are moderately resis-
tant or tolerant with mean score of 2.1, 2.2, and 2.1 for
MLN-early and 2.3, 2.5, and 2.4, for MLN-late, respec-
tively. Whereas, CML444, LaPostaSeqC7-F7,1 and
Mo37 are susceptible to MLN with the mean score of
2.8, 3.1, and 3.3 for MLN-early, and 3.4, 3.6, and 4.1,
for MLN-late, respectively. We observed a wide varia-
tion for MLN disease severity at both early and late
stages of infection (Fig. S1). The analyses across envi-
ronments revealed significant (P < 0.01) variances for
genotypes, and environments, for both MLN-early and
MLN-late in all four populations (Table 1). Genotype ×
environment interaction variances were significant for
first two populations for both MLN-early and MLN-
late. Genotypic variances among populations (σ2

G-

Among = 0.021 and 0.042 for MLN-early and MLN-late,
respectively) were of the same magnitude as those of
within populations (σ2

G-Within = 0.020 and 0.023 for
MLN-early and MLN-late, respectively). The estimates
of broad-sense heritability were moderate to high rang-
ing from 0.34 to 0.83 for MLN-early and 0.44 to 0.89
for MLN-late scores. Consequently, phenotyping in
multiple locations under artificial inoculations resulted
in high-quality data representing an excellent resource
to study the genetic architecture of MLN disease
resistance.

Linkage maps were constructed for all four F3 popu-
lations. The number of progenies, SNPs, map length,
and average genetic distance between SNPs for each
population are presented in supplementary Table S1.
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The QTL mapping results revealed that the number of
QTL associated with MLN-early varied from 2 to 8,
with total phenotypic variance explained ranging from
38.8% in population 4 to 56.8% in population 2
(Table 2). In contrast, the number of QTL associated
with resistance to MLN at late stage (MLN-late) varied
from 3 to 6, with total phenotypic variance explained
ranging from 37 to 58.6%. One QTL each in population
1 and population 4, three QTL in population 2, and two
QTL on population 3 were consistently detected for both
MLN-early and MLN-late data. The proportion of phe-
notypic variance explained by single QTL in each pop-
ulation ranged from 3.9 to 37.8% for population 1, 4.2 to
43.8% for population 2, 4.8 to 14.1% for population 3,
and 9.6 to 16.6% for population 4 (Table 2). For MLN-
early, three major QTL located on chromosomes 3, 6,
and 9 were consistently detected in at least two popula-
tions. For MLN-late, one QTL each located on chromo-
somes 3 and 6 was consistently expressed in two popu-
lations (Table 2).

The first two principal components explained 24% of
the total variation (Fig. S2). The PCA revealed a popu-
lation structure of the four parents with three clusters.
JLAM analyses with three biometric models together
revealed 16 and 10 main effect QTL for MLN-early and
MLN-late, respectively (Table 3). With model A, six

QTL each were associated with MLN-early and MLN-
late and were identified, which together explained 38.27
and 16.44% of the total phenotypic variance, respective-
ly. With model B, by including population effect, nine
QTL were detected for MLN-early whereas only one
QTL was detected for MLN-late. Model C by consider-
ing the nested effect of SNPs in each population, three
and four different QTL were identified for MLN-early
and MLN-late, respectively. Across these models, one
QTL each was overlapped between models A and B and
models A and C for MLN-early, whereas only one
overlapped QTL was detected between models A and
B for MLN-late.

JLAM is expected to increase the resolution with-
in QTL intervals detected by individual population
linkage analyses. Therefore, in this study, we tried to
identify the QTL that fell within the confidence
interval of MLN resistance QTL identified through
the biparental approach. On chromosome 3, JLAM
identified five SNP markers associated with MLN
r e s i s t a n c e QTL , among t h em , on e SNP
(S3_119323182) fell within the confidence interval
of QTL identified in population 4 (113 to 129 Mbp)
(Tables 2 and 3) whereas the same SNP fell just
outside the confidence intervals of the major QTL
in other three populations. SNP marker detected on
chromosome 5 (S5_205155852) was located just
outside the confidence interval of QTL detected on
population 2. On chromosome 6, JLAM detected
eight MLN resistance QTL. One of them located in
bin 6.00 (S6_5441847) resided within the confi-
dence interval of QTL identified in the population
3 (S6_5159730-S6_6270908). Other SNPs fell just
outside the confidence interval of the QTL detected
on chromosome 6 (Tables 2 and 3). On the chromo-
some 9, JLAM discovered one QTL that resided in
bin 9.03 fell under the QTL detected on populations
3 and 4 (95.7 to 116.8 Mbp) (Tables 2 and 3). This
SNP marker (S9_94515942) can serve as an anchor
landmark to delimit the confidence interval for these
QTL. A set of putative candidate genes associated
with signi f icant SNPs/QTL was ident i f ied
(Table S2). All the QTL detected for individual
populations and JLAM were mapped on one inte-
grated map (Fig. S3).

We used five-fold cross-validation to assess the
accuracy of genomic predictions for resistance to
MLN-early and MLN-late traits by combining the
data from the first three populations and within each

Table 1 Analysis of variance components for MLN disease se-
verity evaluated across two to three environments with four dif-
ferent F3 mapping populations

Trait σ2G σ2GE σ2e h2

CML543 × LaPostaSeqC7-F71

MLN-early 0.05* 0.02* 0.17 0.58

MLN-late 0.06* 0.06* 0.23 0.52

CML543 × CML444

MLN-early 0.04* 0.01* 0.18 0.53

MLN-late 0.07* 0.02* 0.24 0.60

CML539 × CML444

MLN-early 0.02* 0.01 0.21 0.34

MLN-late 0.03* 0.02* 0.20 0.44

M037 × CML144

MLN-early 0.08* 0.001 0.09 0.83

MLN-late 0.21* 0.001 0.15 0.89

Across three pops

MLN-early 0.03* 0.002* 0.19 0.25

MLN-late 0.04* 0.03 0.15 0.35

*Significance at < 0.05 level of probability
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population (Fig. 2a, b). The cross-validated predic-
tion accuracy when both the training and estimation
sets were formed across populations was high with
0.65 and 0.77 for MLN-early and MLN-late, respec-
tively. For both MLN-early and MLN-late, the pre-
diction accuracy was slightly improved by 2% with

inclusion of the MLN resistance-associated markers
into the prediction model (Fig. 2a). When the train-
ing set was derived from across populations and the
prediction set was within population, the prediction
accuracy was high and varied from 0.58 to 0.72 for
MLN-early and 0.65 to 0.73 for MLN-late.

Table 3 Analysis of trait-associated markers, allele substitution (α) effects, and the total phenotypic variance (R2) of the joint linkage
association mapping in multiple segregating F3 populations based on three different biometrical models

MLN_early QTL namea chr Position
(Mbp)

Model A Model B Model C

α-
Effect

P value PVE
(%)

α-
Effect

P value PVE
(%)

α-
Effect

P value PVE
(%)

S1_35581569 qMLN_01-36 1 35.58 – – – 0.21 1.18E−13 7.50 – – –

S1_293055726 qMLN_01-293 1 293.06 0.12 1.85E−10 5.90 – – – – – –

S3_56468658 qMLN_03-56 3 56.46 0.21 1.08E−20 21.70 0.27 1.38E−38 21.70 – – –

S3_138773656 qMLN_03-139 3 138.77 − 0.15 5.64E−22 8.50 – – – − 0.17 5.64E−22 19.90

S4_5150195 qMLN_04-05 4 5.15 0.11 8.72E−09 2.50 – – – – – –

S6_21886770 qMLN_06-21 6 21.88 0.20 2.30E−18 10.10 – – – – – –

S6_39371783 qMLN_06-39 6 39.37 – – – – – – − 0.06 1.57E−07 3.50

S6_82022555 qMLN_06-82 6 82.02 – – – 0.12 7.88E−07 2.70 – – –

S6_99946471 qMLN_06-100 6 99.94 – – – − 0.08 2.00E−07 3.00 – – –

S6_120159068 qMLN_06-120 6 120.16 – – – 0.11 7.36E−07 2.70 – – –

S6_158478115 qMLN_06-158 6 158.48 – – – 0.10 1.48E−07 1.60 – – –

S7_3671560 qMLN_07-037 7 3.67 0.08 1.57E−07 3.20 – – – – – –

S8_147097693 qMLN_08-147 8 147.09 – – – 0.14 1.13E−10 4.70 – – –

S9_94515942 qMLN_09-95 9 94.51 – – – – – – 0.07 8.45E−07 2.70

S9_137154420 qMLN_09-137 9 137.15 – – – 0.08 8.45E−07 3.10 – – –

S10_145280961 qMLN_10-145 10 145.28 – – – 0.11 1.47E−11 6.00 – – –

Total PVE (%) 38.27 30.81 25.5

MLN-late

S1_7162859 qMLN_01-071 1 7.16 − 0.13 1.34E−06 2.80 – – – – – –

S2_30361545 qMLN_02-30 2 30.36 0.16 8.08E−09 2.90 0.16 6.14E−08 4.20 – – –

S3_119323182 qMLN_03-119 3 119.32 − 0.13 9.58E−08 3.60 – – – – – –

S3_133187288 qMLN_03-133 3 133.19 – – – – – – − 0.11 2.30E−18 15.00

S3_188926823 qMLN_03-189 3 188.93 0.11 1.29E−09 4.80 – – – – – –

S5_205155852 qMLN_05-205 5 205.16 – – – – – – 0.01 9.58E−08 3.60

S6_5441847 qMLN_06-05 6 5.44 – – – – – – − 0.02 1.29E−09 4.80

S6_38273901 qMLN_06-39 6 38.27 0.09 3.52E−07 4.30 – – – – – –

S7_19623847 qMLN_07-19 7 19.62 0.15 1.23E−10 5.60 – – – – – –

S7_123880597 qMLN_07-123 7 123.88 – – – – – – 0.09 3.52E−07 4.10

Total PVE (%) 16.44 4.19 7.91

MLN-early indicates MLN score 21 days after first post inoculation; MLN-late indicates MLN score 42 days after first post inoculation; R2

indicates proportion of phenotypic variance explained

Chr chromosome, MLM mixed linear model, MAF minor allele frequency
aQTL name composed by the trait code followed by the chromosome number in which the QTL was mapped and a physical position of the
QTL

Mol Breeding (2018) 38: 66 Page 9 of 16 66



Prediction accuracy of genomic breeding values
within each biparental population ranged from 0.71
to 0.76 for MLN-early and 0.68 to 0.82 for MLN-
late scores (Fig. 2b).

Discussion

MLN is a complex challenge that has to be effectively
addressed through several simultaneously implemented
strategies, including development and deployment of
MLN-resistant germplasm (Prasanna 2016). Over the
last 4 years, CIMMYT has screened more than
120,000 germplasm entries against MLN under artificial
inoculation at the centralized MLN screening facility
established in Naivasha, Kenya (http://mln.cimmyt.
org/). Although a substantial proportion of pre-
commercial and commercial maize germplasm in SSA
is susceptible to MLN, these intensive efforts enabled
identification of promising CIMMYTmaize germplasm
with tolerance/resistance toMLN, including the individ-
ual viruses (MCMVand SCMV).

Phenotype-based selection strategies are often
resource-intensive and time-consuming. Identifying
and validating MLN resistance-associated molecular
markers which are stable across diverse genetic back-
grounds could potentially enable pre-selection of geno-
mic regions in Africa-adapted sub-tropical maize germ-
plasm, thereby contributing to enhanced genetic gains.
In this study, we performed linkage mapping, JLAM,
and GS to understand the genetic architecture of MLN
resistance and validate earlier findings in sub-tropical
maize germplasm.

QTL analyses in each of the four populations identi-
fied three major QTL genomic regions on chromosome
3, between 113 and 131 Mbp (bin 3.04) and 145 and
160 Mbp (bin 3.05). Major QTL detected on chromo-
some 6 are also mapped in three genomic regions,
between 2 and 6 Mbp, 15 and 21 Mbp, and 85 and
96 Mbp (bin 6.00/01). On chromosome 9, we found
major consistent QTL on bin 9.03, between 95 and
116 Mbp. Interestingly, the major QTL on chromosome
3 consistently expressed at both early and late stages of
MLN infection; however, most of the QTL on chromo-
some 6 showed stage-specific expression. Genomic re-
gions particularly on bin 3.04 and bin 6.00/01 in chro-
mosomes 3 and 6, respectively, are known as the regions
rich in resistant genes to multiple maize viruses, includ-
ing SCMV, Maize dwarf mosaic virus (MDMV), and

Johnson grass mosaic virus (JGMV; Xia et al. 1999;
Jones et al. 2007; Ingvardsen et al. 2010; Ding et al.
2012; Stewart et al. 2013; Tao et al. 2013; Zambrano
et al. 2014), Wheat streak mosaic virus (WSMV; Jones
et al. 2011),Maize mosaic virus (MMV; Zambrano et al.
2014), and maize chlorotic dwarf virus (MCDV; Jones
et al. 2004; Zambrano et al. 2014). The results of the
current study also indicate the importance of the same
regions having QTL with major effects. Nevertheless,
whether the same region/s are contributing for resistance
to both SCMV and MCMV or SCMV alone warrants
further study.

The major effect QTL on chromosomes 3, 6, and 9
are interesting targets for either marker-assisted
backcrossing (MABC) or marker-assisted recurrent se-
lection (MARS) to introgress into different genetic
backgrounds particularly on highly susceptible, widely
using elite lines. These QTL can also be potentially used
in maize breeding with the aim to enrich target alleles in
F2 populations prior to producing DH lines from such
populations. In this study, we also found a few new
major QTL on chromosomes 1, 5, and 8; however, these
QTL were expressed in specific populations and at
specific stages of MLN infection.

In population 1, major QTL identified on chromo-
some 3 with a LOD score of 27.48 and explaining 37%
of the phenotypic variation revealed that CML 543 is the
source of favorable alleles. The segregation alleles from
two tightly linked markers for this major QTL reveal
that F3 plants with low disease severity score were
strongly associated with alleles from CML543, the re-
sistant parent (Fig. 1) for both MLN-early and MLN-
late. Similar association was also found for other major
QTL observed on population 2, with strong association
between alleles from two closely linked markers with
low disease severity data (Fig. 1). This suggests CML
543 can be used as a potential donor to introgress the
major QTL identified on chromosome 3. In contrast, the
distribution of MLN-late disease severity in population
3 withmarkers linked to QTL on chromosome 6 showed
some differences in the action of genes for controlling
MLN tolerance. The population 3 phenotypes for MLN-
late were skewed toward the susceptible parent. F3
plants having homozygous dominant alleles from one
marker locus and homozygous recessive allele from
other marker loci showed strong association with low
disease severity score. This warrants further study to
clarify on whether the identified QTL on chromosome
6 carries one gene or more than one gene before
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concluding on the type of gene/s involved in MLN
resistance (Fig. 1).

JLAM was implemented with the aim to take the
advantages of both the high detection power of linkage

Fig. 1 Major QTL for MLN resistance in three F3 populations. A
likelihood of odds (LOD) scan showing the QTL identified on
chromosomes 3 and 6 in three F3 populations. Box-whisker plots
display the level of disease resistance or severity for different allele

combinations at resistance gene loci explaining > 10% of the
phenotypic variation for MLN-early and MLN-late as determined
by two strongly associated SNP markers

Mol Breeding (2018) 38: 66 Page 11 of 16 66



mapping and improved resolution of association map-
ping to robustly identify the MLN resistance QTL. We
applied three biometric models to increase the possibil-
ity to capture maximum number of QTL associated with
MLN resistance. In this study, with three biometric
models, we found 16 and 10 main effect QTL signifi-
cantly associated with resistance to MLN at early and
late stages of disease infection, respectively. The QTL
identified on chromosomes 3, 5, 6, and 9 were consis-
tent with the QTL found by single-population-based
linkage analyses. Further, JLAM also drastically in-
creased the resolution within the confidence intervals
in some of MLN resistance QTL on chromosomes 3, 5,
6, and 9 (Tables 2 and 3).Moreover, we also found a few
new QTL associated with MLN resistance that were not
detected by linkage mapping but found only with
JLAM. This could be attributed to the higher power
and resolution offered by combined linkage and associ-
ation mapping by exploiting both the variations across
and within populations.

The results obtained in this study revealed some
common genetic loci with previous large GWAS on
MLN resistance (Gowda et al. 2015) and SCMV resis-
tance (Zambrano et al. 2014; Li et al. 2016). QTL on
chromosome 3 at 113, 133, and 189 Mbp were identi-
fied in both the association panel and in population 4
and JLAM panel. Similarly, QTL reported on chromo-
somes 5 (199 Mbp) and 6 (85 Mbp) in the association
panel were also found in population 2 and population 3.
Taken together, these results indicate that there is com-
mon genomic regions particularly across populations on
chromosomes 3, 6, and 9 which contributing significant-
ly on resistance to MLN.

The ability to predict and select best disease-resistant
lines without phenotyping in biparental populations
based on genomic-estimated breeding values is an im-
portant application of GS in maize breeding (Zhang
et al. 2017). The primary method for doing this is
through GS models (Meuwissen et al. 2001; Lorenz
et al. 2011), a strategy that is well established in large
commercial seed companies but still in its infancy
among public sector breeding programs. The potential
and limits of GS-based predictions have been examined
in maize for several traits (Albrecht et al. 2011;
Riedelsheimer et al. 2012; Zhao et al. 2012; Bernardo
2014; Crossa et al. 2017). Although MLN resistance is
relatively complex (because of combination of two vi-
ruses), we observed high prediction accuracy of > 0.65
across three populations, which is comparable with the

previously reported prediction accuracy for MLN
(Gowda et al. 2015) and NCLB (Technow et al. 2013)
(Fig. 2a). We observed small improvements in predic-
tion accuracy by including MLN resistance-associated
markers suggesting the possibility of considerable con-
tribution from several minor effect QTL which were not
detected by linkage mapping studies.

Success of GS in maize breeding depends on the type
of training populations used and their genetic relation-
ships with the prediction set. In this study, we tested
predictions within and across biparental populations.
The results clearly suggested that forMLN, the accuracy
is not affected significantly when training populations
are based on either a single biparental population or
multiple populations or even when a selected panel of
breeding lines (Gowda et al. 2015) is used. QTL map-
ping and JLAM results suggest that the genetic archi-
tecture ofMLN is perhaps much less complex compared
to traits like grain yield. Therefore, for comprehensive
improvement of MLN resistance in breeding materials,
we suggest to incorporate GS in breeding programs, as
GS allows to capture contributions of even small effect
QTL along with the major effect QTL. The prediction
accuracy for MLNwas slightly higher when the training
set was derived from the same population than from a
combination of many populations. This might be attrib-
uted to varying levels of relatedness and confounding
population structure. Nevertheless, the prediction accu-
racy is still promising and encouraging to apply GS as
one option to select the best MLN-resistant lines by
reducing the phenotyping efforts.

High-throughput and cost-effective genotyping plat-
forms are required to implement GS routinely in the
breeding programs. Recent advances in sequencing
technologies like GBS provide the capacity to genotype
substantial number of breeding lines at low costs
(Elshire et al. 2011). The cost per sample for GBS is
comparable with the low-density SNPs obtained from
the single-plex arrays. In this study, for across popula-
tions, phenotypic selection accuracy which is estimated
as h (square root of heritability) was moderate for early
and late stages of MLN infection. Whereas for GS,
selection accuracy was slightly higher for MLN-early
and MLN-late. By considering the possibility to com-
plete up to three maize cycles per year (Lorenzana and
Bernardo 2009), GS is more efficient in terms of genetic
gain per year. With rapid reduction in genotyping cost, it
is possible to effectively apply GS for MLN resistance
routinely in maize breeding programs in SSA.
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Conclusion

In this study, we used four biparental populations to
understand the genetic architecture of MLN resistance
and validate the earlier findings in CIMMYT-derived
sub-tropical maize germplasm. Two major QTL were
identified on chromosomes 3 and 6 across different
genetic backgrounds; these could be potential

candidates for genomic-assisted breeding. JLAM scan
also identified 26 main effect QTL significantly associ-
ated with resistance to MLN. The genomic regions
identified on chromosomes 1, 3, 6, and 9 are consistent-
ly detected in both linkage mapping and JLAM. Further
validation could lead to development of production
markers for MLN resistance. Introgressing these major
QTL on chromosomes 3, 6, and 9 into elite inbred lines

Fig. 2 Genome-wide prediction
accuracies based on random
markers (a) (R) and random +
MLN resistance associated
significant markers (R +MLN),
and prediction accuracy based on
three different scenarios (b).
Scenario 1a—estimation and
prediction across families;
scenario 1b—estimation across
and prediction within families;
and scenario 2—both estimation
and prediction within biparental
segregating families, with
five-fold cross-validation for
MLN disease severity at early and
late stages of infection
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could improve the level of resistance to MLN. GS
results revealed higher genetic gain per year for
marker-based selection. These results suggest that inte-
gration of GS inmaize breeding evenwith small training
population sizes is an attractive complement to pheno-
typic selection to improve resistance to MLN. Overall,
the study confirmed that MLN resistance is controlled
by a few major genes and several minor genes.
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