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Abstract Two independent pepper (Capsicum ann-

uum) genomes were published recently, opening a new

era of molecular genetics research on pepper. How-

ever, pepper molecular marker technologies are still

mainly focusing on the simple sequence repeats

derived from public database or genomic library.

The development and application of the third gener-

ation marker system such as single nucleotide poly-

morphisms, structure variations as well as insertion/

deletion polymorphisms (InDels) is still in its infancy.

In the present study, we developed InDel markers for

pepper genetic mapping with the convenience of two

whole-genome re-sequenced inbred lines BA3 (C.

annuum) and B702 (C. annuum). A total of 154,519

and 149,755 InDel (1–5 bp) sites were identified for

BA3 and B702, respectively, by the alignment of re-

sequencing reads to Zunla-1 reference genome. Then,

14,498 InDel sites (only 4 and 5 bp) that are different

between BA3 and B702 were predicted. Finally,

within a random set of 1,000 primer pairs, 251 InDel

markers were validated and mapped onto a linkage

map using F2 population derived from the intraspecific

cross BA3 9 B702. The first InDel-based map, named

as BB-InDel map, consisted of 12 linkage groups,

covered a genetic distance of 1,178.01 cM and the

average distance between bin markers was 5.01 cM.

Compared to the Zunla-1 reference physical map, high
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consistency was observed on all 12 chromosomes, and

the total length of scaffold anchored and physical

distance covered by this map was 299.66 and

2,558.68 Mb, respectively, which accounted for 8.95

and 76.38 % of the Zunla-1 reference genome

(3.35 Gb), respectively. Furthermore, 37 scaffolds

(total length of 36.21 Mb) from the pseudo-chromo-

some (P0) of the current genome assembly were newly

assigned to the corresponding chromosomes by 40

InDel markers. Thus, this map provided good genome

coverage and would be useful for basic and applied

research in pepper.

Keywords Capsicum annuum � InDel � Genetic

map � Pepper genome

Introduction

The genus of Capsicum, which is native to South and

Central America (Walsh and Hoot 2001), belongs to

the Solanaceae family and includes over 30 species

(Moscone et al. 2007). Of these, five are domesticated

ones, namely C. annuum, C. chinense Jacq., C.

baccatum, C. pubescens Ruiz & Pavon and C. frutes-

cens (Pickersgill 1997). Due to their characteristic

pungency, flavor and nutrient elements, Capsicum is

cultivated all over the world and becomes one of the

most economically important vegetable crops with

versatile application for food, spice, ornament, med-

icine, etc. (Qin et al. 2014). Of the five domesticated

species, C. annuum is the main cultivated species in

China, which is the largest producer and consumer of

pepper (www.fao.org). C. annuum germplasms have

enormous morphological diversity for traits with dif-

ferent fruit size, shape and color (Oyama et al. 2006).

Nevertheless, morphological identification can often

be problematic when the number of useful traits is

limited, which restricts the efficient assessment and

utilization of Capsicum genetic resources.

Instead, compared to the traditional recognition

systems, the DNA marker technology provides a

highly reliable tool for rapid and accurate identifica-

tion of plant species (Jones et al. 2009), which opens a

window for us to concern directly on the variations at

genomic level, and is now routinely used for study on

biodiversity, gene tagging, genetic mapping and

marker-assisted selection in various animal and plant

systems (Davey et al. 2011; Peleman and van der

Voort 2003; Vignal et al. 2002; Sachidanandam et al.

2001). In the last decades, the DNA marker technol-

ogy of Capsicum also experienced the same develop-

mental process of three generations as the other model

organisms. Briefly, based on the tomato- and pepper-

derived probes, restriction fragment length polymor-

phism markers (RFLPs) were firstly applied to genetic

mapping (Tanksley et al. 1988; Prince et al. 1993) and

diversity analysis (Prince et al. 1992; Lefebvre et al.

1993) in Capsicum. It was then replaced by PCR-

based marker such as amplified fragment length

polymorphism (AFLPs) (Paran et al. 1998), random

amplified polymorphic DNA (RAPDs) (Rodriguez

et al. 1999), simple sequence repeats (SSRs) (Huang

et al. 2001; Yi et al. 2006; Lee et al. 2004) and their

derived types (Min et al. 2008; Ince et al. 2010; Wu

et al. 2009; Du et al. 2006). In recent years, single

nucleotide polymorphism markers (SNPs), being

known as one of the third generation marker systems,

were also started to be used in pepper by different

groups (Jung et al. 2010; Jeong et al. 2010; Qin et al.

2014; Kim et al. 2014; Hill et al. 2013).

As one of the most important downstream applica-

tion of DNA marker, genetic map is also a basic tool

necessarily for QTL analysis and marker-assisted

selection (MAS) in breeding. In Capsicum, genetic

maps (Qin et al. 2014; Park et al. 2014; Kim et al.

2014; Sugita et al. 2013; Mimura et al. 2012; Lu et al.

2012b; Wu et al. 2009; Barchi et al. 2007; Yi et al.

2006; Minamiyama et al. 2006; Sugita et al. 2005;

Paran et al. 2004; Kang et al. 2001; Livingstone et al.

1999; Tanksley et al. 1988) based on intraspecific or

interspecific populations were constructed using var-

ious marker systems mentioned above. Even though

the SNP brought the density of pepper map to an

unprecedented height (Qin et al. 2014; Kim et al.

2014), the total number of PCR-based anchored

marker is still limited (Sugita et al. 2013).

Insertion/deletion (InDel) polymorphisms, which

were based on sequence alignment, were relatively
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abundant and uniformly distributed throughout the

genome (Mills et al. 2006; Pacurar et al. 2012; Liu

et al. 2013). For a species with a reference genome,

whole-genome re-sequencing (WDR) can permit the

mining of genome data for a large number of genome-

wide markers such as SNPs, structure variation (SVs)

as well as InDels (Xie et al. 2010; McNally et al. 2009;

Qin et al. 2014). With the decreasing cost of next

generation sequencing (NGS), the InDels, as a kind of

conventional marker to breeder, have been one of the

most frequently used markers nowadays (Lv et al.

2013; Liu et al. 2012, 2013; Vasemagi et al. 2010;

Ollitrault et al. 2012). So it would be an excellent

complement of anchor marker for pepper since the

genome sequence was published by two independent

groups (Qin et al. 2014; Kim et al. 2014). Neverthe-

less, to our knowledge, with the exception of a very

limited set being identified in silico by comparative

transcriptomics (Lu et al. 2011, 2012a), InDel markers

have barely been applied to molecular genetics of

Capsicum practically, such as genetic mapping up to

now.

Here, we present the mining of InDels between two

C. annuum lines BA3 and B702, both of which were

already re-sequenced in depth of 28.59- and 30.30-

fold, respectively. An InDel-based linkage map of

pepper was then constructed using the intraspecific F2

population derived from the cross BA3 9 B072. The

genetic map was then compared with its physical map

by anchoring onto the Zunla-1 reference genome. The

first InDel map of pepper would be useful for basic and

applied research in commercially important cultivated

C. annuum.

Materials and methods

Plant materials and DNA extraction

The F2 genetic mapping population consisting of over

300 progenies was derived from the intraspecific cross

between two pure lines of C. annuum (BA3 9 B702)

(Qin et al. 2014). In the present study, a random subset

of 178 individuals was selected for mapping with

InDels. The F2 progenies and parental lines were

grown in the open field in Zengcheng, Guangzhou

City, China. Young leaves were collected for genomic

DNA isolation using the CTAB method (Murray and

Thompson 1980).

InDel development and frequency calculation

InDel sites were identified by aligning BA3 and B702

re-sequencing reads to the initial Zunla-1 scaffold

genome with SOAPindel (http://soap.genomics.org.

cn/), according to the previous study (Qin et al. 2014).

To increase the selection efficiency of polymorphic

primers, a subset of InDels (only 4 and 5 bp) between

BA3 and B702 was predicted by a customized bioin-

formatic analysis pipeline. Primer3 software (Unterg-

asser et al. 2012) was then used to search primers for

each InDel site according to the following parameters

settings: (1) predicted product size is between 100 and

300 bp, (2) 50 and 30 end mismatch \3 and \1,

respectively, and (3) only primers with one hit in the

genome assembly were retained. With the accom-

plishment of chromosome building of reference gen-

ome, the retained primers were then anchored onto the

final twelve chromosomes (P1–P12) and one pseudo-

chromosome (P0) by BLAST (Altschul et al. 1997).

InDel frequency was calculated by the formula:

(number of heterozygote 9 1 ? number of homozy-

gote 9 2)/2N, N = total number of accessions.

PCR amplification and marker scoring

Polymorphic markers that were unique to either of the

parental lines and present in the F1 population were used

for genetic mapping. PCR mixture contained 10 ng

genomic DNA, 100 lM of each dNTP, 1.5 lM of each

primer, 19 reaction buffer (including Mg2?) and 0.5

unit of Taq polymerase (Dsbio) in a final volume of

20 lL. The reaction was performed as follows: an initial

5 min at 94 �C; 35 cycles of 45 s at 94 �C, 45 s at

55–58 �C, and 2 min at 72 �C, and a final 10 min at

72 �C. Subsequently, 2–4 lL of the PCR product was

used for electrophoresis in 6 % polyacrylamide gel.

Linkage map construction and comparison

with physical map

Linkage analysis was performed using JoinMap 4.0

software (Van Ooijen 2006). Since the physical map-

ping information on the polymorphic markers was

available, groups were firstly created with the command

‘‘Create Groups Using a Map Node,’’ the remaining

unmapped (actually anchored onto the P0) markers

were assigned to the known groups with the Strongest

Cross Link information. Regression algorithm was used
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for mapping on each group. Recombination values were

converted to genetic distances using the Kosambi

mapping function. The genetic map and physical map

were drawn using Mapchart 2.2 software (Voorrips

2002). Markers with segregation ratios that differed

from expected ratio were classified as segregation

distortion markers. A region with five or more adjacent

skewed segregation marker was defined as a segrega-

tion distortion region (SDR).

Results and discussion

Development of the InDel markers

Re-sequencing could help us to discover genome-wide

variations on a large scale and provide excellent

resources to the plant science community (Albert and

Chang 2014). With the ongoing of pepper genome

project, we re-sequenced a total of more than 20

different cultivated varieties including the parental

lines BA3 and B702 used in the present study (Qin

et al. 2014). Based on the alignment of the sequencing

reads corresponding to 28.59- (for BA3) and 30.30 (for

B702)-fold depth to the reference, 154,519 and

149,755 small InDels (1–5 bp) were identified in

BA3 and B702, respectively. Through comparative

analysis by a customized bioinformatic analysis

pipeline, 14,498 InDels (only 4 and 5 bp) were

identified between BA3 and B702 and used for

searching primers. Finally, according to the require-

ments of primer design, a total of 2,324 (16.03 %)

primer pairs were successfully obtained. To evaluate

their potential value in practice, a random subset of

1,000 primer pairs were chosen to screen polymor-

phism between BA3 and B702 and 922 (92.2 %) were

amplified specifically, indicating the high quality of

the reference genome. Two hundred and seventy-two

(27.2 %) polymorphic markers were validated, and the

majority of the polymorphic markers ([96 %) are

codominant inheritance. As expected, the polymor-

phic rate became lower (13.1 %) when used to test in

another pair of parental lines, BA3 and YNXML (C.

frutescens) in our laboratory (unpublished data).

Construction of the InDel map

The F2 population consisting of 178 progenies derived

from the cross BA3 9 B702 was genotyped with the

above InDel markers with very less missing rate

(\1.7 %). An intraspecific linkage map of C. annuum,

designated as the BB-InDel map, was built with 251

InDel markers (236 genetic bins), and the remaining 21

markers could not be integrated because of insufficient

linkage (Fig. 1). This is the first report on the

construction of intraspecific linkage map purely based

on InDel markers for pepper. In order to evaluate the

transferability of InDel markers among C. annuum

accessions, InDel frequency was calculated using the

re-sequencing data from a set of C. annuum accessions.

The mean frequency of 251 mapped InDels markers

among the 17 C. annuum accessions was 20.07 %

(Fig. 2), indicating that the BB-InDel map can be used

for basic and applied research in the future.

The map consisted of 12 linkage groups (LGs)

covering a total genetic distance of 1,178.01 cM with an

average density of one bin marker for every 5.01 cM

(Table 1; Fig. 1). The maximum genetic distance

between two bin markers was 42.44 cM, and the

number of mapped markers on LGs ranged from 8

(LG5) to 28 (LG3). Segregation distortion (SD) occurs

when the segregation ratio deviates from the expected

Mendelian ratio (Kuittinen et al. 2004). Here, 35 out of

272 (12.9 %) markers showed distorted segregation,

which is lower than that of interspecific population

(Kang et al. 2001; Livingstone et al. 1999) but is similar

to the intraspecific crossing (Barchi et al. 2007; Sugita

et al. 2005; Lefebvre et al. 2002). Two segregation

distortion regions (SDRs) were detected on LG5 and

LG12, respectively (P \ 0.05). All marker alleles

within the SDR in LG5 were associated with the male

line B702, and the other SDR in LG12 were skewed

toward the hybrid of the parental lines. The phenomenon

might be resulted from some so-called segregation

distorted factors (Lyttle 1991), which could alter the

recombination frequency in these regions.

Genetic and physical map comparison

Initially, the discovery of InDels was based on the

alignment of re-sequencing reads to the Zunla-1 scaffold

cFig. 1 InDel-based linkage map of pepper (C. annuum) and

comparison with its physical map. All InDel markers start with a

prefix ‘CIDH’. Markers written with red color are anchored onto

the pseudo-chromosome (P0) of the BB-SNP map-based

reference genome assembly. A total of 31 distorted segregation

markers mapped on this map are underlined and italic. (Color

figure online)
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CIDH4
CIDH314
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P7(Mb)
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CIDH634
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CIDH691
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CIDH247
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Fig. 1 continued
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genome. With the accomplishment of chromosome

building of the Zunla-1 reference genome (http://

peppersequence.genomics.cn) and the coordinate con-

version of scaffold to that of chromosome, the 12 LGs

were successfully assigned to the corresponding 12

chromosomes (P1–P12) based on the 211 anchored

markers (Table 1 and S1, Fig. 1). The remaining 40

markers are mapped onto the pseudo-chromosome (P0)

according to the current assembly of reference genome.

They scattered on 37 different scaffolds, spanning a total

length of 36.21 Mb (Table 1 and S1). Because the

Zunla-1 chromosome building is based on the BB-SNP

map (Qin et al. 2014), which is developed using the

same F2 population derived from the cross

BA3 9 B702, the 37 scaffolds would be suggestibly

assembled into the corresponding chromosomes (P1–

P12) based on this InDel linkage map, providing a ref-

erence of genome improvement in some degree.

According to the comparative analysis, we found

that the consistency between the genetic and physical

position on all 12 chromosomes was high (Fig. 1). The

total length of scaffold anchored and physical distance

covered by this map is 299.66 and 2,558.68 Mb,

respectively (Table 1), which accounted for 8.95 and

76.38 % of the Zunla-1 reference genome (3.35 Gb),

respectively. However, there were still some incon-

sistent orders within certain a very limited region,

which was possibly caused by the different mapping

algorithm or putative homology-based scaffold orien-

tation (Qin et al. 2014). Nevertheless, clustering of

markers around the putative centromeric regions was

evidently observed on several chromosomes such as

P3, P4, P6, P10–P12 (Fig. 1). On the other hand, plots

of genetic versus physical distance also permitted us to

observe S shape on all chromosomes with exception of

P1, P2, P5 and P8 (Fig. S1). This is seemly normal for

P2 and P8 because they are acrocentric chromosomes

in C. annuum (Lanteri and Pickersgill 1993). In terms

0
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Fig. 2 Mean frequency of 251 markers mapped on the BB-

InDel map among 17 re-sequenced C. annuum accessions

Table 1 Statistics of the pepper InDel-based linkage map and improvement for current assembly of Zunla-1 genome

LG (chromo

some)

Mapped Bin distance (cM) Map length Improvement for assembly

Marker Bin Average Min Max Genetic

(cM)

Anchored

(Mb)a
Physical

(Mb)b
Markerc Scaffold Length

(Mb)

LG1 (P1) 19 19 5.47 0.16 18.09 98.41 24.81 288.89 1 1 0.44

LG2 (P2) 23 20 5.28 0.18 19.53 100.24 25.99 162.43 0 0 –

LG3 (P3) 29 28 6.55 0.82 30.76 176.82 28.41 253.84 1 1 0.09

LG4 (P4) 17 17 7.62 0.32 42.44 121.84 23.92 205.50 7 5 8.25

LG5 (P5) 10 8 5.11 0.21 19.43 35.77 13.53 200.29 2 2 3.49

LG6 (P6) 23 22 3.81 0.14 22.17 79.98 30.25 206.18 3 3 3.06

LG7 (P7) 27 26 4.79 0.02 28.88 119.87 32.29 221.90 9 9 7.64

LG8 (P8) 17 17 5.21 0.10 16.19 83.32 17.76 152.79 1 1 0.59

LG9 (P9) 15 12 5.10 0.10 30.70 56.07 14.53 226.90 2 1 2.48

LG10 (P10) 28 25 4.16 0.12 20.88 99.92 40.09 205.30 6 6 8.43

LG11 (P11) 18 17 7.18 0.21 25.42 114.80 21.41 205.17 3 3 0.54

LG12 (P12) 25 25 3.79 0.02 16.98 90.97 26.67 229.49 5 5 1.19

Total 251 236 5.01 – – 1,178.01 299.66 2,558.68 40 37 36.21

a Total length of scaffolds anchored by InDel markers
b Spanned length on current Zunla-1 assembly
c Number of marker that anchored onto the chromosome P0 in the Zunla-1 reference genome

Mol Breeding (2015) 35:32 Page 7 of 10 32

123

http://peppersequence.genomics.cn
http://peppersequence.genomics.cn


of P1 and P5, the relatively low densities of one

marker per 10.84 Mb may be the main reason and the

plots provided clear reference for the following map

saturation. Therefore, these data showed that the BB-

InDel map covered nearly the entire genome and could

serve as a basic reference map for future genetics and

QTL analysis in pepper.

Conclusions

Re-sequencing technology permitted the mining of

over ten thousand small InDels (4 and 5 bp) between

two elite inbred lines of C. annuum. As a pilot study on

the application of recently published pepper genome,

272 polymorphic InDel markers were validated and a

genetic map was constructed with 251 purely InDel

markers. Comparison between the genetic and phys-

ical map indicated the good genome coverage of the

map. Therefore, the InDel markers and map present

here provided a collection of publicly available anchor

markers and will be useful for genetic/QTL analysis in

pepper.
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