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Abstract
The tick-borne encephalitis virus (TBE) is a neurotrophic disease that has spread more rapidly throughout Europe and Asia 
in the past few years. At the same time, no cure or specific therapy is known to battle the illness apart from vaccination. To 
find a pharmacologically relevant drug, a computer-aided drug screening was initiated. Such a procedure probes a possible 
binding of a drug to the RNA Polymerase of TBE. The crystal structure of the receptor, however, includes missing and 
partially modeled regions, which rendered the structure incomplete and of questionable use for a thorough drug screening 
procedure. The quality of the receptor model was addressed by studying three putative structures created. We show that the 
choice of receptor models greatly influences the binding affinity of potential drug molecules and that the binding location 
could also be significantly impacted. We demonstrate that some drug candidates are unsuitable for one model but show decent 
results for another. Without any prejudice on the three employed receptor models, the study reveals the imperative need to 
investigate the receptor structure before drug binding is probed whether experimentally or computationally.

Keywords Molecular dynamics · Drug discovery · Receptor models · AlphaFold

Introduction

The tick-borne encephalitis (TBE) virus is a neurotropical 
disease with flu-like symptoms that may evolve to a severe 
neurological illness. The virus can be subdivided into three 
main types, namely the European TBE (TBE-Eu), the Sibe-
rian TBE (TBE-Sib), and the far eastern variant (TBE-FE)  
[1], that differ by their death toll. Primarily, TBE-FE is asso-
ciated with a severe course of the illness with long-lasting 
neurological effects [2] and a death toll of 20–60% of the 
infected. The other variants of the virus, TBE-Eu and TBE-
Sib, exhibit a death rate of 1–2% and 6–8%, respectively [3]. 
However, the virus subtype alone is not the only criterion for 
a mild or severe case of the disease, as for each subtype any 
scenario is possible, and the implications are mainly influ-
enced by the age or genetic predisposition of the patient [1].

The different TBE virus subclasses can be found in 
Europe and Asia and are classified as an epidemic in numer-
ous countries. [2, 4, 5]. The disease associated with the 
TBE virus is notifiable in the European Union since 2012 
[1]. According to the Annual Epidemiological Report of 
the ECDC (European Centre for Disease Prevention and 
Control), 24 countries within the European Economic 
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Area reported a total of 3,734 cases of TBE in 2020 and 
an increase in the more recent years [2]. For instance, the 
reported cases increased by 30% in Germany in 2023 com-
pared to 2022 [6].

The disease is mainly transmitted through tick bites [7]. 
In 1% of the cases, it is transmitted through consumption of 
products stemming from infected animals, like unpasteur-
ized milk from cows, sheep, or goats. A case of a direct 
infection transmitted from human to human is not known 
[8]; however, a case has been reported in which the virus was 
transmitted through the transplantation of infected organs 
[9].

Even though the TBE virus is widely spread in Europe 
and Asia and studies have been performed to inhibit the sim-
ilar Japanese encephalitis virus or the Zika virus [10–13], no 
medication is known to treat it, which reduces the options 
for supporting or symptomatic treatments, while effective 
vaccinations are available [1].

With rising global temperatures, the odds of ticks surviv-
ing winter increases, thereby boosting the chances of infec-
tion. The rising numbers highlight the need for specific med-
ications that can be employed post-infection. Fortunately, 
nowadays suggestions for potentially pharmaceutically rel-
evant drug candidates can be established computationally 
to screen a large number of potential drugs and find well-
binding candidates prior to the individual experimental tests 
[14, 15]. The present investigation focuses on such a virtual 
drug screening procedure for the RNA-dependent polymer-
ase (RdRp) protein of the TBE virus with the aim to find 
putative medicinally relevant drug ligands. A collection of 
2,000 ligand molecules were investigated, similar to the fre-
quently studied drug molecule that has the potency to inhibit 
the RdRp protein, namely the 7-Deaza-2’C-methyladeno-
sine (7DMA); the 7DMA molecule has been documented to 
effect some viruses from the flavivirus genus [7].

The TBE virus contains an RdRp protein, which is 
essential for the replication of the virus inside the host sys-
tem. The RdRp protein is highly conserved through vari-
ous viruses of the flavivirus genus, which also includes the 
TBE virus. Such conservation might indicate the specific 
importance and sensitivity of the protein and thus reduces 
the chance that the virus can successfully undergo a sustain-
able mutation to gain immunity against the putative medi-
cations. Furthermore, it was shown in mice that the protein 
inhibits the growth of the neurites, which directly favors the 
onset of the neurological phase of the disease [16]. Lastly, 
the protein does not have a eucaryotic homologous coun-
terpart. Therefore, a successful drug might have little to no 
secondary effects on human cells [7].

The RdRp protein structure is only partially available 
in its crystalline form with 98 out of 638 (partially) miss-
ing residues. The present study attempts to reconstruct the 
missing parts of the RdRp receptor through computational 

modeling. Three structural models were established and 
their differences and similarities rationalized. The first 
model employs the homology modeling approach relying on 
the SWISS-MODEL platform [17–21]. The second model 
employs AlphaFold [14, 22, 23] to reconstruct the structure 
of the entire receptor. The third model uses AlphaFold to 
replace only the partially modeled or missing residues, while 
keeping the rest of the crystal structure unchanged. The mul-
tiple models were considered to address the low-confidence 
regions in the receptor structure, such that the structure 
obtained using SWISS-MODEL could be compared to the 
two other models from the same virus genus. As computer-
generated protein structures have warrying confidence levels 
in different regions, it is natural that no structure can be 
proven to be the only correct one.

The 2,000 potential drug ligands were then tested for 
all three models individually using the Automated Ligand 
Searcher (ALISE) [26], which is incorporated into the 
browser-based computational platform VIKING (Scandi-
navian online kit for nanoscale modeling) [27].

The most-promising ligands for all three models were 
compared in their binding energy and binding location. We 
have found that the atomistic details in the receptor structure 
severely influence the potential drug binding affinity and that 
it is unpractical to unquestioningly rely on a receptor struc-
ture obtained using any modeling tool. Three ligands were 
identified as the best-performing ligands in two of the three 
receptor models, making them the most robust independent 
of the receptor. While the results should be considered with 
care, an experimental study of these ligands might signifi-
cantly further the cause in finding a medically relevant drug 
against the TBE virus.

Background and methods

The receptor structure

A potentially viable receptor for drug targeting and the inhi-
bition of the TBE virus is its RNA-dependent RNA-poly-
merase (RdRp), which is essential for the self-replication 
of the virus. The RdRp protein is at the C-terminal of the 
so-called NS5 non-structural protein inside the virus, which 
consists of the methyltransferase domain followed by the 
polymerase domain [7, 16].

Figure 1 shows the major motifs in the structure of the 
RdRp protein of the TBE virus and its so-called right-hand 
architecture, which forms a catalytic unit. The structure is 
subdivided into three regions, surrounding the active site 
of the RdRp receptor. The thumb domain is shown in gray-
blue, the finger domain in blue, and the palm domain in 
teal. The priming loop (red) is part of the thumb domain. 
Overall, the right-hand architecture can be further classified 
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through the abundance of functional motifs, denoted as A–G 
in Fig. 1B. The motifs A, B, C, and F interact directly with 
the nucleoside triphosphate (NTP), which is the precursor 
for RNA synthesis.

The potential drug binding site of the RdRp protein is 
located in its active center, where the RNA transcription 
takes place. The priming loop limits the accessibility to the 
active site, so only ssRNA may enter the center during the 
initialization of the transcription [28, 29]. A well-binding 
drug ligand might, therefore, prohibit initialization of the 
RNA synthesis.

A crystal structure for the RdRp protein with the PDB ID 
7D6N [28] is available in the PDB database [30]. The pro-
tein sequence comprises 638 amino acid residues, of which, 
in total, 19 residues at the N- and C-terminal have not been 
reconstructed. Furthermore, the crystal structure does not 
contain the well-defined positions of 50 amino acid residues 
and exhibits unmodeled side chains for 48 amino acid resi-
dues (see Table A1 in the Supplementary Material (SM)). As 
the partially modeled or missing residues are expected to be 
close to the active center, modeling methods were employed 
to obtain a more complete receptor structure.

Three different modeling methods were employed to 
generate the receptor structure. The first method uses the 
SWISS-MODEL [31] homology modeling, and the sec-
ond utilizes the artificial intelligence workflow provided by 
AlphaFold [14, 22, 23]. Lastly, a hybrid model was con-
sidered, where the structural information obtained from 
AlphaFold was merged with the crystal structure, effectively 
replacing the missing and partially modeled regions.

The receptor obtained from SWISS-MODEL [17–21] 
requires the RdRp protein’s sequence and is denoted as 
Swiss. A visual inspection of the resulting receptor model 
showed some differences in crystal structures of similar 
viruses: the Japanese encephalitis virus (PDB ID 4K6M) 
[10] or the Zika virus (PDB ID 5TFR) [11], which belong 

to the same virus genus as the TBE virus. The Japanese 
encephalitis virus structure and the Zika virus exhibit less 
unmodeled residues and have been subjected to drug dock-
ing procedures in the past [12, 13].

A visual representation of the differences is shown in 
Fig. 2. With this in mind, different receptor models were 
employed to compare the drug ligand binding results. No 
judgement is made, however, on the realism of any of the 
resulting receptor models.

The second receptor was generated using AlphaFold [14, 
22, 23]. AlphaFold only requires the amino acid sequence to 
generate a three-dimensional protein structure, but the gen-
erated structure can be refined by selected homologous crys-
tal structures. In this case, the algorithm used four crystal 
structures for refinement (pdb IDs: 4C11 [24], 5U0C [25], 
4K6M [10], 5U0B [25]). AlphaFold is an artificial intelli-
gence tool trained on the existing crystal structures, which 
are, for instance, located in the PDB database. AlphaFold 
also generates the N- and C- terminal residues, which were 
completely unmodeled in the crystal structure. To match all 
studied models, these 19 amino acid residues were subse-
quently removed. Alpha denotes the receptor model obtained 
from AlphaFold.

Finally, because AlphaFold relies on the predictions from 
all available crystal structures, and not necessarily on the 
ones matching the RdRp protein of the TBE virus, a hybrid 
model was constructed, denoted by Hybrid. The model was 
obtained by aligning the crystal structure and Alpha model. 
The partially modeled or missing amino acid residues in the 
crystal structure were then inserted into the crystal struc-
ture from the Alpha model. The hybrid model, therefore, 
directly contains information from the crystal structure, 
supplemented by the information obtained with AlphaFold.

In the last step, the protonation states of the different 
amino acid residues had to be taken into account as, for 
instance, a wrongly protonated histidine residue can have 

Fig. 1  A Right-hand-architec-
ture of the RdRp Protein of 
the TBE virus. The structure is 
subdivided into three regions 
surrounding the active site in 
its center. The so-called thumb 
domain is shown in gray-blue, 
the finger domain in blue, and 
the palm domain in teal colored. 
The priming loop (red) is part 
of the thumb domain. B Colored 
representation of the differ-
ent motifs in the RdRp protein 
structure. Motifs A, B, C, and 
F interact directly with the 
so-called NTP. The other motifs 
are endowed with structural 
responsibilities
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significant effects on the binding affinity of molecules [32]. 
Considering a physiological pH-value of 7.4 [33], the so-
called pK

a
 values can be calculated, which was done employ-

ing the PROKKA3 program [34, 35] for the Swiss model. 
The resulting pK

a
 values, see Table B1 in the Supplementary 

Materials, combined with a visual inspection, led to changes 
in the protonation of histidines. By default, all histidines 
were considered to be �-protonated, with only the His180 
being �-protonated. Furthermore, the Asp402 residue was 
additionally protonated. To keep the comparability of recep-
tor models consistent, the protonation states from the Swiss 
model were also used for the Alpha and Hybrid models.

After the structures were modeled and the protonation 
states were set, a molecular dynamics (MD) simulation was 
conducted in multiple steps to equilibrate the structures. For 
the MD simulation, the VIKING platform was employed 
[27], which relies on the simulation software NAMD [36, 
37] and VMD [38] for file preparation. All equilibration 
stages employed the CHARMM force field with CMAP cor-
rections [39–41] with a temperature of 310 K. The systems 
were neutralized, and sodium chloride ions were added to 
achieve a salt concentration of 0.15 mol/L. In the first two 
stages, the MD simulation was conducted in an NPT (con-
stant number of atoms, pressure, and temperature) ensemble 
with a timestep of 1 fs and a pressure of 1.01325 bar. Every-
thing but the solvent was restrained in the first stage, while in 
the second stage, the amino acid residue’s side chains were 
allowed to move. The first stage was initiated with 1000 
conjugate gradient minimization steps. Stages three and 
four were conducted in the NVT (constant number of atoms, 
volume, and temperature) ensemble. In the third stage, no 
restraints on atomic positions were imposed. Finally, in stage 
4, the integrator time step was set to 2 fs, and the covalent 
bond to hydrogen atoms were considered rigid. The receptor 
protein structures were simulated for 30 ns in stage 4. For 
the Hybrid equilibration, a second minimization step was 
introduced to account for the artificially over-long bonds 

generated through the manual combination of Alpha and 
the crystal structures.

The final snapshots from the equilibration simulation 
were further used for the drug screening workflow.

Automated ligand searcher

All three receptor models of the RdRp protein were used 
in the ALISE program [26] to predict possible drug-like 
ligands that could bind inside the receptor. ALISE is an 
automated workflow incorporated into the VIKING online 
platform [27], which sorts ligands based on their binding 
affinity to a provided receptor model. A search space to limit 
the docking to physiologically sensible binding sites can 
also be defined which was chosen to be the active center in 
the middle of the receptor structures. Different ligand mol-
ecules were generated by ALISE that was provided with the 
SMILES string of 7DMA, a known drug for viruses similar 
to the TBE virus. The search space for the drug docking was 
chosen to contain the RNA and the NTP binding location 
to block the most important functions of the receptor. With 
this information, ALISE automatically found 2000 similar 
ligands according to the Tanimoto score in the PubChem 
database [26]. The Tanimoto score K is given for two molec-
ular fingerprints by [42]

ALISE relies on a three-step process in which, gradually, 
potential ligands are filtered out, while the computational 
accuracy of the binding prediction increases. Drug docking 
is performed in the first step relying on the docking pro-
gram Vina (AutoDock Vina 1.1.2)[43] , with ligands being 
prepared by the AutoDockTools [44] and Openbabel [45] 
programs. The docked ligands were then sorted according 
to their binding scores. The highest-ranked 30 ligands of the 

(1)K =
|A ∩ B|

|A ∪ B|
.

Fig. 2  A The structure obtained 
from the Swiss model is colored 
according to the certainty esti-
mated by the modeling process 
(arb. units). The certainty is 
measured on a scale from 0 
to 100, with 0 describing an 
uncertain region and 100 denot-
ing a high confidence. B The 
uncertain region obtained from 
the Swiss model is highlighted 
in red, while the same region 
is overlaid with the structure of 
the Japanese encephalitis virus 
(yellow) and the Zika virus 
(cyan)
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docking phase were then considered in the second step of 
ALISE relying on atomistic MD simulations.

The MD simulation phase includes simulations of the 
receptor, the ligand, and a complex consisting of the receptor 
and ligand in an implicit solvent [26, 46]. While the dock-
ing procedure in the first step is static, the MD simulations 
allow motions in the receptor and ligand. These motions, for 
instance, might lead to a repulsion and force ligands to leave 
the binding pocket, which is a clear indication of a low bind-
ing affinity. The binding energy of the ligands was estimated 
from the three different simulations per ligand (receptor 
only, ligand only, and complex simulations), and the ligands 
were sorted by their binding affinity. ALISE employs the 
molecular mechanics-generalized Born and surface area 
continuum solvation (MM/GBSA) method [46]. ALISE’s 
MD step employs NAMD [36, 37], while the simulation files 
were prepared using VMD [38]. The Charmm General Force 
Field (cgenFF) [47] was employed for the ligands, while the 
receptor was modeled using the Charmm Force Field with 
CMAP corrections [40, 48–54].

The five highest-scoring ligands from the MD step were 
subjected to a free energy perturbation (FEP) stage. In the 
FEP stage, windowed MD simulations were conducted in 
which the interactions between the receptor and the ligand 
were gradually decoupled and recoupled. Conformational 
restraints are used and later subtracted to avoid a diffusion of 
the ligand when the interactions are completely decoupled. 
Such an approach allows the most precise estimate for the 
binding free energy and establishes the final ranking of the 
remaining ligands [26]. A total of 50 simulation windows 
were employed, each including an MD equilibration. The 
FEP step employs NAMD [36, 37] with an explicit solvent 
and the same force fields and parameters as used in the MD 
step described above.

Results

Stability

Following the initial equilibration MD simulations, the sta-
bilities of the structures were validated by employing the 
Root Mean Square Deviation (RMSD) analysis. The RMSD 
values for the last snapshot of the equilibration simulations 
are compiled in Table 1 to compare the different structures 
with each other. The RMSD was additionally calculated 
for the regions with high and low certainties, following the 
structure prediction based on the Swiss model. A visual rep-
resentation of the confidence is shown in Fig. 2A. The result-
ing values suggest that the three receptor structures are rela-
tively similar with each other in the high-certainty regions, 
while Swiss and Alpha models differ significantly in the 
uncertainty regions. Additionally, the RMSD time evolution 

for the entire protein is shown in Fig. 3. The overall low 
RMSD below 4 Å for the protein consisting of 619 resi-
dues indicates fairly stable structures [55–59]. Additionally, 
even though the magnitude of the fluctuations is higher in 
the Hybrid and Swiss model compared to the Alpha model, 
they seem to evolve around a flat plateau after 10 ns or 20 
ns, respectively.

Drug screening

Following the stability analysis of the different receptor 
models, the virtual screening program ALISE was used to 
study the binding affinity of a variety of ligands. The three 
steps of ALISE were conducted automatically, starting with 
the drug docking stage. All stages were completed for the 
three studied receptor models. After each step, ALISE ranks 
the ligands; the best-performing ligands are then advanced 
to the next stage:

The ranking for the best 50 docked ligands in their five 
best binding positions is provided in Tables C2–C4 in the 
Supplementary Material. The 30 best-performing ligands 
were considered for the MD stage. During the MD stage, all 
atoms in the system are free to move and exhibit attraction 
and repulsion interactions. These interactions might result in 
the ligand to leave the originally determined binding pocket. 
Therefore, additionally to a more rigorous estimate of the 
binding energy, ligands that propelled out of their binding 
pocket can be excluded from further testing. The different 
locations of the potential ligands obtained from the docking 
stage provide different starting configurations for the MD 
simulations.

The binding free energy estimated from the MD simula-
tions for all receptors and all ligands is summarized in the 
Supplementary Material (see Tables D5–D7 in Supplemen-
tary Material). A visual inspection of the bound ligands in 
the different receptors reveals three noteworthy results.

Table 1  The root mean square deviation (RMSD) between the final 
configurations of the different receptor models

The RMSD is calculated for the whole protein, high-certainty, and 
low-certainty regions as estimated by the SWISS model platform [17] 
during receptor generation. In this table, the high-certainty regions 
have a confidence score above 50; low certainty are the regions below 
50 as seen in Fig.  2A. All receptor models are similar in the high-
certainty regions, while significant differences are found primarily 
between Swiss and Alpha models in the low-certainty regions

Reference simula-
tion

Swiss 
compared to 
hybrid (Å)

Swiss com-
pared to Alpha 
(Å)

Hybrid com-
pared to Alpha 
(Å)

Whole protein 3.93 4.24 3.66
Low certainty 12.19 12.78 4.81
High certainty 3.04 3.35 3.60
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In the course of completed MD simulations, most 
ligands were able to stay in their originally placed binding 
locations as determined by the docking stage. The origi-
nal binding locations may differ, however, even within a 
single receptor model. Figure 4 shows the positioning of 
the second-ranked ligand (yellow) compared to an exem-
plary ligand (blue), which represents the orientations of 
the majority of the 10 best-performing ligands bound in 
the Hybrid model. During the MD stage, it is revealed 
that only the yellow ligand results in a favorable binding 
energy. Thus, the ALISE’s MD step corrects unphysical 
placements of ligands during the docking stage.

Another example is provided by the ligand with the 
PubChem ID 189237 which was ranked among the best 30 
performing ligands in the docking stage for all three recep-
tors; however, its placement inside the receptors turned out 
to be different. The ligand was thus subjected to MD simu-
lations three times, once for each receptor model. Figure 5 
shows the ligand’s positioning in the different receptor mod-
els. The Swiss and Hybrid model are consistent with each 
other in respect to the ligand binding location, but not orien-
tation. The Alpha model features the ligand on the opposite 
side of the priming loop.

Another result followed from the visual inspection of con-
formations of the final snapshot of the different MD simu-
lations. Here, the Trp533 residue in the Swiss and Alpha 
model receptor was studied, which turned out to assume 
two different distinct orientations as visualized in Fig. 6. It 
turns out that the side chain orientation, as seen in the Alpha 
model, actively perturbs the potential drug binding location, 
as has been identified, for example, for the ligand with the 
PubChem ID 189237, seen in Fig. 6B. Figure 6A shows the 
orientation of the tryptophan in the Swiss model with the 
bound ligand. The slight change in side chain orientation 
might, therefore, significantly affect the binding site.

Five ligands with the best binding energy estimates 
from the MD simulations were subjected to the FEP cal-
culations. Remarkably, not a single ligand had simultane-
ously a favorable (negative) binding free energy for all the 
three receptor models. However, three ligands still showed 
binding affinity for two receptor structures. The chemical 
structure of these three ligands is illustrated in Fig. 7. The 

Fig. 3  The three panels show 
the time evolution of the RMSD 
for the whole protein during 
the 30 ns equilibration phase. 
For each panel, structures were 
aligned to the respective refer-
ence structures prior to RMSD 
calculation, i.e., in the first 
panel, all three simulation tra-
jectories are aligned to the first 
snapshot of the Alpha model 
simulation. The dependencies 
show an overall stable behavior 
of the different receptor models 
with most fluctuations in the 
Hybrid model. Throughout the 
simulation, one also notices that 
the Swiss model differs more 
from the Alpha model than 
the Hybrid model and that the 
Hybrid model and the Alpha 
model are similarly dissimilar 
to the Swiss model, concurring 
with the expectations

Fig. 4  Two ligands are shown within the Hybrid model receptor, 
with the priming loop in red. Ligand 1 (yellow) is the only ligand that 
obtained a negative binding energy in the MD stage, while the other 
10 best-performing ligands, represented by the exemplary ligand 2 
(blue), perform more poorly
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Fig. 5  Binding locations for the ligand with the PubChem ID 189237 within the different receptor models. In the Alpha model, the same ligand 
exhibits a different binding site on the other side of the priming loop compared to the Swiss and Hybrid Models

Fig. 6  Orientation of the tryp-
tophan 533 residue in the Swiss 
model (A) and the Alpha model 
(B). The panels also show the 
placement of the ligand with 
the PubChem ID 189237 in the 
Swiss model. The difference in 
orientation of the tryptophan 
side chain perturbs the potential 
binding site of the ligand, mak-
ing it impossible to bind to that 
particular location. The slight 
change in side chain orientation 
might, therefore, significantly 
affect the ligand binding site

Fig. 7  Structural formulas for the three most robust ligands that show favorable binding across the different receptor models. The corresponding 
PubChem IDs are indicated. The ligands in B and C are structurally identical; however, the ligand in (B) is an enantiomer of the ligand in (C)
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binding free energies estimated by the FEP stage are given 
in Table 2. The ligands occurring in two receptor models are 
colored according to their pair. Complete tables containing 
individual contributions can be found in the Supplementary 
Material (see Tables E8–E10 in Supplementary Material). 
To validate the binding locations of the three reoccurring 
ligands, additional MD simulations were performed for the 
highlighted receptor-ligand complexes in three replicas each. 
Based on an RMSD analysis, the ligands maintain their loca-
tion in the receptor structure for at least another 100 ns. A 
time evolution of the RMSD for the validation simulations 
is found in Fig. F11.

Comparison of high‑ranking ligands

Differences in the starting configuration for the FEP calcu-
lations carry over from the MD simulations. As such, the 
binding location may differ within the three ligands. For 
instance, the ligand with the PubChem ID 10302205 (rank 
four in the Swiss model, rank two in the Hybrid model) 
exhibits a slightly different orientation in the Swiss and 
Hybrid models, respectively; a visual inspection shows 
that the ligand might prohibit the ssRNA from entering the 

structure of the receptor in the Swiss model. At the same 
time, the ligand’s location might indicate an inhibition 
of the NTP interaction in the Hybrid model. As NTP is a 
precursor to synthesizing RNA, blocking its interaction 
site makes the ligand a likely inhibitor for the virus. More 
precisely, in the Swiss model, the ligand is exposed to a 
large surface area of the motifs B and F and parts of the 
motifs C and E of the receptor, see Fig. 1B. In the Hybrid 
model, the ligand is close to the A, B, C, and F motifs. 
Figure 8 shows a visualization of the drug binding loca-
tion and orientation at the beginning of the FEP calcula-
tions. The A, B, C, and F motifs interact directly with the 
NTP. Therefore, one can suspect that the ligand may block 
the binding site for the NTP and significantly influence 
the functionality of the RdRp. Furthermore, the ligand 
binds fairly robustly with a binding free energy of nega-
tive 13–16 kcal/mol to both receptor models (see Table 2).

The ligand with the Pubchem ID 132074004 is ranked 
first in the Hybrid model and fourth in the Alpha model. 
The ligand has a similar position in both receptor models, 
but a different orientation. While the triphosphate region is 
oriented in different directions, the ligand’s aromatic rings 
share a similar location. The ligand is close to the A, B, C, 

Fig. 8  Positioning of the ligand 
with the PubChem ID 10302205 
inside the Swiss model (A) 
and the Hybrid model (B). In 
the Swiss model, the ligand 
is located in the center of the 
active site, potentially interact-
ing with the B, C, E, and F 
motifs. In the Hybrid model, the 
ligand is close to the A, B, C, 
and F motifs

Table 2  The binding free energies obtained from the FEP stage in the ALISE workflow are shown for the different receptor models

–
–
–
–
– –

–
–
–
– –

–
–
–
–

The ligands are indicated by their PubChem ID. The highlighted ligands ranked among the best-performing five ligands in the MD stage for two 
different receptor models. A detailed account of binding free energy estimates is given in the Supplementary Material (Tables E8–E10 in Sup-
plementary Material)
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and F motifs, similar to the binding site exhibited in Fig. 8B. 
Hence, the ligand might also inhibit NTP interactions.

Lastly, the ligand with the PubChem ID 21910880, which 
ranks highest in the Swiss model, was the least performing 
ligand in the Hybrid model with a binding free energy esti-
mate of − 0.39 kcal/mol. The binding energy value close to 
zero indicates a weak binding and small perturbations might 
already lead to the drug molecule’s detachment. Addition-
ally, the ligand is located in the poor confidence region of the 
receptor with the greatest structural variability. The ligand 
is, however, an enantiomer on the base of the previous ligand 
with the Pubchem ID 132074004; in other words, they are 
configurationally isomeric.

Considering that the ligands 132074004 and 21910880 
are structurally similar, the racemat (21910880) is within the 
best five performing ligands for all three receptor models, 
which makes it the most robust ligand that potentially binds 
to all three versions of the receptor structure.

Conclusion

The choice of receptor structure is essential for the quality of 
a computational ligand screening experiment. We have dem-
onstrated that differences in the secondary structure within 
receptor models of the RNA-depended RNA-polymerase 
of the tick-borne encephalitis virus and minor differences 
like the orientation of a single side chain may drastically 
affect the binding of drug ligands. The structural differences 
directly influence the size of binding pockets, the orientation 
and location of bound ligands, and, thus, the effect a ligand 
might have on the protein’s functionality.

We have computationally constructed three different 
receptor structures with different modeling tools and com-
pared their susceptibility to 2000 potential drug molecules. 
From the docking stage, the 50 best-performing ligands 
advanced to the molecular dynamics stage. While 17 of 
these best-performing ligands could be found across all three 
different receptor models, no ligand was among the best-
performing ligands for all the three investigated structures 
after the MD stage. The results indicate that without endow-
ing any level of realism on neither the Swiss Model-gener-
ated structure, nor the AlphaFold-generated structure, nor 
their hybrid variant, special care should be taken as a single 
model could lead to inconsistent results and should not be 
taken as the all-truth without further study. Additionally, all 
ligands could be compared regarding their physiochemical 
properties or their closest residues in the different recep-
tor structures after each stage in ALISE’s virtual screen-
ing workflow, which would go beyond a study focusing on 
important structural differences to drug binding in receptor 
structures.

As a silver lining, however, the ligand with the 
PubChem ID 21910880 turned out to be structurally 
identical to the ligand with the PubChem ID 132074004, 
except for a mirrored oxygen. If one considers these two 
highly similar compounds, a single potential drug mol-
ecule is identified which is robust over all three different 
receptor models and binds in all of them. Thus, it might be 
feasible to test the ligand with the PubChem ID 132074004 
experimentally, as its performance is close to independent 
of the structure model. The ligand with the PubChem ID 
10302205 performs robustly in two of the three models. In 
summary, without trusting the physiological realism of the 
receptor structures, the ligands 10302205 and 21910880 
might be feasible candidates for further testing as potential 
treatments of the TBE.

Overall, trust in a receptor structure is hard earned. We 
demonstrated the effects of differences in receptors on the 
binding of drug molecules. Therefore, the results of virtual 
screening can only be trusted as far as the receptor structure 
model.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 024- 10850-8.
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