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Abstract Bacterial grain rot (BGR), caused by the

bacterial pathogen Burkholderia glumae, is a destruc-

tive disease of rice. At anthesis, rice panicles are

attacked by the pathogen, and the infection causes

unfilled or aborted grains, reducing grain yield and

quality. Thus, increasing the level of BGR resistance is

an important objective for rice breeding. A quantita-

tive trait locus (QTL) on rice chromosome 1 that

controls BGR resistance was previously detected in

backcross inbred lines (BILs) derived from a cross

between Kele, a resistant traditional lowland cultivar

(indica) that originated in India, and Hitomebore, a

susceptible modern lowland cultivar (temperate

japonica) from Japan. Further genetic analyses using

a BC3F6 population derived from a cross between a

resistant BIL (BC2F5) and Hitomebore confirmed that

a QTL for BGR resistance was located on the long arm

of chromosome 1. To define more precisely the

chromosomal region underlying this QTL, we identi-

fied nine BC2F6 plants in which recombination

occurred near the QTL. Substitution mapping using

homozygous recombinant and nonrecombinant plants

demonstrated that the QTL, here designated as Resis-

tance to Burkholderia glumae 2 (RBG2), was located

in a 502-kb interval defined by simple sequence repeat

markers RM1216 and RM11727.
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Burkholderia glumae causes bacterial grain rot (BGR)

and seedling rot in rice (Oryza sativa L.), both of

which are highly destructive to rice production (Ham

et al. 2011). Until now, there have been two reports of

quantitative trait loci (QTLs) for BGR resistance

(Mizobuchi et al. 2013a; Pinson et al. 2010). As

described in Mizobuchi et al. (2013a), we detected a

QTL for BGR resistance on the long arm of chromo-

some 1 by using backcross inbred lines (BILs) derived
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from a cross between the traditional lowland indica

cultivar Kele (JP13287) and the modern lowland

temperate japonica cultivar Hitomebore. The Kele

allele at the QTL decreased the ratio of diseased

spikelets (RDS).

To validate the effect of the Kele allele at this QTL,

we used a resistant BIL (BC2F5) line (HK19; Fig. 1).

Most of the chromosome regions of HK19 originated

from the susceptible cultivar Hitomebore, but HK19

also contains a large segment of chromosome 1 and

small segments of chromosomes 2, 5, 8, 10, 11, and 12

derived from Kele. Twenty-nine F2 plants (BC3F6)

were produced by crossing Hitomebore with HK19.

Plants were grown in paddy fields in the summer of

2013 at the National Institute of Agrobiological

Sciences (NIAS) in Tsukuba, Japan. Thirty-day-old

seedlings were transplanted at a density of one

seedling per hill and planted in a single row of 10

hills at a spacing of 18 cm between hills and 30 cm

between rows. Basal fertilizer was applied at a rate of

56 kg N, 56 kg P, and 56 kg K ha-1. Days from

sowing to heading for Kele and Hitomebore, which

were transplanted on May 15, were 89 and 94 days,

respectively. In contrast, days to heading of the F2

plants ranged from 99 to 114 days. Therefore, the F2

plants were categorized by heading date and inocu-

lated on different dates (from July 26 to August 7). The

Kele and Hitomebore controls were seeded and

transplanted on several dates after the F2 seeding and

transplanting dates to better match the heading dates of

the F2 plants. We measured resistance to BGR by the

modified cut-panicle inoculation method in which

panicles containing only spikelets at 1 day after

anthesis were harvested and inoculated as previously

described (Mizobuchi et al. 2013a). Inoculation and

measurement were conducted as previously described

(Mizobuchi et al. 2013a). Simple sequence repeat

(SSR) markers in the target chromosome regions were

screened to identify those detecting polymorphism

between Hitomebore and HK19 (IRGSP 2005). The F2

plants were then genotyped with 28 SSR markers

(Supplemental Table 1). PCR analysis was performed

as previously described (Mizobuchi et al. 2013b).

Linkage mapping was performed using version 3.0 of

MAPMAKER/EXP software (Lander et al. 1987), and

the Kosambi map function was used to calculate

genetic distances.

We performed QTL analyses by using composite

interval mapping, as implemented by the Zmapqtl

program (model 6) provided in version 2.5 of the QTL

Cartographer software (Wang et al. 2005). By QTL

analysis, we detected one QTL between RM11725 and

RM11727 on the long arm of chromosome 1 (Fig. 2a).

The QTL accounted for 35.4 % of the total phenotypic

variance in the F2 plants, and the Kele allele decreased

RDS by 10.4 %. The F2 plants derived from the cross

of Hitomebore and HK19 showed a wide range of

variation (20.6–84.7 %) in RDS (Fig. 2b). The corre-

lation between heading date and RDS was not

significant (R2 = 0.0562). On the basis of the geno-

type at RM11727, the SSR marker nearest to LOD

peak, F2 plants were classified into three genotypic

classes; homozygous for the Kele allele, homozygous

for the Hitomebore allele, or heterozygous (Fig. 2b).

F2 plants homozygous for the Kele allele (n = 8)

showed a low mean RDS (34.8 %), ranging from 20.8

to 66.8 %. Heterozygous plants (n = 9) also had a low

mean RDS (32.8 %), ranging from 20.6 to 46.4 %. In

contrast, the mean RDS was 55.7 %, ranging from

27.9 to 84.7 %, in plants homozygous for the

Fig. 1 Graphical genotype of a resistant BC2F5 line (HK19)

used for fine mapping of QTLs. Chromosome numbers are

indicated above each linkage map. Positions of marker loci used

for genotyping are shown as horizontal lines and were obtained

from the linkage map of BILs derived from a cross between Kele

and Hitomebore (Mizobuchi et al. 2013a). The arrowhead next

to the long arm of chromosome 1 shows the putative position of

the QTL for resistance to bacterial grain rot (BGR) (Mizobuchi

et al. 2013a) examined in the present study. White boxes indicate

regions homozygous for Hitomebore marker alleles; black

boxes indicate regions homozygous for Kele marker alleles
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Hitomebore allele (n = 12). Thus, plants homozygous

for the Kele allele tended to show lower RDS values

than those homozygous for the Hitomebore allele.

These results clearly support the existence of the

previously detected QTL on the long arm of chromo-

some 1 and show that the Kele allele at the QTL

decreases the RDS.

To further delimit the candidate genomic region of

the QTL for BGR resistance, we used a BIL (BC2F5)

line (HK114) in which the region of interest on the

long arm of chromosome 1 was heterozygous (Sup-

plemental Fig. 1). We identified nine recombinants

(BC2F6) from the BIL line and then selected

homozygous recombinant and nonrecombinant plants

from the BC2F7 progeny of each one. Thus, we

evaluated nine pairs of lines in the inoculation test.

Significant difference about RDS was detected among

seven pairs (BC2F7-12W-1, -2, -3, -5, -6, -7, and -8),

whereas two pairs (BC2F7-12W-4 and -9) had high

RDS values that were not significantly different

between those of the recombinant and nonrecombi-

nant lines (Fig. 3). Together, the genotype and phe-

notype information clearly delimit the QTL for BGR

resistance between SSR markers RM1216 and

RM11727 (a 502-kb interval in the Nipponbare

genome reference sequence) on chromosome 1

Fig. 2 Chromosomal location of a QTL for resistance to

bacterial grain rot (BGR) on the long arm of chromosome 1 and

effects of allelic differences at linked marker RM11727. a The

log-likelihood curve indicates a putative QTL position on

chromosome 1 in an F2 population derived from Hitome-

bore 9 HK19 (a resistant BC2F5 line). We used genome-wide

threshold values (a = 0.05) to detect putative QTLs on the basis

of the results of 1,000 permutations. LOD logarithm of odds, R2

percentage of phenotypic variance explained, and AE additive

effect of the allele from Kele relative to that from Hitomebore.

b Frequency distribution of the ratio of diseased spikelets (RDS)

in F2 plants showing the three genotype classes of SSR marker

RM11727, which was found to be nearest to LOD peak. The x-

axis labels indicate the maximum RDS in each bin. Genotypes at

RM11727 are represented as white bars (homozygous for

Hitomebore allele), gray bars (heterozygous), and black bars

(homozygous for Kele allele). The RDS values of the F2 plants

were scored 5 days after inoculation. Arrows indicate the mean

values for Kele and Hitomebore; horizontal lines across the

arrows indicate the standard deviations
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(Fig. 3). Because we have already identified and

named RBG1 (Resistance to Burkholderia glumae 1;

formerly named qRBS1), a QTL on chromosome 10

involved in resistance to bacterial seedling rot (Miz-

obuchi et al. 2013b), we have designated this QTL for

BGR resistance as Resistance to Burkholderia glumae

2 (RBG2), following the nomenclature recommended

by McCouch and CGSNL (Committee on Gene

Symbolization 2008).

We surveyed the candidate genomic region of

RBG2 using the Rice Annotation Project Database

(http://rapdb.dna.affrc.go.jp/ (Ohyanagi et al. 2006))

to nominate candidate genes. Among the predicted

genes, there are none known to be related to disease

resistance such as nucleotide-binding-site–leucine-

rich repeat (NBS-LRR) genes. It is hard to predict

which of the genes might be related to BGR resistance

because there have been no reports of genes associated

with BGR resistance and because the morphological

and physiological functions of RBG2 are not yet

known. Thus, further delimitation of the candidate

genomic region of RBG2 will be necessary to identify

the gene corresponding to RBG2.

Since B. glumae was first discovered in Japan (Goto

and Ohata 1956; Goto et al. 1987; Kurita and Tabei

1967; Uematsu et al. 1976), it has also been reported in

other countries in East Asia (Chien and Chang 1987;

Cottyn et al. 1996a, b; Jeong et al. 2003; Luo et al.

Fig. 3 Substitution mapping of a QTL controlling resistance to

bacterial grain rot (BGR) on the long arm of chromosome 1 in

recombinant BC2F7 lines. Each pair of lines (e.g., 1A and 1B)

was identified from the progeny of a recombinant BC2F6 plant.

Black bars indicate chromosome regions derived from Kele

(resistant); white bars indicate chromosome regions derived

from Hitomebore (susceptible). Positions are based on the

International Rice Genome Sequencing Project (IRGSP) 1.0

pseudomolecules of the Nipponbare genome. The location of the

candidate QTL (RBG2), indicated at the bottom, is based on the

phenotypic data obtained in an inoculation test, tabulated on the

right. The ratio of diseased spikelets (RDS) scores of the two

lines in each pair was compared by using Student’s test.

*P \ 0.05; ns not significant, P [ 0.05
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2007; Trung et al. 1993) and Latin America (Nan-

dakumar et al. 2007b; Zeigler and Alvarez 1989).

Although several cultivars show partial resistance to

BGR (Goto and Watanabe 1975; Groth et al. 2007;

Imbe et al. 1986; Mogi and Tsushima 1985; Nan-

dakumar et al. 2007a; Nandakumar and Rush 2008;

Pinson et al. 2010; Prabhu and Bedendo 1988; Sayler

et al. 2006; Sha et al. 2006; Takita et al. 1988; Wasano

and Okuda 1994; Yasunaga et al. 2002), only one

report of QTL analysis of BGR resistance has been

published other than our previous report (Mizobuchi

et al. 2013a; Pinson et al. 2010). This may be because

the level of resistance is highly influenced by

environmental conditions, making genetic analysis

of BGR resistance very difficult (Tsushima 1996;

Tsushima et al. 1985). Pinson et al. (2010) found a

major QTL on chromosome 3 for BGR resistance

colocated with a QTL for heading date. Because late-

flowering panicles are subjected to cooler tempera-

tures that are less conductive to disease development

during grain fill, it is possible that the genetic effects of

the heading-related QTLs affected the disease scoring.

On the other hand, by selecting parental cultivars with

similar heading dates and using a method (cut-panicle

inoculation) that minimizes the effect of heading date

variation, we successfully detected a major QTL for

BGR resistance on chromosome 1, and no QTL for

heading date was detected near this BGR resistance

QTL (Mizobuchi et al. 2013a). In the QTL analysis of

this study, the correlation between heading date and

RDS was not significant (R2 = 0.0562). The nine pairs

of BC2F7 lines used for substitution mapping had

similar heading dates between homozygous recombi-

nant and nonrecombinant plants. Therefore, we sup-

pose that the disease resistance derived from RBG2 is

not a pleiotropic effect of the QTL for heading date. To

enhance our understanding of the genetic control of

BGR resistance, we undertook fine mapping of the

QTL and successfully defined a candidate genomic

region for the QTL, RBG2. The RBG2 map informa-

tion obtained in this study opens the way not only for

the use of RBG2 in breeding programs, but also for

gene isolation that will enable us to elucidate the

genetic mechanism of BGR resistance.
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